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Abstract
We propose a novel generative approach to speaker recognition
using Boltzmann machines, a fledgeling non-Gaussian proba-
bilistic framework that is increasingly gaining attention in sev-
eral machine learning fields. We show how a modified i-vector
representation of speech utterances enables the development of
several Boltzmann machine architectures for speaker verifica-
tion and we report some preliminary speaker recognition results
obtained with one of them, which we refer to as Siamese twins.
The Siamese twin architecture is designed to capture correla-
tions between utterances spoken by a single speaker and it can
be regarded as probabilistic analogue of the well known cosine
distance metric. A relative improvement of 27% is reported on
NIST-2010 telephone female data.

1. Introduction
Boltzmann machines are probability distributions on high di-
mensional binary vectors which are analogous to Gaussian
Markov Random Fields in that they are fully determined by
first and second order moments. A key difference however is
that augmenting Boltzmann machines with hidden variables en-
larges the class of distributions that can be modeled, so that in
principle it is possible to model distributions of arbitrary com-
plexity [1]. (On the other hand, marginalizing over hidden vari-
ables in a Gaussian distribution merely gives another Gaussian.)
A variational Bayes expectation maximization algorithm has
been developed for training Boltzmann machines which is rea-
sonably efficient for a class of sparsely connected Boltzmann
machines that includes the deep Boltzmann machines studied
in [2]. The binary/Gaussian distinction is not an exclusive di-
chotomy: hybrid models containing both types of hidden vari-
able can be constructed. This enables Boltzmann machines to
model continuous data vectors such as acoustic observation vec-
tors in speech recognition or i-vectors in speaker recognition.

Readers familiar with the machine learning literature will
be aware that Boltzmann machines are principally used in un-
supervised training of another type of generative model known
as a deep belief network which serves to initialize backprop-
agation training of discriminative neural networks [1]. These
neural networks have recently proved to be very successful in
speech recognition [3, 4, 5, 6, 7, 8] so the question naturally
arises whether such an approach can be made to work in speaker
recognition. However that is not the question that we will at-
tempt to address here.

State of the art speaker recognition systems use several

types of generative model as feature extractors (the Univer-
sal Background Model, Joint Factor Analysis and the i-vector
extractor) and as classifiers (Probabilistic Linear Discriminant
Analysis and the cosine distance metric) [9, 10, 11]. (It is only
with the advent of i-vectors that discriminative approaches have
begun to have an impact [12, 13].) These generative models
rely heavily on Gaussian assumptions (some of which are quite
questionable [11]) so there is reason to believe that modeling
with Boltzmann machines may eventually prove to be more
powerful. In the long run we aim to devise a complete speaker
recognition architecture in this way. In this paper, we will de-
scribe a first step we have taken in this direction and explain
how we have used the Boltzmann machine apparatus to build a
classifier for speaker verification.

2. Boltzmann Machines
A Boltzmann machine is a probability distribution on binary
vectors x of the form

P (x) =
1

Z
e−E(x)

where the “energy function” E(x) has the form

E(x) = −
X
i<j

xiwijxj ,

the sum extending over all pairs (i, j) such that i < j. The
normalizing constant Z is referred to as the partition function.

Units are sometimes referred to as neurons and the weights
wij as synaptic weights. We denote the weight matrix by W .
This is assumed to be symmetric with zero diagonal (to prevent
neurons from interacting with themselves). Some of the units
may be distinguished as visible and others as hidden. When it
is necessary to make this distinction we will use the symbol vi

for the binary variable associated with a visible unit i and the
symbol hj for the binary variable associated with a hidden unit
j.

First order terms such as
P

j wjxj could also be included
but there is no gain in generality as this is equivalent to forcing
some of the components of x to be 1. We will exclude these
“bias” terms in order to keep the notation simple.

2.1. Gibbs sampling and the mean field approximation

The Gibbs sampling formulas shows that a Boltzmann machine
can be regarded as a stochastic neural network (for background
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on variational Bayes, expectation maximization and Gibbs sam-
pling see [14]).

Q(xi = 1|x\i) =
P (xi = 1,x\i)

P (xi = 0,x\i) + P (xi = 1,x\i)

=
exp

“P
j 6=i wijxj

”
1 + exp

“P
j 6=i wijxj

”
= σ

0@X
j 6=i

wijxj

1A
where σ is the sigmoid (that is, S-shaped) non-linearity defined
by

σ(u) = (1 + e−u)−1.

In order to convert the Boltzmann machine into a determin-
istic neural network we can apply variational Bayes to the prior
distribution P (x), that is, we calculate a variational approxima-
tion

P (x) ≈
Y

i

Q(xi)

=
Y

i

µxi
i

where µi = Q(xi = 1). (In the context of Boltzmann ma-
chines, variational Bayes is usually referred to as the mean field
approximation.) The variational update equations are

lnQ(xi) ≡ EQ(x\i)

ˆ
lnP (xi,x\i)

˜
= EQ(x\i)

24X
j 6=i

xiwijxj

35
=

 P
j 6=i wijµj if xi = 1

0 if xi = 0

so

Q(xi = 1) =
exp

“P
j 6=i wijµj

”
1 + exp

“P
j 6=i wijµj

”
= σ

0@X
j 6=i

wijµj

1A
Since µi = Q(xi = 1), the fixed point equations are

µi = σ

0@X
j 6=i

wijµj

1A .

These are the same as the equations for Gibbs sampling except
that the x’s are replaced by their mean values, the µ’s. This ex-
plains the the term “mean field” and shows how the Boltzmann
distribution can be approximated by a deterministic neural net.

Note that the mean field approximation is not a good ap-
proximation toP (x) since it treats the units as statistically inde-
pendent and the approximate distribution is unimodal. In prac-
tice, variational Bayes should only be applied to posterior dis-
tributions (where the values of some of the components of x are
fixed), not prior distributions.

2.2. Role of hidden units

Both Boltzmann machines and Gaussian Markov random fields
can model only the second order statistics of data. Perhaps
the most interesting difference between the two is that includ-
ing hidden variables in Boltzmann machines extends the class
of distributions that can be modeled but this is not the case
for Gaussian Markov random fields. If P (v,h) is a Gaussian
Markov random field then the marginal distribution of P (v) is
just a Gaussian. On the other hand if P (v,h) is a Boltzmann
distribution with energy function E(v,h) we can represent the
marginal distribution P (v) as an energy based model with en-
ergy function F (v), that is

P (v) =
1

Z
e−F (v),

by defining the free energy F (v) as

F (v) = − ln
X

h

e−E(v,h).

It is clear the the free energy cannot be represented as a
quadratic form in v so introducing hidden variables extends the
class of distributions that can be modeled by Boltzmann ma-
chines. It appears that by adding sufficiently many hidden vari-
ables any distribution on discrete binary vectors can be accom-
modated [1]. For a concrete example of a distribution that can
be modeled by a Boltzmann machine with hidden variables but
not by a Boltzmann machine, see [15].

2.3. Training

Boltzmann machines and related models are traditionally
trained by stochastic gradient ascent rather than in batch mode
as is usual in speech processing. To begin with, consider the
case where there are no hidden units. Given a training token
x1, a straightforward calculation gives the gradient of the log
likelihood with respect to the model parameters:

∂ lnP (x)

∂wij

˛̨̨̨
x=x1

= x1
ix

1
j − 〈xixj〉model

where

〈xixj〉model =
X

x

P (x)xixj

Similarly, if there are N training tokens x1, . . . , xN ,

1

N

∂ lnP (x1, . . . ,xN )

∂wij
= 〈xixj〉data − 〈xixj〉model

where

〈xixj〉data =
1

N

“
x1

ix
1
j + . . .+ xN

i x
N
j

”
.

We will refer to the correlations 〈xixj〉data and 〈xixj〉model

as the data statistics and the model statistics. These have to
agree at a critical point of the log likelihood function, just as the
analogy with a zero mean Gaussian Markov random field would
suggest.

In practice, training is implemented sequentially and the
model is updated after each training token or mini-batch is pre-
sented. Specifically, if a training token x1 is presented, the
model is updated according to

wij ← wij + α
∂ lnP (x)

∂wij

˛̨̨̨
x=x1

where α is a learning rate.
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2.3.1. Contrastive divergence

The model statistics 〈xixj〉model are typically estimated by
contrastive divergence (CD) which in the general formulation
given by Bengio and Dellaleau [16] can be applied using any
MCMC algorithm to simulate the model (not just Gibbs sam-
pling). Starting at the given training token x1, run the Markov
chain for n steps: x1 → . . .→ xn+1. If n is sufficiently large
then xn+1 will be approximately distributed according to the
model distribution P (x) so

E
ˆ
xn+1

i xn+1
j

˜
≈ 〈xixj〉model

and we can approximate

∂ lnP (x)

∂wij

˛̨̨̨
x=x1

≈ x1
ix

1
j − xn+1

i xn+1
j .

This approximation is known as CD-n. Surprisingly CD-1
works well in practice. CD-1 acts so as to depress the energy
surface at the real datum x1 and increase the energy at a nearby
fictitious datum x2. It can be argued that the net effect is to fit
the energy surface closely to the real data points.

2.3.2. Persistent contrastive divergence

A set of samples (or “particles”) x1, . . . ,xN drawn from the
model distribution is maintained and updated whenever the
model is updated. (N Markov chains are run in parallel and,
on every update, several steps of Gibbs sampling are performed
in each chain.) A small learning rate ensures that the samples
are always drawn from the model distribution even though the
model is constantly being updated. The model statistics are de-
rived by averaging over the particles:

〈xixj〉model =
1

N

X
n

xn
i x

n
j

Persistent CD generally works better than CD-1.

2.3.3. Training with hidden units

To train Boltzmann machines with hidden units, the variational
Bayes version of the EM algorithm is used [2]. Given a data
vector v, the variational lower bound is

〈lnP (x)〉data +H

where x = (v,h) and 〈·〉data refers to the expectation calcu-
lated with the posterior of h given v andH is the entropy of this
posterior. We seek to maximize this with respect to the model
parameters (so that the entropy term can be ignored).

Differentiating with respect to wij ,

∂

∂wij
〈lnP (x)〉data = 〈xixj〉data − 〈xixj〉model .

The fact that not all of the units are visible makes no difference
to the way the model statistics are handled and the only differ-
ence is in the treatment of the data statistics. In the case of a
restricted Boltzmann machine (described in Section 3.1 below),
the posterior Q(h|v) can be evaluated exactly and calculating
the data statistics is straightforward. In the general case, ei-
ther Gibbs sampling or variational Bayes is used to calculate
the posterior expectation needed to evaluate the data statistics.
Variational Bayes is used in practice as Gibbs sampling is too
slow.

Variational Bayes could be computationally expensive as it
may be necessary to cycle through all of the variables many
times to achieve convergence. A standard trick which allevi-
ates this problem is to initialize the variational Bayes updates
for a given training token using the variational approximation
calculated the last time the token was visited in the course of
training.

2.4. Variational lower bound

The variational lower bound can be evaluated if the partition
function Z is known. For each unit i, visible or hidden, set

µi = Q(xi = 1|v)

so that the expectation of xi calculated with the variational pos-
terior just µi and

〈xixj〉 = 〈xi〉 〈xj〉
= µiµj

if i 6= j. (If the variational posterior factorizes fully, xi and
xj are independent in the posterior.) Then the variational lower
bound is given by

〈lnP (x)〉+H

= −〈E(x)〉 − lnZ +H

=
X
i<j

µiwijµj − lnZ

−
X

i

(µi lnµi + (1− µi) ln(1− µi)) .

If the partition function is not known, this calculation gives a
lower bound on the free energy (which is actually enough for
our purposes).

3. The Markov property
The most interesting situation is when the matrix W is sparse.
Let x\{i,j} denote the set of variables other than xi and xj . If
x\{i,j} is given and wij = 0 can write the energy function as

E(x) = axi + bxj + c

where a, b and c depend on x\{i,j} but not on xi or xj . Thus
xi and xj are conditionally independent if x\{i,j} is given, pro-
vided that wij = 0.

A Boltzmann machine is represented by a graphical model
with undirected edges joining all pairs of units i, j for which
wij is not zero. The conditional independence property can be
generalized as follows. Suppose we are given a partition of the
units into three subsets A, B and C with the property that there
is no edge between units in A and C. Then xA and xC are
conditionally independent if xB is given where xA = {xi : i ∈
A} etc. This is called the Markov property: the “future” (C) is
independent of the “past” (A) if the “present” (B) is given.

3.1. Restricted Boltzmann machines (RBMs)

In this case there is a hidden layer and a visible layer with no
hidden-to-hidden or visible-to-visible connections. The vectors
h,v are of dimension J × 1 and I × 1 and W is of dimension
I × J . The energy function is

E(v,h) = −vT Wh.
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We denote the ith row of W by W i· and the jth column by
W ·j . By the Markov property, Q(h|v) and P (v|h) both fac-
torize

Q(h|v) =
Y

j

Q(hj |v)

P (v|h) =
Y

i

P (vi|h).

It turns out that each of the factors here as well as the free en-
ergy can be evaluated in closed form by a deft application of
the distributive law of arithmetic [1]. Thus there is no need for
variational Bayes and Gibbs sampling can be implemented ef-
ficiently by alternating between the hidden and visible levels.
This is known as block Gibbs sampling.

The free energy works out to be

− ln

JY
j=1

“
1 + exp

“
vT W ·j

””
.

As for the posteriors,

Q(hj = 1|v) = σ(vT W ·j).

Similarly

P (vi = 1|h) = σ(W i·h).

Figure 1: Restricted Boltzmann machine

The marginal distribution P (v) does not factorize (if it did
the model would be trivial) and, by symmetry, the same is true
of the prior P (h). (Thus the hidden variables are not inde-
pendent in the prior, contrary to what experience with directed
graphical models might suggest.)

3.2. Gaussian-Bernoulli restricted Boltzmann machines

The visible vectors are assumed to be real valued, the hidden
vectors binary valued and the energy function is given by

E(v,h) =
1

2
(v − b)T (v − b)− cT h− vT Wh (v ∈ RI)

The conditional distribution of P (v|h) is Gaussian with mean
b + Wh and identity covariance matrix. As for the posterior

Q(h|v), it factorizes as

Q(h|v) =
Y

j

Q(hj |v)

where

Q(hj = 1|v) = σ(cj + vT W ·j).

The marginal P (h), that is,Z
P (v,h)dv

cannot be evaluated explicitly but if we write

P (v) =
X

h

P (h)P (v|h)

we can interpret P (v) as a Gaussian mixture with a prodigious
number of components, where the mixture weights are evalu-
ated in a complicated way and each component has the iden-
tity matrix as covariance matrix. Of course, the assumption of
common identity covariance matrix is unreasonable unless the
data has been appropriately preprocessed (e.g. by whitening it
so that the mean of the data is zero and the global covariance
matrix is the identity matrix.) Allowing for the possibility of a
full covariance matrix for each mixture component h is more
difficult [6].

This type of model could serve as a sort of a UBM for
speaker recognition but we will not attempt to explore this pos-
sibility here. In speech recognition, it is used to binarize obser-
vation vectors (typically an acoustic observation vector consists
of cepstral coefficients extracted from a block of 11 successive
frames) [3, 4, 5, 6, 7, 8] and we will use it to binarize i-vectors
so that binary Boltzmann machines can be used in subsequent
processing.

In its simplest incarnation the idea here is that a data vec-
tor v could be mapped to the binary vector h which maximizes
Q(h|v). In practice, a mean field approximation is generally
used, so that a vector of Bernoulli probabilities (that is, the prob-
abilities Q(hj = 1|v)) rather than a binary vector is produced
instead [2]. This representation is suitable for subsequent pro-
cessing involving variational Bayes computations with binary
Boltzmann machines.

3.3. Sparsely connected Boltzmann machines

We use the term layer to refer to a set of units none of which
are connected another, so that the corresponding submatrix of
the weight matrix is zero. (For example, an RBM consists of
a hidden layer and a visible layer.) We say that a Boltzmann
machine is sparsely connected (or simply sparse) if the units
can be partitioned into a small number of layers. We will denote
the variables corresponding to the layers by h0, . . . ,hL where
h0 corresponds to the visible layer.

The weight matrix looks like0BBB@
0

0
. . .

0

1CCCA
There is one 0 matrix for each layer and no restrictions on the
off-diagonal blocks. In the case of a restricted Boltzmann ma-
chine, there are just 2 blocks.
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Figure 2: Sparse Boltzmann machine with one visible and two
hidden layers

If W kl denotes the matrix of weights on the branches join-
ing units in layer l to those in layer k, the energy function is
given by

E(h) = −
X
k<l

hkT W klhl

where k, l range from 0 to L.
For any pair of layers k, l, the conditional joint distribu-

tion P (hk,hl|h\k,l) is a restricted Boltzmann machine (whose
weight matrix is a modified version of W kl); the unconditional
joint distribution is not. In fact,

P (hk,hl) =
X

h\k,l

P (hk,hl,h\k,l)

which shows that the unconditional joint distribution can be re-
garded as a Boltzmann machine with hidden variables and we
know that the class of Boltzmann machines with hidden vari-
ables is larger than the class of Boltzmann machines. In partic-
ular, it follows thatD

hk
i h

l
j

E
model

6=
D
hk

i h
l
j

E
RBM

in general, where RBM refers to the restricted Boltzmann ma-
chine defined by the matrix W kl. In training a sparse BM, one
might be tempted to estimate the weight matrices W kl indi-
vidually using RBM training but that would not be a correct
procedure.

However sparse Boltzmann machines are easier to train
than general Boltzmann machines because both Gibbs sam-
pling and variational Bayes can be implemented very efficiently
by cycling among layers (rather than cycling among individual
units), in exactly the same way as Gibbs sampling can be car-
ried out in RBMs by alternating between the hidden and visible
layer. Note that, for each layer l, the posterior Q(hl|h\l) is
factorial since

lnQ(hl|h\l) = lnP (h)− lnP (h\l)

≡
X
h\l

E(hl,h\l)

= aT hl

where a depends on h\l but not on hl. Thus we can write

Q(hl|h\l) =
Y

i

Q(hl
i|h\l)

and implement Gibbs sampling at layer l by sampling the vari-
ous units independently of each other.

Likewise for variational Bayes, assuming that the varia-
tional posteriors factorizes over layers, that is

Q(h|h0) =

LY
l=1

Q(hl|h0),

is enough to ensure a full factorization. This is because the
variational update formula for a layer l is

Q(hl|h0) ≡ Eh\l [lnP (h)]

≡ Eh\l [−E(h)]

=
X
k<l

hkT W klhl

= aT hl

where a depends on h\l but not on hl. Thus we can implement
variational Bayes at layer l by updating the variational posteri-
ors for the various units independently.

4. Architectures for speaker verification
Assume that we have a representation of whole utterances
(of arbitrary duration) by binary vectors (of fixed length),
analagous to the i-vector representation [10]. Stated in its most
general form, the speaker verification problem can be formu-
lated as one of determining whether two collections of utter-
ances were uttered by the same speaker or by different speakers.
If the collections are denoted by E (for enrollment) and T (for
test), the likelihood ratio for the verification trial is

P (E, T )

P (E)P (T )
(1)

where each term is the joint probability of a collection of utter-
ances which are not independent. For example, P (E, T ) is the
joint probability of all of the utterances in the enrollment and
test sets, calculated under the hypothesis that they were uttered
by a single speaker. Thus the problem confronting us is to use
the sparse Boltzmann machine apparatus to construct the joint
distribution on an arbitrary set of utterances uttered by a single
speaker. The construction ought to be such that the joint dis-
tribution is invariant under permutations of the utterances. We
will sketch several ways of doing this.

4.1. Siamese twins

Suppose that we build a sparse Boltzmann machine (of what-
ever topology) to represent the marginal distribution of individ-
ual utterances. We can construct a model for pairs of utterances
by taking two copies of the original Boltzmann machine and
gluing them together by adding branches joining units in one
copy to units in the other. Requiring that the additional weight
matrix be symmetric ensures that the distribution on pairs of
utterances is symmetric. The construction extends straightfor-
wardly to handlingN -tuples of utterances (replicate the glue for
every pair of utterances). The twin model is a sparse Boltzmann
machine if the singleton model is (but it is not a deep Boltzmann
machine in the sense of [2]). This model can be thought of as
learning an analogue of the cosine distance metric [10].

So the numerator and the denominator in the verification
likelihood ratio can be approximated by the variational free en-
ergy calculation for sparse Boltzmann machines. Note that the
partition functions are not needed (although it would be desir-
able to have them to see how well calibrated the likelihood ra-
tios are). In practice, verification decisions are made by com-
paring the likelihood ratio is with a decision threshold whose
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value could be determined in theory from the parameters of a
NIST-like detection cost function but which is usually deter-
mined empirically in practice. As long as this determination is
done empirically, the partition functions can be absorbed into
the decision threshold and their values need not be known.

Figure 3: Example of the Siamese twin construction

4.2. Speaker factors and channel factors

An alternative approach to constructing a joint distribution on
pairs of utterances by a speaker would be to take any distribu-
tion on pairs of visible vectors (v1,v2) and modify it so as to
obtain a symmetric distribution. For example we could start
with a RBM and tie the weight matrices as in Fig. 4. The units
in the hidden layer would account for both utterances in the
pair so that they would play a role analogous to speaker fac-
tors in Joint Factor Analysis or Probabilistic Linear Discrimi-
nant Analysis [9, 11]. We will refer to units like this as tied
units. This model can obviously be extended to handle multi-
ple utterances in a permutation-invariant way but it would not
be very powerful and something analogous to channel factors
would seem to be needed, as in Fig. 5.

Figure 4: Tied hidden variables

The model in Fig 5 is an RBM (although it may not look
like one). As such the free energies needed to evaluate the ver-
ification likelihood ratio (up to the partition functions) can be
evaluated exactly. The computational burden of evaluating the
free energy of a set of N utterances is proportional to N rather
than to N2 as in the case of the twin model.

4.3. Third order Boltzmann machines

Another possibility to be explored eventually would be the use
of third order or gated Boltzmann machines which allow for the
possibility of two sets of hidden variables {xj} and {yk} and
three-way interactions involving products vixjyk where the v’s
are the visible variables. If the x’s were tied and the y’s untied,
the x’s could play the role of speaker factors and the y’s could
play the role of channel factors. (The variational Bayes EM
training algorithm extends to straightforwardly to third order
Boltzmann machines although steps need to be taken to control
the number of free parameters to be estimated [17].)

Figure 5: An RBM with tied hidden variables (on top) and un-
tied hidden variables (on the bottom)

4.4. Preprocessing

We began this section by assuming that a representation of
whole utterances by binary vectors was somehow available. We
believe that finding representations of this type will be a very
interesting avenue of research but for the time being we have to
make to with a modified version of the i-vector representation.
Using CD-1, we trained a Gaussian-Bernoulli RBM on 800 di-
mensional length-normalized i-vectors. Then, as explained in
Section 3.2, we used this Gaussian-Bernoulli RBM to map each
i-vector to an array of Bernoulli probabilities so that it can be
processed with binary Boltzmann machines of the types that we
have described.

5. Experimental Results
We experimented with the Siamese twin model on the female
portion if the NIST 2010 extended speaker recognition evalua-
tion data set (normal vocal effort telephone speech).1

5.1. Data sets

We used a standard front end consisting of 20 dimensional
Gaussianized cepstral coefficients together with their first and
second derivatives and trained a a 2048 component, full covari-
ance universal background model using male and female data
from the NIST 2004 and 2005 speaker recognition evaluations.
We used an 800 dimensional gender-independent i-vector ex-
tractor trained using the Switchboard and Fisher corpora, and
some Mixer data (namely the 2004, 2005 and 2006 speaker
recognition evaluation data together with the interview devel-
opment data from the 2008 evaluation). The female portion of
the Switchboard and Mixer data sets (about 20,000 utterances)
was used to train the Gaussian-Bernoulli RBM and Siamese
twin Boltzmann machine used to make speaker verification de-
cisions.

5.2. Implementation of the Siamese twin model

The topology that we used for the Siamese twin model is
slightly more complicated than that depicted in Fig. 3 — we
glued together the the visible layers as well as the hidden lay-
ers. The singleton model — that is, the model for the marginal
distribution of individual utterances — is just an RBM and it is
especially easy to train as variational Bayes is not needed. (Pos-
teriors can be calculated exactly as explained in Section 3.1.)
The additional parameters that need to be estimated in the twin
model are the weights on the branches joining the two copies of
the singleton model. For these, the full variational Bayes train-
ing algorithm is needed. We found that 25–30 training epochs

1We plan to include results for male speakers in the final version if
the paper is accepted.
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were sufficient.
Likelihood ratios for verification trials were evaluated ac-

cording to (1) using variational free energies (Section 3.3) as
proxies for log likelihoods in a similar spirit to [11]. (Of course,
since the singleton model is a restricted Boltzmann machine,
these free energies can be evaluated exactly in the case of the
denominator as explained in Section 3.1.) It may seem sur-
prising that the (intractable) partition functions are not needed
here. The reason is that the likelihood ratio (1) only needs to be
compared to an empirically determined decision threshold and
the values of the partition functions can be absorbed into this
threshold.

Error rates evaluated with the 2008 and 2010 detection cost
functions for different configurations of the twin model are re-
ported in Table 1 and the corresponding DET curves are in Fig.
6.
The i-vectors have first been projected to an LDA bases, that
reduced their dimensionality from 800 to 200. We then ap-
plied within-class covariance normalization (WCCN) and fi-
nally length normalization, i.e. projection onto the unit sphere,
[10].

Table 1: Error rates on the extended NIST 2010 speaker recog-
nition data (female telephone speech) obtained with different
configurations of the twin model. BM-200-100 indicates 200
hidden units in the Gaussian-Bernoulli RBM and 100 hidden
units in the singleton RBM

EER 2008 NDCF 2010 NDCF
cosine distance 3.45 % 0.309 0.449
BM-250-250 2.68 % 0.27 0.45
BM-250-200 2.51 % 0.27 0.41
BM-200-150 3.13 % 0.28 0.46
BM-200-200 2.98 % 0.28 0.47

Figure 6: Det curves for various configurations of the twin
model

The results are demonstrated in Table 1. Clearly, the twin

model outperforms the cosine distance with relative improve-
ment equal to 27%, indicating that the model is capable of learn-
ing a better distance, in terms of the official scoring metric.

6. Conclusion
We have conducted a preliminary investigation into the use of
Boltzmann machines as generative models for collections of ut-
terances spoken by a single speaker which has enabled us to
build a rudimentary classifier for speaker verification. Clearly,
a lot of work remains to be done to achieve performance com-
parable to other i-vector based speaker recognition systems but
our long term goals are actually more ambitious.

A typical state of the art speaker recognition system uses
two generative models for feature extraction (namely a UBM
to extract Baum-Welch statistics and an i-vector extractor) in
addition to a generative model (such as Probabilistic Linear
Discriminant Analysis) to make verification decisions. All of
these generative models are potentially replaceable by Boltz-
mann machines and it is possible to envisage a complete speaker
recognition architecture built in this way.

Research in Boltzmann machines has already produced a
very interesting candidate for replacing the UBM, namely the
Gaussian-Bernoulli Restricted Boltzmann machine applied in
the front end as in speech recognition applications [3, 4, 5, 6,
7, 8]. This appears to be capable of much more fine-grained
modeling than conventional Gaussian mixture UBMs having a
few thousand components and it is capable of modeling much
longer intervals of speech (11 – 15 frames are typical).

Perhaps the most interesting avenue of research will be to
find new ways of producing binary valued i-vector like features.
At this writing, we can only speculate on what form these fea-
tures might eventually assume but a plausible scenario would
be to devise a binary Boltzmann machine to model whole utter-
ances. The visible variables could be binarized acoustic obser-
vations produced by a Gaussian-Bernoulli RBM and utterances
could be characterized by tied hidden variables. (Thus these
variables would differ from one utterance to another but would
be tied across all of the acoustic observations in a given utter-
ance.) Tying could be enforced using a model similar to that
illustrated in Fig. 5 or a third order Boltzmann machine.
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