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Abstract

Bottleneck neural networks have recently found success in
a variety of speech recognition tasks. This paper presents
an approach in which they are utilized in the front-end of
a speaker recognition system. The network inputs are mel-
frequency cepstral coefficients (MFCCs) from multiple consec-
utive frames and the outputs are speaker labels. We propose
using a recording-level criterion that is optimized via an online
learning algorithm. We furthermore propose retraining a net-
work to focus on its errors when leveraging scores from an inde-
pendently trained system. We ran experiments on the same- and
different-microphone tasks of the 2010 NIST Speaker Recogni-
tion Evaluation. We found that the proposed bottleneck feature
extraction paradigm performs slightly worse than MFCCs but
provides complementary information in combination. We also
found that the proposed combination strategy with re-training
improved the EER by 14% and 18% relative over the baseline
MFCC system in the same- and different-microphone tasks re-
spectively.

1. Introduction
The speech recognition community has seen a recent boom in
the ways neural networks are utilized. In particular, deep neu-
ral networks with multiple layers of hidden nodes are shown to
provide significant improvements in speech recognition perfor-
mance, for example, see [1]. Bottleneck networks (BNs) consti-
tute one such class of deep neural networks that do not require
conversion of network outputs into features. A BN with three
hidden layers is depicted in Figure 1. Shown is an information
bottleneck in a middle layer that provides features of desired
dimensionality. BNs are shown to perform comparably with or
better than other published MLP systems with fewer parame-
ters [2, 3, 4, 5].

There is also an emerging interest in using neural networks
for speaker recognition. In [6], a BN was trained to classify
each sample that consists of MFCC features of nine consecutive
frames into one of 34 speaker classes. The training was per-
formed by minimizing the sample-level cross-entropy. In [7], a
factor analysis technique for a mixture of auto-associative neu-
ral networks is proposed to learn a low-dimensional subspace in
the supervector space of last layer weights.
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Figure 1: A bottleneck network topology with an information
bottleneck in the middle layer.

In this paper, we use bottleneck features in the front-end
of a state-of-the-art GMM-UBM speaker recognition system.
We propose a recording-level training criterion and optimize it
via an online learning algorithm. In our experiments, we found
that a network trained with a recording-level training criterion
outperforms one that is trained with a sample-level training cri-
terion by up to 16% relative in terms of EER.

We also propose retraining an optimized network with ad-
ditional scores from an independently trained system. The goal
is to provide complementary information in the combination of
the two. Our experiments indicate that the proposed combina-
tion technique can perform better than linear score combination
of independently trained systems.

The organization of this paper is as follows: Section 2
presents our approach for training a bottleneck network for
speaker recognition. Section 3 describes the proposed re-
training technique for obtaining complementary information in
combination. Our experimental findings are reported in Sec-
tion 4. Finally, Section 5 summarizes our conclusions.

2. Bottleneck Features
BNs are deep neural networks with multiple hidden layers that
create a bottleneck of information in a middle layer. The lay-
ers below the bottleneck focus on generating robust speaker-
specific features while the upper layers focus on the discrimina-
tive learning of the speaker classes.

Let W(ℓ) denote the weight matrix and the scalar-valued
bias of the ℓth layer of an L-layer network. Also let Θ denote
the set of all the weights and biases to be estimated during train-
ing, i.e., Θ = {W(1), ...,W(L)}. Let xijk be the kth feature
vector from the jth recording of the ith speaker. For simplicity
of notation, we will denote xijk as x. It represents a concate-
nation of mean and variance normalized raw MFCC features of
multiple adjacent frames and we refer to each x as a sample. For
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each x, each hidden node computes an output and propagates it
to its next layer.

Each hidden and output node performs a linear combina-
tion followed by a non-linear operation (such as a sigmoid non-
linearity) on its inputs. The output of the first layer (i.e., the
input layer) is equal to the input itself, i.e., σ(1) = x. The
inputs to the ℓth layer are first linearly combined as u(ℓ) =
W(ℓ−1)σ(ℓ−1) for ℓ = {2, 3, ..., L}. A non-linearity (such as
a sigmoid) is applied on u(ℓ), which yields outputs

σ(ℓ)(Θ) =
1

1 + exp[−u(ℓ)]
(1)

for ℓ = {2, 3, 4, ..., L − 1}. The output at the nth hidden
node of the output layer is typically calculated by performing
a softmax-operation on its input, i.e., by computing

σ(L)
n (Θ) =

exp(u
(L)
n )∑

i exp(u
(L)
i )

(2)

where σ
(L)
n can be interpreted as the a posteriori probability of

the associated speaker label n.
The traditional criterion adapted to train neural networks

for classification tasks is the cross-entropy criterion. It is for-
mulated as

JXH(Θ) =
∑
n

tn log σ(L)
n (Θ) (3)

where tn stands for the 0/1-valued target output at the nth node.
During training, the weights W(ℓ) are updated in proportion to
the derivative of JXH with respect to W(ℓ).

2.1. Training a Bottleneck Network

This paper proposes using a bottleneck network in the front-end
of a speaker recognition system. The inputs are spectral features
and the outputs are the labels assigned with the S speakers. In
the speaker recognition application, the scores generated at the
last layer represent one target score and S-1 non-target scores
for each given recording. The features extracted from the bot-
tleneck layer are decorrelated with a whitening transform and
used as inputs to a GMM-UBM speaker recognition system.

The fact that the network outputs {σ(L)
n } are normalized

over all speakers can be suboptimal for speaker recognition sce-
narios, which aim to avoid dependence on non-target speakers.
Therefore, we propose using scores {u(L)

n } which do not re-
quire information from other speakers. The goodness of these
scores can be evaluated with a log-likelihood ratio-based cost
function, JLLR, defined as [8]

JLLR = α
∑
T

log(1+e−uT−c)+β
∑
N

log(1+euN+c) (4)

where uT and uN denote target and non-target speaker scores,
respectively, computed at the last layer. The two summations
in (4) are over all target and non-target scores.

The term c is a constant and is equal to log( π
1−π

).
The parameter π depends on the a priori target speaker
probability, Ptarget, and the costs associated with miss
and false-alarm errors (Cmiss and CFA). It is equal to

Ptarget×Cmiss

Ptarget×Cmiss+(1−Ptarget)×CFA
. The weights α and β are

equal to π
Ntarget

and 1−π
Nnontarget

, respectively, where Ntarget

and Nnontarget are the number of target and non-target trials.
Following the specification of the 2008 NIST SRE, we used
Cmiss = 10, CFA = 1 and Ptarget = 0.01.
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Figure 2: Scores generated by an independently trained MFCC
system are leveraged to re-train a network.

2.2. A Recording-Level Training Objective

Optimizing JLLR requires computing and accumulating error
functions for each input sample. Despite the use of multi-frame
features in the input, the training algorithm does not impose
any global constraint on the classification decision of the en-
tire speech segment. Therefore, the use of only local informa-
tion gives the neural network a disadvantage over state-of-the-
art counterparts that use both local information from multiple
frames as well as global information from the entire recording.

To resolve these issues, we re-formulate JLLR as a
recording-level training objective. The time-average of the in-
put at the last layer is computed as

u = EC

[
u(L)

]
(5)

where EC denotes the expected value over all samples of the
recording C. These time-averaged scores replace the uT and
uN in the training criterion in Equation (4).

3. Boosting Network Performance with a
State-of-the-Art System

In this section, we propose a network re-training technique to
improve system performance using the knowledge of scores
generated by an independently trained system. Figure 2 depicts
the proposed system combination technique, where the scores
generated by the bottleneck network {un} are leveraged with
scores from a standard system.

More specifically, a standard speaker recognition system
generates a set of scores (denoted as {uM

n }) for each given
speaker and recording pair constituting a trial. The idea is to use
these scores to help the network identify the ‘easy’ and ‘diffi-
cult’ trials. The network training criterion then focuses on cor-
recting the difficult cases.

The training criterion to perform the proposed re-training is
a reformulation of JLLR in which {un(Θ)} are replaced with

u′
n(Θ) = ωBun(Θ) + ωMuM

n + β (6)

where ωB and ωM are the importance weights for the bottleneck
and MFCC system scores and β is an offset. Note that the scores
{uM

n } do not depend on Θ but Θ does depend on the scores
{uM

n }.
There is one important difference between the scores gen-

erated by the bottleneck network and those generated by a stan-
dard system: The scores {un} have the interpretation of being
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log-likelihood ratio (LLR) scores. However, the scores {uM
n }

can be arbitrary scores. Therefore, before being used in train-
ing, {uM

n } need to be properly calibrated.
The calibration is achieved by estimating the scaling fac-

tors ωB and ωM , and the offset β that optimize JLLR with the
network parameters fixed. This is equivalent to solving the fol-
lowing problem:

ω∗
B , ω

∗
M , β∗ = arg min

ωB ,ωM ,β
JLLR(ωB , ωM , β|Θfixed). (7)

The resulting ω∗
B , ω∗

M , and β∗ produces a more compati-
ble combination of the scores generated at the output layer of
the neural network with scores generated by an independently
trained system. Starting with this initialization, the scores at
the output layer are refined at each iteration by solving the op-
timization problem

Θ∗ = arg min
Θ

JLLR(Θ|ωB , ωM , β). (8)

The combination weights ωB , ωM , and β can be updated at
each iteration (by solving (7)) to provide a better combination
or can be held fixed at their initial estimates to help reduce
computation time. This combination strategy is more powerful
than the standard way of system combination since the bottle-
neck feature-based system was exposed to information from the
state-of-the-art system during its training.

4. Experiments
We ran experiments on the same and different microphone tasks
of the NIST 2010 SRE. We used 40K recordings in estimat-
ing the parameters of the standard speaker recognition system.
These recordings came from the NIST SRE 2004-2006 and
Switchboard Phases II and III datasets. We trained standard
MFCC-based baseline systems that used either 42 or 60 dimen-
sional features as input for the clean signal. We also simulated
a noise condition by adding 4dB additive white Gaussian noise
to each recording.

Table 1 reports our experimental results with the standard
MFCC-based baseline system. The results reported are in terms
of 1000 times the minimum detection cost function (minDCF)
as defined in the NIST SRE 2008 (denoted as D08), and the
equal-error rate (EER).

As Table 1 reports, the performance in terms of EER does
not change much as we change the feature dimensionality. Un-
der the noisy condition, the performance in terms of D08 and
EER is about 2.5 times worse for the same microphone task and
about 3 times worse for the different microphone task.

4.1. Training a Bottleneck Network

Since our focus in this paper is on the microphone tasks, the
NIST SRE 2004-2006 microphone recordings were used in
training a bottleneck network. These recordings came from a
total of 173 speakers. We included five recordings from each
speaker in our validation set and the remaining 4,341 record-
ings for training.

For the results reported in this paper, the first hidden layer
had 1,000 nodes and the third hidden layer had 500 nodes. We
report our experimental findings for the bottleneck feature vec-
tor sizes of 42, 60, and 100. Our bottleneck network implemen-
tation was based on [9].

For input features to the bottleneck network, we extracted
MFCCs for all (including speech and non-speech) frames of

Table 1: The speaker recognition performance of a standard
MFCC-based system with 42 and 60 dimensional features under
clean and noisy conditions.

MFCC Same mic Different mic
Train/Test D08 EER D08 EER

Clean/Clean (42) 15.0 2.8 24.8 5.0
Clean/Clean (60) 14.9 3.0 27.5 5.5
Noisy/Noisy (42) 37.3 6.9 74.5 16.5
Noisy/Noisy (60) 36.9 8.1 73.1 16.2

a given recording. The raw MFCC features are mean- and
variance-normalized over a sliding window of 3 seconds. The
resulting normalized MFCC features of multiple (for example,
21) consecutive frames are concatenated and used as the input.
We used one in every 10 frames to downsample our training
data. We had approximately 7 million samples for training and
3 million samples for validation.

The minDCF performance metric evaluated on the valida-
tion data determined the stopping criterion for network training
as well as the choice of the network size. The performance was
estimated in each training iteration using the following tech-
nique: The score generated for a given recording at the out-
put node is taken as the speaker verification score. Therefore,
the score generated at the node that corresponds to the correct
speaker label is used as a target score and the rest are used
as non-target scores. These scores were used to calculate the
minDCF and EER within the network without requiring an ex-
plicit UBM-GMM-PLDA modelling paradigm. The best vali-
dation set peformance was obtained with a configuration where
each mini-batch consisted of 50,000 samples and the conjugate
gradient algorithm used 25 line search iterations.

4.2. Performance of the Bottleneck Feature-Based System

We evaluated the performance of the bottleneck features within
the UBM-GMM-PLDA paradigm. The whitened bottleneck
features were used to train a 1024 component GMM-UBM and
to generate MAP-adapted speaker models. The GMM mean-
based supervectors were used to estimate the PCA, LDA, and
WCCN transformations. We first reduced the dimensionality to
800 with a PCA transform. Following this, an LDA transform
reduced the dimensionality to 250 for clean conditions and to
150 for noisy conditions.

Our results with the proposed recording-level training cri-
terion are reported in Table 2 in terms of the D08 and EER for
three feature dimensions, denoted as 42, 60, and 100. Despite
achieving the best results with 100 dimensions, we focus on 42
and 60 dimensional features, which are commonly adopted in
state-of-the-art systems.

The D08 and EER of the 42 dimensional bottleneck feature-
based system are both about 30% worse relative than the stan-
dard MFCC-based system with the same feature vector size in
the same microphone task. When the feature vector size is 60,
the relative degradation in terms of D08 and EER drops to 27%
and 23%, respectively. The performance gap is significantly
less for the 4dB AWGN condition. Similar trends are observed
for the different microphone task.
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Table 2: The speaker recognition performance of a bottleneck
feature-based system using recording-level training.

DBN Same mic Different mic
Train/Test D08 EER D08 EER

Clean/Clean (42) 21.4 4.0 39.0 7.6
Clean/Clean (60) 20.5 3.9 32.2 6.3
Clean/Clean (100) 19.2 3.7 32.2 6.0
Noisy/Noisy (42) 45.5 8.7 78.5 18.2
Noisy/Noisy (60) 42.8 8.3 76.7 17.4
Noisy/Noisy (100) 38.4 8.1 71.1 16.1

Table 3: The effect of the recording-level and sample-level
training criterion on the performance.

DBN Same mic Different mic
Train/Test D08 EER D08 EER

fDCF (42D) 25.9 4.7 46.0 9.1
DCF (42D) 21.4 4.0 39.0 7.6

4.3. Effect of the Training Criterion

In this section, we compare the effectiveness of the proposed
recording-level training criterion, JLLR, to its sample-level ver-
sion. We keep the network architectures the same for fair eval-
uation. The results are reported in Table 3. The results indicate
a significant improvement with the use of a recording-level in-
stead of a sample-level training criterion. This gain can be at-
tributed to the use of a training objective that is better aligned
with the final performance evaluation metric.

The performance difference between the two training tech-
niques is even more significant on the validation data perfor-
mance estimated within the network during training: The esti-
mated D08 and EER were 13.3% and 2.2%, respectively, when
recording-level JLLR was used. When the sample-level JLLR

was adopted, the D08 and EER were 24.8% and 9.0% respec-
tively.

4.4. Effect of the Combination Strategy

We also investigated the effectiveness of using the standard
MFCC-based system speaker recognition scores in training a
bottleneck network to boost its performance. The results of
these experiments are reported in Table 4. For comparison pur-
poses, results for score-level fusion are also provided. The
MFCC and bottleneck feature-based systems were combined
with a linear weighting as determined on a held-out set. As
the results show, the proposed combination strategy, that uses
MFCC scores in retraining the network, provided an incremen-
tal gain in the D08 (for which the training objective JLLR was
tuned for) for the two tasks.

5. Conclusions
This paper proposed an approach to using a bottleneck neu-
ral network to provide features to a speaker recognition sys-
tem. We described a network training technique that optimizes
a recording-level criterion rather than a sample-level training
objective that exploits long-range information. Our experimen-
tal results indicated that a recording-level training criterion pro-

Table 4: Combination of the bottleneck feature-based system
with a standard MFCC-based system.

MFCC+DBN Same mic Different mic
Clean/Clean D08 EER D08 EER

Score-level (42D) 13.7 2.4 22.9 4.4
Boosted (42D) 13.4 2.4 21.8 4.1

vides significant gains over a sample-based criterion.
We furthermore proposed leveraging speaker recognition

scores from another system to retrain a well-trained network to
focus on remaining errors. Our experiments showed that this
method provided additional benefit when bottleneck feature-
based system was combined with the MFCC-based baseline.
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