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Abstract

This paper introduces the theory of factor analysis of the mix-
ture of Auto-Associative Neural Networks (AANNs) with ap-
plication in speaker verification. First, we formulate the prob-
lem of learning a low-dimensional subspace in part of the mix-
ture of AANNs parameter space, and subsequently derive the
update equations by minimizing loss function of the mixture.
Second, we apply this technique to build a neural network based
speaker verification system, in which the low-dimensional sub-
space is trained to capture both speaker and channel variabili-
ties. This low-dimensional (or i-vector) representation is used
as features for the probabilistic linear discriminant analysis
(PLDA) model, as in state-of-the-art speaker verification sys-
tems. The proposed factor analysis approach shows promising
results on the NIST-08 speaker recognition evaluation (SRE),
and yields 18% relative improvement in minimum detection
cost function (minDCF) over the previously proposed subspace
based mixture of AANNs system.

1. Introduction
The goal of the speaker verification is to verify whether a given
utterance belongs to a claimed speaker or not based on a sample
utterance from claimed speaker. In other words, the task is to
verify whether a given two utterances of a speaker verification
trial belong to the same speaker or not. Traditional speaker veri-
fication systems use likelihood ratio between Gaussian Mixture
Model (GMM) based Universal Background Model (UBM) and
its maximum aposteriori (MAP) adapted speaker-specific model
for making decision [1].

Recently, several factor analysis approaches have been pro-
posed for GMM based speaker verification systems [2, 3, 4, 5,
6]. These methods assume that the supervector of means of a
GMM (speaker-specific part of GMM parameter space) is not
observable, and further constrain it to lie in a low-dimensional
subspace with standard normal distribution as prior. The sub-
space is learned using the maximum likelihood principle on
large amounts of development data containing multiple utter-
ances from several speakers. The main advantage of this ap-
proach is that it facilitates robust point estimates of coordinates
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(also known as i-vector [4]) of a given utterance in the sub-
space. In [2], separate subspaces corresponding to both speaker
and channel are learned, and where as in [4], a single subspace
known as total variability space is learned. State-of-the-art
GMM based speaker verification systems treat i-vectors as fea-
tures and subsequently train a probabilistic linear discriminant
analysis (PLDA) model [7, 8]. More recently, discriminative
training of PLDA [9] and length normalization of i-vectors [10]
have significantly improved the performance of speaker verifi-
cation systems. Further, a different back-end classifier such as
Kernel Partial Least Squares (KPLS) seems to be complemen-
tary to PLDA [11].

In the past, Auto-Associative Neural Networks (AANNs)
have been proposed as an alternative to GMMs for modeling
the distribution of data [12]. An AANN is a feed-forward neu-
ral network trained to reconstruct its input at its output through
a hidden compression layer [13]. AANNs have several advan-
tages compared to the GMMs - they relax the assumption of
feature vectors to be locally normal and can capture higher or-
der moments. In [12, 14], AANNs have been applied to speaker
verification. However, they did not meet the performance of
GMM based systems. This could be due to the limitation
of a single AANN being used for modeling the entire acous-
tic space, and (or) due to the lack of subspace methods when
training speaker-specific AANN models. To address this issue,
we have proposed to use subspace based mixture of AANNs
for speaker verification [15]. The mixture consisted of sev-
eral AANNs tied using posterior probabilities of various broad
phoneme classes, which are obtained from a separate multilayer
perceptron (MLP) classifier trained on labeled data. Supervec-
tor of last layer weight matrices (after vectorizing) of all AANN
components was considered to be the speaker-specific part of
the mixture. The supervector was first retrained using each ut-
terance (and thus modeled as observable), and then projected
on to a low-dimensional subspace to reduce its dimensionality.
The subspace was learned to preserve most of the variability of
supervectors in the weighted least squares sense (analogous to
principal component analysis (PCA)) [15].

In this paper, we propose a novel factor analysis technique
for the mixture of AANNs to learn a low-dimensional subspace
in the supervector space of last layer weights. We assume that
the speaker-specific supervector is not directly observable1, but
constrained to be in a low-dimensional subspace. The sub-
space is learned by directly minimizing loss function of the

1In other words, we do not directly adapt the last layer weights of
the mixture of AANNs based Universal Background Model to obtain a
speaker-specific model.
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mixture on development data. Since loss function of the mix-
tureof AANNs is different from that of the GMM, the update
equations for training the subspace are also different as will
be derived in this paper. The resultant low-dimensional (or i-
vector) representation is used as features for the probabilistic
linear discriminant analysis (PLDA) model, as in state-of-the-
art GMM based speaker verification systems. The proposed
neural network based speaker verification system is tested on
the telephone conditions of the NIST-08 speaker recognition
evaluation (SRE). Experimental results show that the proposed
factor analysis technique shows promising results, and yields
18% relative improvement in minimum detection cost function
(minDCF) over the previously proposed subspace based mix-
ture of AANNs method [15].

The remainder of the paper is organized as follows. The
earlier work on AANNs and mixture of AANNs is summarized
in Section 2. Section 3 describes the proposed factor analysis
technique for mixture of AANNs. The neural network based
speaker verification system is described in Section 4. Experi-
mental results are presented in Section 5. Conclusions are pro-
vided in Section 6.

2. Related Work
2.1. AANNs

AANN is a five layer feed-forward neural network trained to re-
construct the input feature vector at its output through a hidden
compression layer [13]. It consists of three non-linear hidden
layers between the linear input and output layers. The second
hidden layer contains fewer nodes than the input layer, and is
known as the compression layer.

For an input feature vectorfi, the network produces an out-
putg (fi, Θ) which depends both on the inputfi and the param-
etersΘ of the network (the set of weights and biases). While
training the network, the parametersΘ are adjusted to typically
minimize the squared error loss function in (1):

min
{Θ}

n
X

i=1

‖fi − g (fi, Θ) ‖2
, (1)

wheren is the number of feature vectors of the training data.
The network parameters are learned using the stochastic gradi-
ent descent algorithm. The gradient of the loss function with
respect to any parameter can be efficiently computed using the
the chain rule of calculus which results in a standard error back-
propagation algorithm.

Once the AANN is well trained, the average reconstruction
error of input vectors that are drawn from the distribution of the
training data will be small compared to vectors drawn from a
different distributions [12]. Previously proposed AANN based
speaker verification systems exploited this principle [12, 14].
A single AANN is trained on large amounts of data containing
multiple speakers. This AANN captures speaker independent
distribution of the input acoustic feature vectors, and is used
as the universal background model (UBM). For each speaker
in the enrollment set, a speaker-specific AANN model is ob-
tained by retraining the entire UBM-AANN using enrollment
data. During the test phase, the average reconstruction error of
the test data is computed under both UBM-AANN model and
the claimed speaker AANN model. The final score of each trial
for making decision is computed as the difference between these
average reconstruction errors.

2.2. Mixture of AANNs

Mixture of AANNs consists of several independent AANNs,
each modeling only part of the input vector space [15]. The
means by which a given feature vector of the data is assigned
to an appropriate AANN is by using a separate MLP trained
on labeled data to estimate the posterior probability of the un-
derlying class. The objective function below is minimized for
training the mixture:

min
{Θ1,...,Θc}

n
X

i=1

c
X

j=1

γ
j
i ‖fi − g (fi, Θj) ‖

2
, (2)

wherec is the number of mixture components or classes,Θj

denotes the parameters (weights and biases) ofjth AANN of
the mixture,γj

i is the posterior probability ofjth class given
ith feature vectorfi, andg (fi, Θj) represents the output of the
jth AANN when its input isfi. Note that (2) can be written as:

c
X

j=1

 

min
{Θj}

n
X

i=1

γ
j
i ‖fi − g (fi, Θj) ‖

2

!

. (3)

It can be observed from (3) that each AANN component can
be independently trained using the standard back-propagation
approach. The only modification in the back-propagation algo-
rithm when training thejth AANN component is to multiply
the error vector corresponding to the inputfi with γ

j

i .

3. Factor analysis of mixture of AANNs

The idea of factor analysis is to constrain the supervector of
last layer weights of AANN mixture components to lie in a
low-dimensional subspace such that it minimizes the mixture
of AANNs loss function over the entire development data. In
this process, the rest of the mixture parameters are held fixed
at values learned during speaker independent training such as
UBM. The notations used in this section are summarized below.

m - number of speakers
r(s)- number of sessions of thesth speaker
n(l, s) - number of frames inlth session ofsth speaker
c - number of classes
fi,l,s - ith acoustic feature vector oflth session,sth speaker
γ

j

i,l,s - posterior probability thatfi,l,s belongs tojth class

h
j

i,l,s - fourth layer output ofjth AANN when the input isfi,l,s
W

j

l,s - last layer weight matrix ofjth AANN for lth session,

sth speaker
bj - output bias vector of thejth AANN component
d - dimensionality of the input acoustic feature vector
d′ - dimensionality of the fourth layer output

In the mixture of AANNs loss function below, we first vec-
torizeW

j

l,s and then express it as ajth part of the supervector
so that a subspace structure can be imposed on it. The mixture
of AANNs loss function with speaker and session specific last
layer weights is given by

L =
m
X

s=1

r(s)
X

l=1

n(l,s)
X

i=1

c
X

j=1

γ
j

i,l,s

‚

‚

‚fi,l,s − b
j − W

j

l,sh
j

i,l,s

‚

‚

‚

2

2

=

m
X

s=1

r(s)
X

l=1

n(l,s)
X

i=1

c
X

j=1

γ
j

i,l,s

‚

‚

‚fi,l,s − b
j −H

j

i,l,sw
j

l,s

‚

‚

‚

2

2
,(4)
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where,

w
j

l,s = Row ordered(Wj

l,s),

H
j

i,l,s = Id ⊗
“

h
j

i,l,s

”T

=

2

6

6

6

6

4

“

h
j

i,l,s

”T

0

.
.

0
“

h
j

i,l,s

”T

3

7

7

7

7

5

d×dd′

.

The dimensionality ofWj

l,s is d×d′ and that ofwj

l,s is dd′×1.

The vectorwj

l,s is obtained by arranging rows ofWj

l,s as

columns one after the other. MatrixHj

i,l,s is equal to the Kro-

necker product ofId (ad × d identity matrix) and
“

h
j

i,l,s

”T

.

We can simplify (4) by constructing the following matri-
ces. The objective is to replace the innermost summation over
number of classes.

Pi,l,s =

2

6

6

6

4

γ1
i,l,sId 0

γ2
i,l,sId

.
.

0 γc
i,l,sId

3

7

7

7

5

cd×cd

,

Hi,l,s =

2

6

6

4

H1
i,l,s 0

.
.

0 Hc
i,l,s

3

7

7

5

cd×cdd′

,

xi,l,s =

2

6

4

fi,l,s
.
.

fi,l,s

3

7

5

cd×1

, b =

2

6

6

4

b1

.

.
bc

3

7

7

5

cd×1

,

wl,s =

2

6

6

4

w1
l,s

.

.
wc

l,s

3

7

7

5

cdd′×1

. (supervector)

Using the matrices above, (4) can be written as

L(w1,1, . . . ,wr(m),m) =

m
X

s=1

r(s)
X

l=1

n(l,s)
X

i=1

[xi,l,s − b −Hi,l,swl,s]
T

Pi,l,s (5)

[xi,l,s − b −Hi,l,swl,s] .

The factor analysis model (or subspace constraint) for the
supervector of last layer weightswl,s is

wl,s ≡ wubm + T ql,s ,

wherewubm represents the speaker independent (UBM) super-
vector of last layer weights,T is a matrix having fewer columns

than rows representing the common low-dimensional subspace,
andql,s is a vector of coordinates in the subspace or an i-vector
associated with thelth session ofsth speaker. By substituting
this factor analysis model in (5), (note that the loss function de-
pends only on(T, {ql,s}))

L
`

T,q1,1, . . . ,qr(m),m

´

= (6)

m
X

s=1

r(s)
X

l=1

n(l,s)
X

i=1

[xi,l,s − b −Hi,l,s (wubm + Tql,s)]
T

Pi,l,s [xi,l,s − b − Hi,l,s (wubm + Tql,s)] .

Let us define

ei,l,s
.
= xi,l,s − b − Hi,l,swubm. (7)

By substituting the expression above in (6),

L
`

T,q1,1, . . . ,qr(m),m

´

=

m
X

s=1

r(s)
X

l=1

n(l,s)
X

i=1

[ei,l,s −Hi,l,sTql,s]
T

Pi,l,s [ei,l,s − Hi,l,sTql,s] . (8)

Let us define the statistics

F1 (l, s)
.
=

n(l,s)
X

i=1

H
T
i,l,sPi,l,sei,l,s (9)

F2 (l, s)
.
=

n(l,s)
X

i=1

H
T
i,l,sPi,l,sHi,l,s (10)

We can rewrite (8) using (9) and (10) as,

L
`

T,q1,1, . . . , qr(m),m

´

=

m
X

s=1

r(s)
X

l=1

0

@

n(l,s)
X

i=1

e
T
i,l,sPi,l,sei,l,s

1

A (11)

− 2qT
l,sT

T
F1 (l, s) + q

T
l,sT

T
F2 (l, s)Tql,s.

The low-dimensional subspaceT can be learned by mini-
mizing the loss function in (11) using the coordinate descent. In
the first step, (11) is minimized with respect to{ql,s} by keep-
ing T fixed. In the second step, (11) is minimized with respect
to T by keeping{ql,s} fixed at the values found in step one.
Note that the loss function is convex in each step, and therefore
the optima is found by setting the gradient of the loss function
with respect to the corresponding variable to zero. The steps are
repeated until convergence.

Differentiating (11) with respect toql,s and setting it to
zero yields,

∂L

∂ql,s

= 0 ⇒
h

−2TT
F1 (l, s) + 2TT

F2 (l, s)Tql,s

i

= 0

ql,s =
h

T
T
F2 (l, s)T

i−1

T
T
F1 (l, s) (12)

Differentiating (11) with respect toT and setting it equal to
zero yields,

∂L

∂T
= 0 ⇒

m
X

s=1

r(s)
X

l=1

−2F1 (l, s)qT
l,s + 2F2 (l, s)Tql,sq

T
l,s = 0, (13)

where we solve forT by solving a set of linear equations in-
volving entries of the matrixT.
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Figure 1: Block schematic of the neural network based speaker verification system.

4. Speaker Verification Systems

4.1. Proposed Neural Network System

The block diagram of the neural network based speaker verifi-
cation system is shown in the Fig. 1. The description of various
components of the system is provided below.

4.1.1. Acoustic Features

The acoustic features used in our experiments are 39 dimen-
sional frequency domain linear prediction (FDLP) features [16].
In this technique, sub-band temporal envelopes of speech are
first estimated in narrow sub-bands (96 linear bands). These
sub-band envelopes are then gain normalized to remove rever-
beration and channel artifacts. After normalization, the fre-
quency axis is warped to 37 Mel bands in the frequency range
of 125-3800 Hz to derive a gain normalized mel scale energy
representation of speech. This is similar to the mel spectro-
gram obtained in conventional mel frequency cepstral coeffi-
cients (MFCC) feature extraction. These mel band energies are
converted to cepstral coefficients by applying a log and Discrete
Cosine Transform (DCT). The top 13 cepstral coefficients along
with derivative and acceleration components are used as fea-
tures, yielding 39 dimensional feature vectors. Finally, a subset
of these feature vectors corresponding to speech are selected
based on the voice activity detection information.

4.1.2. Posteriors of Broad Phoneme Classes

A multilayer perceptron (MLP) is trained on 300 hours of con-
versational telephone speech (CTS) to estimate the posterior
probabilities of 45 phonemes [17, 18]. The perceptual lin-
ear prediction (PLP) features are used for training [19]. The
45 phoneme posteriors are combined appropriately to obtain 5
broad phonetic class posteriors corresponding to vowels, frica-
tives, plosives, nasals and silence.

4.1.3. UBM

Mixture of AANNs based gender-specific UBMs are trained
on a telephone development data set consisting of audio from
the NIST 2004 speaker recognition database, the Switchboard-
2 Phase III corpora and the NIST 2005 speaker recognition
database. We use only 400 male and 400 female utterances each
corresponding to about 17 hours of speech.

Each mixture consists of 5 AANN components correspond-
ing to broad phoneme classes, and is trained using the FDLP
features (see Section 4.1.1) to minimize the weighted recon-
struction error as described in Section 2.2. The posterior prob-
abilities of broad phoneme classes for training the mixture are
obtained from an MLP described in Section 4.1.2. Each AANN
component of the mixture has a linear input and a linear output

layer
Linear input

layer
Linear output

layers
Non−linear hidden

39
of nodes
Number 39 160 20 39

Figure 2: AANN component.

layer along with three nonlinear (tanh nonlinearity) hidden lay-
ers as shown in Fig. 2. Both input and output layers have 39
nodes corresponding to the dimensionality of the input FDLP
features, 160 nodes in the first hidden layer, 20 nodes in the
compression layer and 39 nodes in the third hidden layer. We
have modified the Quicknet package for training the mixture of
AANNs [20].

4.1.4. Statistics

The statistics in (9) and (10) are precomputed for each utterance
that corresponds to a particular speaker and a session. Appro-
priate gender-specific UBM is used for computing the statistics.
Note that we need to compute only few entries ofF2 (l, s) as
it is redundant. These statistics are sufficient for training theT

matrix and extracting the i-vectors.

4.1.5. T-matrix Training

Gender dependent low-dimensional subspaces (T matrices) are
trained in part of the mixture of AANNs parameter space as
described in Section 3. The development data for training the
subspaces consists of Switchboard-2, Phases II and III; Switch-
board Cellular, Parts 1 and 2 and NIST 2004-2005 SRE [3]. The
total number of male and female utterances is 12266 and 14936
respectively. The number of columns ofT matrix is set to be
180, and the number of rows2 being 7605. We initialize the ma-
trix with a Gaussian noise and learn the subspace as described
in Section 3.

2Determined by configuration of the UBM.
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4.1.6. i-vectors

Eachutterance is converted to an i-vector using (12), using an
appropriate gender-specificT matrix. All i-vectors are normal-
ized to have unit length to reduce the mismatch during training
and testing [10].

4.1.7. PLDA training

PLDA is a generative model of observations, in our case i-
vectors [7, 8]. The i-vectors are assumed to be generated as

ql,s = µ + Φβs + ǫl,s, (14)

whereµ is an offset,Φ is a matrix with fewer columns than
rows,βs is a latent identity variable having a normal distribu-
tion with mean zero and covariance matrix identity, andǫl,s is a
residual noise term assumed to be Gaussian with mean zero and
full covariance matrixΣ. Additionally, all latent variables are
assumed to be independent.

Gender-specific PLDA models with dimension of subspace
(number of columns ofΦ) being 120 are trained using the same
development data that is used for trainingT matrices (see Sec-
tion 4.1.5). The maximum likelihood estimates of the model
parameters{µ, Φ,Σ} are obtained using an Expectation Max-
imization (EM) algorithm [7].

4.1.8. Hypothesis Testing

Given two i-vectorsq1, q2 of a speaker verification trial, we
need to test whether they belong to the same speaker (Hs) or
different speakers (Hd). For the Gaussian PLDA of Section
4.1.7, the log-likelihood ratio can be computed in a closed-form
as

score = log
p (q1,q2|Hs)

p (q1|Hd) p (q2|Hd)
(15)

= log

N

„»

q1

q2

–

;

»

µ
µ

–

,

»

ΦΦT + Σ ΦΦT

ΦΦT ΦΦT + Σ

–«

N

„»

q1

q2

–

;

»

µ
µ

–

,

»

ΦΦT + Σ 0

0 ΦΦT + Σ

–« ,

whereN (.; η,Λ) is a multivariate Gaussian density with mean
η and covarianceΛ. The above score can be computed effi-
ciently as described in [5, 10].

4.2. Baseline Neural Network System

The difference between the proposed system and the baseline
system is in the training procedure of low-dimensional sub-
space orT matrix. For the baseline neural network system,
gender dependent 180 dimensional subspaces are trained as de-
scribed in [15] using the development data described in Section
4.1.5. As mentioned earlier, the idea is to retrain the supervec-
tor of weights of a mixture of AANNs based UBM for each
utterance (and thus modeled as observable), and then obtain a
low-dimensional subspace that preserves most of the variability
of supervectors in a weighted least squares sense. Further, the
i-vector of an utterance is obtained by projecting adapted super-
vector on to the low-dimensional subspace as described in [15].
The rest of the configuration in Fig. 1 remains unchanged for
the baseline system.

4.3. GMM System

A gender-specific GMM based i-vector/PLDA system is also
trained for comparison. The block diagram shown in the Fig. 1

Table 1: Description of various telephone conditions of NIST-
08.

C6 Telephone speech in training and test
C7 English language telephone speech in training and test
C8 English language telephone speech spoken by a

native U.S. English speaker in training and test

Table 2: MIN DCF x103 andEER in % (shown in brackets) on
conditions C6, C7 and C8 of NIST-08.

System C6 C7 C8
Proposed 55.3 (10.6) 32.5 (6.1) 27.8 (4.9)
180 dim. i-vector
Baseline ([15]) 59.9 (12.0) 40.5 (8.2) 40.4 (7.7)
180 dim. i-vector

Baseline ([15]) 57.2 (11.5) 39.7 (7.6) 38.6 (7.1)
300 dim. i-vector
GMM 41.3 (7.0) 14.8 (2.8) 10.8 (2.1)
400 dim. i-vector

is also applicable to the GMM system except for the MLP pos-
teriors that are not used. Each GMM based UBM consists of
1024 mixture components with diagonal covariance. The male
and female UBMs are trained using FDLP features extracted
from 4324 and 5461 utterances of development data (described
in Section 4.1.3) respectively. Gender-specific 400 dimensional
total variability space (T matrix) is trained as described in [4].
The i-vectors of this space are length normalized and subse-
quently used for training the PLDA system with 250 dimen-
sional subspace. Note that the development data used for train-
ing theT matrix and the PLDA model is same as that of the
neural network system (see Section 4.1.5). Finally, the score of
a given speaker verification trial is obtained using (15).

5. Experimental Results

The performance of speaker verification systems is tested on
telephone conditions of NIST-2008 speaker recognition evalu-
ation task. The description of various conditions can be found
in Table 1. The minDCF and equal error rates (EER) of the
baseline system (see Section 4.2) and the proposed neural net-
work system (see Section 4.1) are shown in Table 2. It can be
observed from the results that the proposed factor analysis ap-
proach yields 18% relative improvement in minDCF over the
baseline neural network system.

Table 2 also lists the minDCF and EER of a baseline system
([15]) with 300 dimensional i-vectors, and a GMM system with
400 dimensional i-vectors (see Section 4.3) for comparison. We
could not train the proposed system beyond 180 dimensional i-
vectors due to the complexity of our training algorithm. It is to
be noted that GMM based i-vector/PLDA system performs the
best. However, further work on neural network based systems
might close the existing performance gap, and bring forward
possible advantages of this alternative nonlinear neural network
based modeling in speaker verification.

96



6. Conclusions
This paper has developed the theory of factor analysis of the
mixture of AANNs. We have applied the proposed factor anal-
ysis theory to build a neural network based speaker verifica-
tion system. This system showed promising results on NIST-08
speaker recognition evaluation (SRE), and gave 18% relative
improvement in minDCF over the baseline neural network sys-
tem.
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