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Abstract 

This paper analyses the performance of several automatic 

speaker recognition systems using a real forensic database. 

The systems evaluated have been tested or are currently in use 

by forensic institutes. A comprehensive error analysis is 

performed in order to assess the each system’s behaviour to 

real casework. We further investigate compensation 

techniques aimed at minimising the performance gap between 

laboratory development and application on real forensic data. 

While unrestricted application of automatic systems in the 

forensic domain is still not a reality, our experiments suggest 

that automatic systems can be a valuable support in decision-

making for the forensic examiner. 

1. Introduction 

Automatic Speaker Recognition is benchmarked by the 

National Institute of Standards and Technology (NIST) [1]. 

NIST campaigns address a broad range of speaker recognition 

applications, which include, but go far beyond, forensics. 

In the forensic scenario, the examiner, possibly assisted 

by automatic systems, should state how similar two speakers 

are, expressed, for instance, as likelihood ratios. Any 

quantitative inference involves statistics that are based on 

reference speakers and express the strength of the forensic 

evidence. Realistic forensic evaluations therefore require that 

the databases used be representative of real forensic scenarios, 

as for example in [2]. Another peculiarity of the forensic 

world is the way one measures system performance. While 

most systems are commonly evaluated in terms of general 

performance figures, the forensic examiner is concerned with 

individual comparisons and is interested, ultimately, in 

knowing under which circumstances some system could be 

helpful and under which circumstances results of some system 

may be misleading. 

In this paper, we analyse the performances of several 

speaker recognition systems from a forensic perspective. All 

evaluated systems bar one are currently used in forensic 

laboratories: at the German Federal Criminal Police Office 

(Bundeskriminalamt – BKA), the French Police Technique et 

Scientifique (PTS) and the Israeli National Police (INP). The 

corpus that is used for the evaluation is a collection of 

telephone taps taken from real cases. 

What we are interested in are the systems’ responses to 

outlier trials. We establish a protocol to identify individual 

systems’ strengths and weaknesses in light of particular types 

of interferences that are typically present in forensic evidence. 

We further conduct post evaluation experiments to identify 

these interferences and reduce their effects. 

The paper is organised as follows. Sections 2 and 3 

respectively describe the corpus and systems used in these 

experiments. Section 4 describes the experiments performed, 

followed by analyses of the results in Section 5. A post 

evaluation of the results is described in Section 6. Section 7 

concludes the paper and discusses future plans.  

2. Corpus 

The corpus used in these experiments is the “GFS1.0-Corpus 

(German Forensic Speech Corpus Version 1.0)”. The corpus 

is property of the BKA and comprises a selection of forensic 

telephone taps edited by the German Forensic Science 

Institute, Section KT54-1. GFS was produced as part of the 

EU project Correlation between phonetic–acoustic–auditory 

and automatic approaches in forensic speaker identification 

in order to make authentic forensic data available to forensic 

institutes1. The corpus contains spontaneous German speech 

recordings of male individuals. The current version consists 

of two protocol variants, one of which is more oriented 

towards analyses by automatic systems. This is the one used 

in the present evaluations. It is organised as follows. 

 

• 39 offender recordings with a minimum duration of 30 

seconds, originating from 24 speakers. 

• 21 suspect recordings with a minimum duration of 60 

seconds, originating from 21 speakers. 

• 49 reference population recordings with a minimum 

duration of 60 seconds, originating from 49 speakers. 

3. System descriptions 

In this section, we briefly describe the seven systems used in 

the analyses. The systems consist of two groups. The ISR 

systems are the result of in-house development at the INP. 

The EUR group consists of two systems developed by the 

BKA and two commercial products in use or tested by the 

PTS. EUR systems are currently used in a collaborative 

                                                           
1
 Since it contains case recordings, albeit anonymised, the 

GFS1.0-Corpus is available only to official forensic science 

institutes. 
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exercise of the European Network for Forensic Science 

Institutes (ENFSI) and are therefore anonymised. 

3.1. ISR systems 

ISR1 is a GMM-SVM-NAP system, described in more detail 

in [3]. The development data used was obtained from NIST 

evaluations 2004 and 2006. SVM models are trained using 

the 49 background speakers from GFS. 

ISR2 uses i-vector features extracted through maximum a 

posteriori adaptation followed by linear discriminant analysis 

(LDA) as a second processing layer [4]. The scoring stage is 

performed within the Mahalanobis metrics [5]. Data from 

NIST 2004, 2006 and 2008 evaluations was used for system 

development.  

ISR3 is similar to ISR2, except that the i-vectors are 

extracted through principal component analysis (PCA). The 

data used to build the PCA matrix is previously processed 

through two-wire NAP [3]. The PCA and LDA mappings are 

then combined into a single matrix. The within-class-

covariance weighting used in the scoring step is omitted since 

the i-vectors are derived from a previously channel-

normalised eigenspace. 

3.2. EUR systems 

The EUR systems consist of forensic systems used or tested in 

forensic laboratories in Germany and France and are either 

commercial products or the result of autonomous 

development. We prefer to look at the performances of the 

four EUR systems as a group and do not reveal the systems’ 

names here1. The order of the following systems’ descriptions 

does not match the order of the EUR numbers. 

One EUR system, known as SPES, is a RASTA-PLPCC 

UBM-GMM system [6]. For the experiments described here, 

we used Version 7.2.3, where RABM as described in [6] is 

not applied. The system is the result of cooperation between 

the BKA, Koblenz University of Applied Sciences and the 

Department of Phonetics at the University of Trier. The UBM 

is based on 1,792 recordings from 780 speakers. Over half are 

in German, the rest is mixed language. The background 

population consists of 470 recordings from 185 speakers. 

None of these recordings include the 49 reference speakers of 

GFS. 

Another EUR system, known as VoCS [7], is a MFCC-

RASTA UBM-GMM system. It is also in use at the BKA. The 

UBM consists of 23 recordings from 23 speakers (German, 

English, Arabic). VoCS uses the 49 reference speakers of the 

GFS corpus for T-NORM. The calibration parameters are 

estimates based on an evaluation of the AHUMADA corpus 

[8]. 

The two remaining EUR systems are commercially 

available products, one of which is used at the PTS. These 

systems are Batvox [9] version 3.1.2 Basic and LVIS [10] 

version 6.5 Pre-Forensic. 

                                                           
1 The aim of this paper is not to run a competition among the 

systems evaluated, but to learn about their commonalities and 

differences. As we will see below, the differences in regards 

to potential applicability for forensic expertise are generally 

small, so we would not benefit from a general ranking of the 

systems. 

4. Experiments 

The systems introduced in Section 3 are tested on the GFS 

corpus as described in Section 2. Each of the 39 offender 

recordings is compared with each of the 21 suspect 

recordings, resulting in 36 target trials and 783 impostor 

trials. Due to this limited number of trials, some caution must 

be used in the interpretation of the results. 

System performances are shown in Table 1. Performance 

level is presented in terms of two metrics, namely the Equal 

Error Rate (EER) and NIST’s Detection Cost Function (DCF) 

[1]. EER is an application-independent metric defined by the 

operating point at which the probability of miss detections 

equals that of false alarms. Since these two probabilities may 

differ somewhat, they are further averaged in our EER 

estimation. The DCF is an application-dependent metric 

commonly used in automatic speaker recognition evaluations. 

Due to lack of additional development data, both metrics are 

evaluated a posteriori, meaning that optimum thresholds are 

chosen for either operating point based on the test data. In 

addition, DET plots [1] for the respective systems are shown 

in Figure 1. DET plots assess the quality of the systems at 

different operating points, which allows for an easier 

comparison between systems. Note that the reliability of these 

performance metrics should not be overemphasised because 

of the low number of comparisons involved. 

The issue of score calibration [11] is not addressed here 

since not all the systems produce calibrated scores, though we 

will use calibration in Section 5 in the context of error 

analysis. 

Table 1: System performances 

System EER (%) DCF (x10
2
) 

ISR1 11.0 3.8 

ISR2 8.8 2.8 

ISR3 8.3 2.5 

EUR1 13.9 3.8 

EUR2 8.3 3.3 

EUR3 11.2 4.8 

EUR4 10.8 3.8 
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Figure 1: DET plots. 

5. Discussion 

5.1. Error criterion 

In this section we conduct a detailed error analysis for the 

tested systems. Ideally, we should like to find, for each error, 

a link between the audio quality of the recording in question 

and the system’s methodologies and development data. 

In order to compare all systems, we need to create a 

common ground among the systems’ outcomes. We also need 

to define what is an error from a forensic perspective. To 

standardise the results, we calibrated all systems and 

estimated log-likelihood-ratio costs (Cllr) [11]. The calibration 

assists the examiner in making the appropriate conclusion: 

likelihood ratios reflect the probability of the evidence 

matching either of two competitive hypotheses, namely, the 

samples originating from the same speaker versus the 

samples originating from different speakers. The Cllr is 

defined as [11]: 
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where the first summation is over all target trials and the 

second over all non-target trials. Nt and Nn are the total 

numbers of target and non-target trials, respectively, and S 

represents a trial’s likelihood ratio. 

The minimum of this function, which is reached through 

an optimally calibrated system, can be used to compare 

overall performance among different systems. In our case, 

instead of searching for the global minimum in the overall 

cost, we look at the costs of individual trials, which is more 

appropriate in the context of a forensic analysis. In particular, 

we can infer the quality of individual target and non-target 

trials by isolating the corresponding members under the 

summations in Eq. 1. Therefore, the cost of individual target 

or non-target trials will be given by: 
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The proposed error criterion equally weights and 

symmetrically scales false positive and false negative flaws. 

High costs for either error type indicate a bad performance for 

the specific trial. 

By means of this criterion we expect to spot and compare 

errors within and across different systems. Note that the 

scores in (1) must be expressed in terms of likelihood ratios. 

Since not all the systems provide likelihood ratios, we 

calibrate all of them using each system’s test results. Though 

this is an optimal and possibly not realistic calibration, it 

seems justified in the context of a comparative analysis. In the 

following sections we analyse the performance attained by the 

systems both in isolation and comparatively with respect to 

the Cllr. 

5.2. Individual error analysis 

Before we go into detailed individual error analysis, we start 

by presenting the overall performances of the systems. The 

minimum Cllr (1) attained by each calibrated system is 

presented in Figure 2. Recall that due to the limited number of 

trials in our evaluation the differences of the systems under 

investigation should be treated with care. We observe that Cllr 

performance metric correlates quite well with the estimated 

EER and DCF metrics listed in Table 1. 

Figure 2: Minimum Cllr for the systems. 

Regarding individual errors, we arbitrarily label as errors 

those trials that are associated with a cost greater than 1 (2). 

We prefer to offer independent analyses for target and non-

target trials, since the attribution of cost decisions in a 

forensic scenario is considered to be outside the examiner’s 

scope. Figures 3 and 4 respectively show the costs (on a 

logarithmic scale to include outliers) of the greatest false-

negative and false-positive errors produced by each individual 

system. Note that after log scaling, the hard limit for 

misleading scores is zero. 

Generally speaking, cautious systems, while also 

outputting a low overall Cllr, will avoid individual high-cost 

outputs, which obviously diminishes their usefulness as a 

decision-making support tool. In this respect, EUR1 stands 
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apart from the other systems: while it displays stable but 

relatively high costs in false negative trials, apart from two 

gross errors, it shows low costs in false-positive decisions. 
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Figure 3: Most costly false negative trials per system (10 

greatest errors displayed). 
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 Figure 4: Most costly false positive trials per system (50 

greatest errors displayed). 

5.3. Relative error analysis 

In Section 5.2, we examined the systems’ individual cost 

performances and focused on their errors. We shall now look 

at their relative performances across all trials. 

For each trial, we pick the system that has the lowest Cllr 

and calculate the difference between that cost and each of the 

other systems’ costs. These differences are added for each 

system and normalised for the number of trials. A system that 

has a low average difference is expected to produce decisions 

which are often close to the best possible outcome. We further 

differentiate between target and impostor trials and arbitrarily 

split the trials into “easy” and “difficult” categories. An easy 

trial is one where all systems produce a Cllr below 1; all other 

trials are considered to be difficult. Roughly 80% of the 

impostor trials and 70% of the target trials are considered to 

be easy. 

The average differences from optimum Cllr for each 

system are shown in Figure 5 for target trials, and in Figure 6 

for impostor trials. Notwithstanding the small number of 

trials, especially of target trials, these figures seem to indicate 

different types of behaviour for different kinds of trials. Most 

remarkably, EUR1 seems to perform well on difficult 

impostor trials but poorly on difficult target trials; EUR3 

seems to be misleading when dealing with difficult impostor 

trials. These trends were also observed when the systems were 

analysed separately in Section 5.2. Another interesting 

observation is that systems that were not ranked among the 

best in terms of classical overall performance measures (cf. 

Table 1 and Figure 2), like ISR1 and EUR4, seem to perform 

well in terms of difference from the lowest decision cost. 
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Figure 5: Average Cllr difference from best system for 

“easy” and “difficult” target trials. 
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Figure 6: Average Cllr difference from best system for 

“easy” and “difficult” impostor trials. 

5.4. Auditory correlation 

Another important topic in forensic speaker comparison is the 

degree of correlation between human and automatic 

examinations [13]. In this context we performed a preliminary 

auditory analysis of a few dozen of the “difficult” trials as 

defined in Section 5.3. Special attention was paid to the 

following aspects: 1) the channel mismatch, assessed by 

means of distortions observed on the long-term spectrum 

envelope of the recordings, and 2) the examiner’s auditory 

impression of the speaker’s speaking style, accent, dialect and 

vocal effort. 

In most of these trials, auditory and automatic results do 

not correlate.  While there were a number of “difficult” trials 

that phonetic experts, too, had trouble assessing correctly, 

there were many “difficult” trials in which the speakers’ 

(dis)similarity was easily recognised auditorily, e. g. in terms 
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of voice quality and accent. The most blatant of these 

automatic errors may sometimes, but not always, have been 

caused by severe channel mismatch. Phonetic experts 

therefore seem to have an advantage over automatic systems 

in trials with prominent vocal or linguistic features, or 

accompanied by severe channel mismatch. The advantage of 

automatic systems over phonetic experts could be studied by 

looking at trials with consistently correct results and high 

scores across all systems and comparing them to human 

performance. This could be part of future research. 

6. Post Evaluation 

Automatic speaker comparison technology should not be 

regarded as a foolproof stand-alone solution by forensic 

examiners. To begin with, the system development should be 

oriented towards forensic scenarios. This is not trivial, given 

the limitations on “forensic” data available for development. 

Moreover, our current experiments revealed that even though 

systems generally seem to perform similarly on a chosen data 

set, there are differences concerning individual trials. The 

typical attributes of forensic material sometimes lead to 

unpredictable results that are not necessarily consistent among 

the systems investigated. The goal should be to know the 

effects of certain acoustic parameters on certain system 

settings and be able to work with a controlled fusion of 

systems. 

As an initial step in this direction, a series of post-

evaluations were carried out with ISR systems in order to 

investigate to what extent characteristics that are specific to 

the GFS corpus impact on different systems. In particular, we 

investigated the relevance of background model, channel and 

utterance length. A better understanding of these phenomena 

will help us in developing systems more suitable to the 

forensic reality. 

6.1. Background modeling 

Mainly due to the NIST campaigns, speech data used for 

system development is predominantly made up of informal 

conversations in English. The GFS corpus, however, is made 

up of German-language recordings and includes emotional 

speech. We performed some partial experiments in order to 

investigate the effects of the mismatch between development 

and application data on the performance of the systems. 

Mismatch in SVM-GMM training was evaluated by using 

two different SVM background models for ISR1: GFS and 

NIST recordings. In principle, it was observed that 

performance with GFS was considerably better (DCF of 

0.038) than with NIST (DCF of 0.052). We shall see in 

Section 6.3 that this effect disappears when length 

compensation is applied. 

The relevance of background mismatch was also 

evaluated within the i-vector framework by employing a score 

normalisation scheme explicitly dependent on statistics of a 

set of background conversations [12]. First- and second- 

order statistics were obtained for both the native (i.e., GFS) 

and the NIST background models and used in ISR2 and ISR3 

systems. The choice of background proved to be irrelevant for 

the i-vector systems. 

6.2. Intersession compensation 

In these experiments, ISR1 was used with several NAP 

configurations.  Although completely trained on NIST English 

data, NAP significantly increased recognition performance. In 

particular, the two-wire NAP [3] version led to further 

improvement: using GFS background and no length 

compensation (see Section 6.3), NAP decreased its DCF from 

0.057 to 0.043. Two-wire NAP further improved the DCF to 

0.038.  

Interestingly, even though two of the EUR systems do not 

use intersession compensation techniques, they are still 

comparable to ISR1 performance which uses NAP. This could 

be due to the fact that EUR systems are trained with non-

English recordings also, whereas ISR systems are trained with 

English recordings only. We therefore expect the 

incorporation into GMM systems of both intersession 

compensation techniques and appropriate development data to 

lead to further improvement. 

6.3. Utterance length 

The final mismatch factor we investigated concerns utterance 

length. Utterance length has been extensively evaluated in 

NIST campaigns and is known to affect speaker recognition 

performance in several ways. First, varied lengths may bias 

results concerning speaker identity, and forensic systems 

should be able to react appropriately. The GFS recordings 

happen to be homogenous in terms of length, which makes 

length compensation between trials unnecessary. Second, 

length inconsistency between development and application 

may cause systems to work sub-optimally. In this regard, all 

ISR system components are optimised to NIST evaluation 

protocols, which are mainly based on about five-minute 

dialogues for training and testing.  In contrast, the GFS 

corpus contains 60-second training conversations and 30-

second testing conversations. Therefore, the primary concern 

posed by GFS is the shortness of the length of the evaluation 

segments rather than mismatch in utterance length between 

development and evaluation segments. 

Several score normalisation procedures have been 

proposed to reduce mismatch bias [14], most of them data-

driven. For obvious reasons, this is not a ready solution for 

forensic applications. We would prefer model-based 

compensation techniques, which are not dependent on 

additional data, such as D-norm [14]. In the following 

experiments, we will use another simple model-domain 

procedure to compensate for the lack of data in the relatively 

short test segments found in GFS. This technique was 

successfully applied in another set-up in which test recordings 

had to be segmented into very short chunks [15]. This 

technique pursues a looser GMM model adaptation to cope 

with scarce data by reducing the relevance factor used in 

testing MAP adaptation from 16 (used for the longer training 

conversations) to 0.5. Note that the ISR3 system, based on i-

vectors derived from PCA following MAP adaptation is also 

affected by the proposed length compensation. 

Our experiments suggested that length compensation has 

a great impact on GMM-SVM methodology. Firstly, ISR1 

matched or even outperformed the best systems evaluated. 

Secondly, the gain obtained using native background for 

training reported in Section 6.1 disappeared. (DCF of 0.026 

using GFS background and 0.024 using NIST.) As discussed 

earlier, this is very important for forensic applications where 
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background speakers in comparable settings are not 

abundantly available from casework. In contrast, length 

compensation had only a minor impact on ISR3.  

Figure 7 shows the effects of length compensation on 

ISR1 and ISR3 compared to the best EUR system. The 

length-compensated systems use NIST background, either for 

SVM training in ISR1 or for score normalisation in ISR3. 

 

 
 Figure 7: DET plots for length-compensated and non-

compensated systems. 

7. Conclusions and future work 

This paper reports the evaluation of several automatic voice 

recognition systems on real forensic data. Most of the systems 

are currently in use by forensic institutions and their 

performance is analysed under a forensic perspective. 

Particular attention was paid to systems’ errors concerning 

individual comparisons. In this sense, the systems are often 

complementary, reacting differently and to some extent 

unpredictably to different types of interferences while the 

systems’ general performances are comparable.  We then 

applied compensation procedures attempting to minimise data 

mismatch. We found that length compensation was especially 

successful for one of the systems, while the others were 

generally less affected by the compensation techniques.  

The results obtained are encouraging, even though they 

should be interpreted with care due to the limited number of 

tests. We intend to extend the scope of these evaluations and 

look for correlations between different automatic recognition 

methods and forensic auditory analysis. By understanding the 

limitations of technology in different scenarios, we can 

increase the role that these systems can play in assisting the 

forensic examiner. 
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