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Abstract

Recently, speaker verification based on i-vectors and PLDA
has become state-of-the art. This approach relays on models
whose parameters need to be estimated from a development
database with a large number of speech segments and speak-
ers. That is one of the reasons why it has been very successful
on NIST evaluations where we have sufficient data available.
However, when we need to do speaker verification in a domain
where the development data is scarce, training accurate mod-
els is complicated. In this paper, we propose a method to do
Bayesian adaptation of the PLDA parameters from a domain
with sufficient development data to a domain with scarce de-
velopment data. The method is based on the variational Bayes
recipe. We perform experiments adapting models trained with
the NIST databases to the EVALITA09 database. Results show
interesting improvements.

1. Introduction
Recently, the i-vector approach has become state of the art in the
speaker verification field. It provides a method to map a speech
utterance to a low dimensional fixed length vector that retains
the speaker identity information (i-vector) [1]. Great perfor-
mance has been achieved modeling the i-vectors distributions
by a generative model known as PLDA [2, 3, 4, 5]. Both, the i-
vector extractor and PLDA, are models whose parameters need
to be estimated from a development database with a large num-
ber of speakers and sessions. That does not pose a problem
when working with NIST databases [6] where sufficient data is
available. However, if we want to work with data with channels
or languages different from NIST, training good models is a big
challenge.

There are previous works that address the problem of
database mismatch with PLDA models. In [7], dataset shift is
prevented by normalizing each i-vector by its magnitude. In
this manner, we make the development and test i-vector distri-
butions more similar and more Gaussian shaped. It has been
proven, that with this method we can achieve very good perfor-
mance on several conditions of the NIST SRE10 dataset [8].

In [9, 8], authors presented a method to compute a fully
Bayesian likelihood ratio integrating out the parameters of the
PLDA model. This methods intends to take into account the
uncertainly about the values of the model parameters and, in
this way, to prevent over-fitting. However, this method has the
side-effect that it also helps against dataset shift, because the
predictive distributions that result, if you have a small amount
of training data, are heavy-tailed.

In this work, we address the problem of database mis-
match in a different manner. We are going to assume that we
have a model trained with a large development database and a
small amount of development data from the domain of inter-
est. We present a Bayesian method to adapt the PLDA mod-
els from the original database to the target database. We have
done experiments adapting models from the NIST dataset to
the EVALITA09 dataset [10]. Besides, we compare our method
with the i-vector length normalization.

The rest of the paper is organized as follows: Section 2
describes the i-vector extraction and PLDA approaches. Sec-
tion 3 describes the Bayesian adaptation method and how to
approximate the posterior distributions of the parameters of the
PLDA model using variational Bayes. Section 4 describes our
experimental setup and results. Finally, section 5 shows some
conclusions.

2. i-Vector speaker recognition framework
2.1. i-Vector extractor

The i-vector extractor transforms a sequence of features into
a fixed length low dimensional vector that retains the identity
information of the signal. The i-vector approach has become
state of the art for speaker verification [1]. This technique is
based on the Factor Analysis (FA) approach. The idea is that
each speech utterance can be modeled by a Gaussian Mixture
Model (GMM). We can concatenate the means of the GMM
components to form a supervectorM. Then we can write the
speaker and channel dependent supervector as

M = m+Wφ (1)

wherem is the Universal Background Model (UBM) GMM
mean supervector,W is a low rank matrix whose columns span
the subspace of maximum variability andφ is a Gaussian dis-
tributed vector. For each speech utterance, we compute an i-
vector as the MAP estimate of the latent variableφ. TheW

matrix is estimated from a large development database by Max-
imum Likelihood and Minimum Divergence iterations [11].

2.2. Two-covariance model

We can model the i-vectors distribution with thetwo-covariance
modelintroduced in [12]. It is a generative model which sup-
poses that an (observed) i-vectorφ of speakers can be written
as the sum of two hidden variables:

φ = ys + ǫ (2)
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whereys is called thespeaker identity variableandǫ thechan-
nel offset. The identity variable remains constant between
different observations of the speaker, but the channel offset
changes. The modelM is defined by the following two proba-
bility distributions:

P (y|M) =N
(

y|µ,B−1) (3)

P (φ|y,M) =N
(

φ|y,W−1) (4)

whereN denotes a Gaussian distribution;µ is the speakers
mean;B−1 is the between speaker covariance matrix andW−1

is the within speaker covariance matrix. The parameters of the
modelµ, B andW need to be estimated by Maximum Likeli-
hood from a development database. AsB andW are full rank
matrices we need a number of development speakers and seg-
ments larger than the i-vector dimension. See [12] for a closed-
form expression of the likelihood-ratio between the target and
non-target hypothesis.

2.3. SPLDA

The SPLDA model is a simplified version of the PLDA intro-
duced in [2]. This a generative model that assumes that i-vector
φ of speakers can be written as:

φ = µ+Vys + ǫ (5)

whereµ is a speaker independent term,V is a low rank ma-
trix of eigenvoices,ys is the speaker factors vector, andǫ is a
channel offset.

We assume the following priors for the variables:

P (y) =N (y|0, I) (6)

P (ǫ|M) =N
(

ǫ|0,W−1) (7)

whereN denotes a Gaussian distribution; andW is the within
class precision matrix. The parametersµ, V andW are trained
from a development database by ML and MD iterations. This
can be seen as a variant of the two-covariance model were the
speaker covariance is not full rank. In order to train this model,
we need a development database with a number of speakers
larger than the number of speaker factors.

2.4. i-vector length normalization

Length normalization intends to apply a transform to the non-
Gaussian i-vectors in order to make them more Gaussian. In
this way, we can go on using the simple and computationally
efficient Gaussian models with good performance. The results
presented in [7] show that, for high dimensional data, it can be
achieved by just normalizing the i-vectors by their magnitude.

φ̂ =
φ

‖φ‖
(8)

The i-vectors need to be centered and whitened before the
length normalization. Thus, the normalized i-vectors are evenly
distributed around a unitary hypersphere and we can say that
they have an almost Gaussian distribution. Otherwise, if the i-
vectors were very far from the origin, the normalization would
project all of them into a small region of the hypersphere mak-
ing them less discriminative.

3. Bayesian adaptation of the PLDA model
Here, we explain how to adapt the parameters of the two-
covariance model from a domain with a large amount of de-
velopment data to a domain with scarce development data. We
start by introducing some notation.

3.1. Notation

From now on we will callprior database to the database with
a large amount of development data, andtargetdatabase to the
database of the domain of interest. The whole prior database
i-vectors are denoted byΦd, while the target database i-vectors
are denoted byΦt. We shall also useΦ to refer in general to
any of these datasets.

Let θd be the labelling of the prior dataset. It partitions the
Nd i-vectors intoMd speakers. Letθt be the labelling of the
target dataset. It partitions theNt i-vectors intoMt speakers.
Let θ be any of the previous labellings.

Let Yd and Yt respectively denote the hidden speaker
identity variables of the prior and target sets.Y can be used
to refer to any of them.

Finally, we defineM = (µ,B,W) andMy = (µ,B).

3.2. Bayesian adaptation

Following a Bayesian treatment, instead of assuming fixed val-
ues forµ, B andW, we work with probability distributions for
the model parameters. For doing that, we need priors for the
model parameters,P

(

My|ΠMy

)

andP (W|ΠW), and cal-
culate the posterior distribution of the model given the data, the
labelling and the priors:

P
(

M|Φ, θ,ΠMy ,ΠW

)

(9)

Figure 1 shows the graphical representation of this model.
Φ, are observed variables;µ, B, W andY are hidden vari-
ables; andθ, ΠMy andΠW are deterministic parameters. The
plates indicate that we haveM speakers withNi segments each.

The Bayesian adaptation method consists of three stages.
First, we estimate the posterior distribution of the parameters of
the model given the prior databaseP (M|Φd, θd,Π). In this
stage, we assume no prior knowledge about the parameters of
the model. We do that using a non-informative priorΠ. We will
talk more in detail about non-informative priors in the following
sections.

Second, we compute the posterior distribution of the model
given the target dataP (M|Φt, θt,Πd) where we assume that

P (M|Πd) = P (M|Φd, θd,Π) . (10)

That is, we use the posterior distribution given the prior data as
prior to compute the posterior given the target data.

Finally, we take point estimates ofµ, B, W by computing
their expected values given the target posterior distribution.

Unfortunately, even for the simple two-covariance model,
the posteriors involved cannot be expressed in closed form. We
propose to use a variational Bayes (VB) approach to calculate
approximate posteriors. In the next sections, we present the VB
solutions for the two-covariance model assuming two different
types of model priors: non-informative and conjugate.

3.3. VB with non-informative priors

3.3.1. Non-informative prior

We can assume a non-informative prior (Jeffreys prior) for the
parametersµ, B andW of the Gaussian distributions [13]. A
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Figure 1:Graphical model of the two-covariance model.

non-informative prior encodes the absence of information about
µ, B andW other than the training data. With this prior no
Gaussian should be preferred over others and it should be in-
variant to any translation or scaling of the measurement space.
These conditions are satisfied by this distribution:

P (M|Π) =P
(

µ,B|ΠMy

)

P (W|ΠW) (11)

P
(

µ,B|ΠMy

)

=P
(

µ|B,ΠMy

)

P
(

B|ΠMy

)

(12)

= lim
k→0

N
(

µ|µ0, (kB)−1)W (B|B0/k, k)

(13)

=α

∣

∣

∣

∣

B

2π

∣

∣

∣

∣

1/2

|B|−(d+1)/2 (14)

P (W|ΠW) = lim
k→0

W (W|W0/k, k) (15)

=α |W|−(d+1)/2 (16)

whereW denotes a Wishart distribution andd the dimension-
ality of µ. Since this density does not integrate to 1, it is im-
proper and the symbolα is used to denote a normalizing con-
stant which approaches zero. Note that using an improper prior
does not mean that the posterior will be improper.

3.3.2. VB distributions

Our VB solution approximates the joint posterior distribution
for the hidden variables and model parameters by a factorized
distribution of the form:

P (M,Y|Φ, θ,Π) ≈ q (M,Y) = q (M) q (Y) (17)

which ignores any posterior dependencies between the speaker
variablesY and the modelM. Note that we are not making fur-
ther factorizing assumptions or restricting the functional form
of the individual factors.

According to variational Bayes theory [14], given a set of
visible variablesX and hidden variablesZ, the optimum value
of the factoring distributionq∗j (Zj) is given by

ln q∗j (Zj) = Ei 6=j [lnP (X,Z)] + const (18)

This equation means that the log of the optimum solution for
factorqj is estimated by taking the expectation of the log joint
distribution over all hidden and visible variables with respect
to all other factorsqi 6=j . The additive constant is needed to
normalize the distribution to integrate to one.

VB is an iterative procedure. We first initialize the factors
and then cycleqj (Zj) through the factors re-estimating each
one using (18) until convergence.

We can use the rules described in [14] on the graphical
model of Figure 1 to determine the dependencies between the
model variables. Those rules allow to write the joint distribution
of all variables as

P (Φ,M,Y|θ,Π) =P (Φ|Y,W, θ)P (Y|My)

P
(

My|ΠMy

)

P (W|ΠW) . (19)

Now, applying (18), it is straightforward to obtain our varia-
tional distributions.

The optimum for the factorq (Y) is given by a product of
Gaussian distributions:

q∗ (Y) =
M
∏

i=1

q∗ (yi) (20)

q∗ (yi) =N
(

yi|L
−1
i γi,L

−1
i

)

(21)

Li =EM [B] + niEM [W] (22)

γi =EM [Bµ] + EM [W]
∑

φ∈Si

φ (23)

where the speaker identity variablesyi are independent. Note
that we have not forced that in any way but it originates natu-
rally from the original factorization that we have chosen.

The optimum for the factorq (M) is again a product of
factors

q∗ (M) = q∗ (My) q
∗ (W) (24)

The factorq∗ (My) is a Gaussian-Wishart distribution.

q∗ (My) = N
(

µ|y, (MB)−1)W
(

B|S−1
y ,M

)

(25)

wherewe have defined

y =
1

M

M
∑

i=1

EY [yi] (26)

Sy =
M
∑

i=1

EY

[

yiy
T
i

]

−Myy
T (27)

We have to remark that for this distribution to be proper we
need the number of speakersM to be larger than the i-vectors
dimensionality.
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The factorq∗ (W) is Wishart distributed

q∗ (W) = W
(

W|S−1
φ , N

)

if N > d (28)

where

φi =
1

ni

∑

φ∈Si

φ (29)

Rφ =

N
∑

j=1

φjφ
T
j (30)

Sφ =
M
∑

i=1

∑

φ∈Si

EY

[

(φ− yi) (φ− yi)
T
]

(31)

=Rφ

+
M
∑

i=1

Ni

(

EY

[

yiy
T
i

]

− EY [yi]φ
T

i − φiEY [yi]
T
)

(32)

In order to estimate the parameters ofq (Y) andq (M) we
still need to evaluate some additional expectations. Using the
properties of the Gaussian and Wishart distributions [14] we
have

EM [B] =MS
−1
y (33)

EM [Bµ] =MS
−1
y y (34)

EM [W] =NS
−1
φ (35)

EY [yi] =L
−1
i γi (36)

EY

[

yiy
T
i

]

=L
−1
i + L

−1
i γiγ

T
i L

−1
i (37)

3.4. VB with conjugate priors

3.4.1. Conjugate prior

Now, we want to take the posterior distribution that we have
got with the non-informative prior and use it as an informative
prior to compute a new posterior given the target database. Our
model prior is now given by the following approximation:

P (M|Πd) = P (M|Φd, θdΠ) ≈ qd (M) (38)

whereqd (M) is the variational factor ofM conditioned on the
prior data. As we got in equations 24, 25 and 28:

qd (M) =qd (My) qd (W) (39)

qd (My) =N
(

µ|yd, (βdyB)−1)W
(

B|S−1
dy , νdy

)

(40)

qd (W) =W
(

W|S−1
dφ , νdφ

)

(41)

whereβdy = νdy = Md > d andνdφ = Nd > d.
These distributions are conjugate priors for the Gaussian

distribution. This is very convenient because they should pro-
duce posteriors that are again Gaussian Wishart.

3.4.2. Variational Distributions

Now, we use again the factorization given by equation (17)
along with equations (18) and (19) to compute the variational
distributions given the conjugate prior.

The optimum for the factorq (Y) is the same as for the
non-informative prior.

For the optimum for the factorq (M) has a similar form to
the non-informative case.

q∗ (M) =q∗ (My) q
∗ (W) (42)

q∗ (My) =N
(

µ|y′,
(

β′
yB

)−1
)

W
(

B|S′−1
y , ν′

y

)

(43)

q∗ (W) =W
(

W|S′−1
φ , ν′

φ

)

. (44)

In the previous equations we have defined

y =
1

Mt

Mt
∑

i=1

EY [yi] (45)

Sy =

Mt
∑

i=1

EY

[

yiy
T
i

]

−Mtyy
T (46)

Sφ =

Mt
∑

i=1

∑

φ∈Si

EY

[

(φ− yi) (φ− yi)
T
]

(47)

β′
y =βdy +Mt (48)

ν′
y =νdy +Mt (49)

y
′ =

1

β′
y

(βdyyd +Mty) (50)

S
′
y =Sdy + Sy +

βdyMt

β′
y

(y − yd) (y − yd)
T (51)

ν′
φ =νdφ +Nt (52)

S
′
φ =Sdφ + Sφ . (53)

Finally, we need the expectations

EM [µ] =y
′ (54)

EM [B] =ν′
yS

′−1
y (55)

EM [Bµ] =ν′
yS

′−1
y y

′ (56)

EM [W] =ν′
φS

′−1
φ (57)

Once, we have the posterior distributions we approximate
µ, B andW by their expectations given by equations (54), (55)
and (57). Then, we plug them into the likelihood ratio formula
during the test phase.

The parametersβdy = νdy = Md andνdφ = Nd control
the weight of the prior on the posterior. If we would want the
target data to have more influence on the posterior we could
lower the values ofMd andNd manually. If we do that, we had
to adjustSdy andSdφ so that prior expectations ofB andW
given by equations (33) and (35) remain unchanged.

4. Experiments
4.1. Experimental setup

4.1.1. EVALITA09 Dataset

We performed speaker verification experiments on the
EVALITA09 dataset. EVALITA is an evaluation of natural lan-
guage processing and speech tools for Italian. We have chosen
this database because it has guidelines [10] that are similar to
the ones of the NIST SRE [6]. The data is recorded from land-
line (PSTN) or mobile (GSM) telephone channels. Recordings
are in Italian language, including speakers uniformly selected
from all regions. It includes several groups of data:

• UBM data: Speech data recorded by 30 male and 30 fe-
male speakers, during 20 sessions (10 PSTN calls + 10
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GSM calls). The total durations of speech is 1200 min-
utes(∼1 minute per call). Calls were provided cut into
small segments, thus we have 18000 short speech seg-
ments (9000 male + 9000 female).

• Training data: Data for speaker enrollment. It has 50
male and 50 female speakers. 6 training conditions are
considered:

– TC1: PSTN short (1 PSTN call,∼1 minute per
client).

– TC2: GSM short (1 GSM call,∼1 minute per
client).

– TC3: PSTN long (3 PSTN calls,∼3 minutes per
client).

– TC4: GSM long (3 GSM calls,∼3 minutes per
client).

– TC5: mixed short (1 PSTN + 1 GSM calls,∼2
minutes per client).

– TC6: mixed long (3 PSTN + 3 GSM calls,∼6
minutes per client).

• Test data: Two test conditions are considered with 2071
trials each:

– TS1: short (1 sequence of digits;∼10 seconds).

– TS2: long (1 sequence of digits, 4 short sentences,
2 isolated words;∼30 seconds).

4.1.2. NIST Dataset

Speech from SRE04, SRE05 and SRE06 is used to estimate
the prior distribution of the parameters of the two-covariance
model. It includes 529 male and 729 female speakers with a to-
tal of 7410 male and 9920 female phone calls. Each phone call
has around 2 minutes of speech. This database presents a wide
variety of transmission channels and telephone handsets.

4.1.3. i-Vector extractor

We used 400 dimensional i-vectors. The i-vector extractor uses
20 short-time Gaussianized MFCC plus deltas and double deltas
and a 2048 component diagonal covariance UBM. The UBM
and the i-vector extractor are gender dependent and they were
trained with data from the NIST dataset.

4.1.4. PLDA

We show results training PLDA models with the NIST dataset,
the EVALITA09 dataset or adapting models from NIST to
EVALITA09. The models are gender dependent. For the adap-
tation case, first, we compute the posterior distribution of the
parameters of the two-covariance model given the NIST data
and a non-informative prior. Then, we use that posterior dis-
tribution as prior to compute the posterior distribution of the
model parameters given the EVALITA09 UBM dataset.

4.1.5. Length normalization

For the cases where i-vector length normalization is used, the
parameters needed to do the centering and whitening steps
(mean and rotation matrix) are estimated in the same manner
as the corresponding PLDA parameters. That is, trained from
NIST, from EVALITA09 or adapted from NIST to EVALITA09.

Table 1: EER(%)/minDCF TC6 TS2 vs. effective number of
speakers (M) and segments (N) in the prior distribution.

male female
EER DCF EER DCF

NIST 2.99 0.098 1.37 0.089
EVITA09 6.08 0.279 7.02 0.232
Adapt actualM N 1.83 0.104 1.32 0.059
AdaptM401N401 2.12 0.160 1.56 0.107
AdaptM401N500 2.12 0.158 1.55 0.107
AdaptM401N750 2.03 0.151 1.45 0.102
AdaptM401N1500 1.77 0.141 1.32 0.090
AdaptM401N3000 1.79 0.119 1.39 0.071
AdaptM401N6000 1.83 0.106 1.35 0.061
AdaptM401N9000 1.74 0.101 1.26 0.059
AdaptM401N12000 1.68 0.089 1.26 0.058
AdaptM401N15000 1.80 0.086 1.17 0.048
AdaptM401N18000 1.79 0.081 1.17 0.048
AdaptM500N401 2.17 0.160 1.56 0.112
AdaptM500N500 2.16 0.160 1.56 0.112
AdaptM500N750 2.12 0.154 1.50 0.107
AdaptM500N1500 1.83 0.141 1.38 0.092
AdaptM500N3000 1.79 0.121 1.39 0.071
AdaptM500N6000 1.83 0.109 1.35 0.061
AdaptM500N9000 1.80 0.104 1.31 0.059
AdaptM500N12000 1.83 0.096 1.26 0.059
AdaptM500N15000 1.80 0.089 1.18 0.051
AdaptM500N18000 1.83 0.084 1.26 0.048

4.1.6. Score Normalization

Unlessstated otherwise, we show results with s-norm [15]. We
used the utterances from the EVALITA09 UBM dataset (9000
male + 9000 female) as cohorts.

4.2. Results

4.2.1. Number of effective number of development speakers
and segments

In the first experiment, we compare the results of training the
PLDA model with only NIST data, only EVALITA09 data and
Bayesian adaptation. For the Bayesian adaptation we compare
different configurations where we manually tune the values of
M andN in the prior Gaussian-Whishart distribution. We call
effective number of development speakers and segments toM
andN . We must point out that the prior distribution is always
trained using the actual number of speakers and segments of the
development dataset, and we tuneM andN afterwards. Tuning
M andN has a double effect: it changes the width of the prior,
and, at the same time, it changes the weight of the prior on
the posterior. Thus, if we assign lowM andN values, the
EVALITA09 data has more influence on the posterior

In all cases, except when training with EVALITA09 only,
we have used the two-covariance model. In the case of train-
ing with EVALITA09 we have used a SPLDA model with 25
speaker factors. We have chosen 25 factors because the num-
ber of factors must be smaller than the number of development
speakers (30). We cannot use the two-covariance model either
because it need a number of development speakers larger than
the i-vector dimension (400). We have not used length normal-
ization.

Results for the TC6 TS2 condition are shown in Table 1.
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Table 2:EER(%)/minDCF TC6 TS2 vs. adapted parameters

male female
EER DCF EER DCF

NIST 2.99 0.098 1.37 0.089
EVITA09 6.08 0.279 7.02 0.232
Adaptµ 2.96 0.096 1.37 0.086
AdaptµB 2.86 0.073 1.39 0.087
AdaptµBW 1.80 0.086 1.17 0.048

The results are given in terms of EER and normalized mini-
mum Decision Cost Functions as defined by the EVALITA09
guidelines [10] (CMiss = 10, CFA = 1, PT = 0.5). We ob-
serve that training with only EVALITA09 largely degrades the
performance. We think that it is mainly due to the low number
of speakers that forces us to use a low number of speaker fac-
tors. On the other hand the Bayesian adaptation produces a nice
improvement over training only with NIST.

We achieve the optimum performance tuning the values of
effective speakers (M) and segments (N) of the prior distribu-
tion. The values ofM andN start from 401 so that the prior
distributions can be proper. TuningM does not change the re-
sults much because it is still much larger than the number of
EVALITA09 speakers (M >>30). On the contrary, we get
an improvement tuningN . We could think that having 9000
development segments in EVALITA09 we could trainW only
with EVALITA09. If that were the case we should get the best
performance with a low value ofN . However, takingN 1.5−2
times larger than the number of EVALITA09 segments achieves
better performance. For example, if we takeM = 401 and
N = 15000 we have an EER improvement of 40% for males
and 14% for females; and an DCF improvement of 12% for
males and 46% for females.

From now on we will useM = 401 andN = 15000 for
all the experiments.

4.2.2. Adapting different parameters

Here, we compare the result of adapting different parameters of
the two-covariance model:µ; µ andB; andµ, B, andW. Re-
sults for condition TC6 TS2 are shown in Table 2. For males,
adaptingµ andµB produce small improvements; and for fe-
males, not improvement at all. To get a clear improvement we
need to adaptW.

4.2.3. Length normalization

Table 3 shows results on condition TC6 TS2 using length nor-
malized i-vectors. Experiments on NIST databases have shown
that length normalization boosts performance and makes score

Table 3:EER(%)/minDCF TC6 TS2 with Lnorm

male female
EER DCF EER DCF

No s-norm
NIST 3.28 0.146 1.61 0.113
EVITA09 5.60 0.245 6.43 0.247
AdaptµBW 1.15 0.091 1.35 0.106

s-norm
NIST 2.23 0.100 1.25 0.055
EVITA09 4.92 0.193 6.20 0.236
AdaptµBW 0.93 0.068 1.18 0.077
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Figure 2:DET curves TC6 TS2 for male (top) and female (bot-
tom)

normalizationunnecessary [7, 5]. It has been claimed that
it is mainly due to the fact that length normalization reduces
mismatch between the development and test databases. How-
ever, for this database, we observe that length normalization
improves performance but not as much as for NIST databases.
Besides score normalization is needed to achieve optimum per-
formance.

4.3. Results all conditions

Tables 4 and 5 show results on all EVALITA09 conditions with-
out and with length normalization respectively. We observe
something unexpected; length normalization does not achieve
the best results in all conditions. For training conditions TC1-3
and TC5 females, with length normalization, we have a degra-
dation with the adapted model respect to NIST model. How-
ever, for those conditions, the best results are for the adapted
model without length normalization. In the rest of conditions
the best results are achieved combining both length normaliza-
tion and model adaptation.

The overall conclusion that we draw from these tables is
that conditions with longer training or test data like TC6 TS2
get more benefit from length normalization and we can com-
bine both techniques. Otherwise, using only model adaptation
is better.
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Table 4:EER(%)/minDCF Multiple conditions without Lnorm

male female
EER DCF EER DCF

TC1 TS1
NIST 10.50 0.566 9.09 0.465
EVITA09 17.05 0.667 12.75 0.594
AdaptµBW 9.15 0.441 7.89 0.458

TC1 TS2
NIST 6.02 0.352 4.28 0.146
EVITA09 10.42 0.628 10.62 0.426
AdaptµBW 4.88 0.326 3.87 0.193

TC2 TS1
NIST 17.51 0.666 13.10 0.563
EVITA09 18.59 0.740 18.37 0.785
AdaptµBW 13.67 0.612 9.97 0.527

TC2 TS2
NIST 11.79 0.417 5.64 0.318
EVITA09 13.66 0.621 14.06 0.586
AdaptµBW 9.92 0.383 5.02 0.254

TC3 TS1
NIST 9.54 0.482 8.08 0.458
EVITA09 13.94 0.637 12.51 0.562
AdaptµBW 7.44 0.400 6.60 0.407

TC3 TS2
NIST 4.38 0.243 3.60 0.137
EVITA09 9.54 0.521 8.54 0.321
AdaptµBW 3.69 0.231 2.90 0.159

TC4 TS1
NIST 17.35 0.659 13.30 0.565
EVITA09 16.30 0.749 16.21 0.719
AdaptµBW 12.45 0.618 8.63 0.403

TC4 TS2
NIST 10.84 0.443 4.44 0.272
EVITA09 12.46 0.561 10.73 0.522
AdaptµBW 8.41 0.392 3.89 0.246

TC5 TS1
NIST 9.54 0.399 6.57 0.383
EVITA09 14.03 0.545 12.84 0.588
AdaptµBW 6.41 0.308 4.36 0.234

TC5 TS2
NIST 3.81 0.189 1.58 0.089
EVITA09 8.32 0.294 9.32 0.354
AdaptµBW 2.60 0.154 1.53 0.076

TC6 TS1
NIST 8.11 0.376 7.11 0.314
EVITA09 12.59 0.499 12.03 0.512
AdaptµBW 5.12 0.297 3.81 0.192

TC6 TS2
NIST 2.99 0.098 1.37 0.089
EVITA09 6.08 0.279 7.02 0.232
AdaptµBW 1.80 0.086 1.17 0.048

Table 5:EER(%)/minDCF Multiple conditions with Lnorm

male female
EER DCF EER DCF

TC1 TS1
NIST 10.48 0.537 8.05 0.417
EVITA09 14.47 0.607 12.38 0.635
AdaptµBW 12.16 0.680 11.72 0.622

TC1 TS2
NIST 5.27 0.287 3.86 0.159
EVITA09 9.52 0.560 11.38 0.543
AdaptµBW 8.01 0.467 6.38 0.313

TC2 TS1
NIST 15.65 0.565 11.96 0.637
EVITA09 17.28 0.674 15.47 0.785
AdaptµBW 14.94 0.700 14.22 0.663

TC2 TS2
NIST 10.68 0.492 5.92 0.295
EVITA09 11.07 0.494 12.18 0.494
AdaptµBW 10.32 0.496 7.27 0.378

TC3 TS1
NIST 9.02 0.441 7.21 0.422
EVITA09 11.98 0.554 11.87 0.548
AdaptµBW 9.67 0.536 8.90 0.494

TC3 TS2
NIST 3.96 0.247 3.07 0.136
EVITA09 8.31 0.399 8.39 0.384
AdaptµBW 5.08 0.318 3.38 0.272

TC4 TS1
NIST 14.66 0.545 11.90 0.518
EVITA09 15.10 0.678 13.75 0.637
AdaptµBW 11.95 0.622 10.37 0.478

TC4 TS2
NIST 9.98 0.401 4.15 0.253
EVITA09 10.42 0.439 9.56 0.407
AdaptµBW 7.94 0.402 3.77 0.272

TC5 TS1
NIST 8.50 0.325 6.61 0.318
EVITA09 10.94 0.468 10.73 0.579
AdaptµBW 5.88 0.328 8.04 0.362

TC5 TS2
NIST 3.30 0.156 1.22 0.058
EVITA09 5.79 0.248 8.19 0.355
AdaptµBW 2.79 0.146 2.14 0.129

TC6 TS1
NIST 7.28 0.285 6.29 0.280
EVITA09 9.63 0.409 10.58 0.477
AdaptµBW 3.81 0.224 5.85 0.273

TC6 TS2
NIST 2.23 0.100 1.25 0.055
EVITA09 4.92 0.193 6.20 0.236
AdaptµBW 0.93 0.068 1.18 0.077
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Figure 2 shows DET curves for the condition TC6 TS2. We
observe that the improvement of the Bayesian approach is con-
sistent along different operating points.

5. Conclusions
We have presented a method to adapt a PLDA i-vector classi-
fier from a domain with a large amount of development data
to a domain with scarce development data. This method con-
sists in computing the posterior distribution of the parameters
of the model given the data of the larger database. Then we use
that posterior as prior to compute the posterior distribution of
the parameters given the data of the domain of interest. These
posterior distributions can be estimated approximately for the
particular case of the two-covariance model using a variational
Bayes procedure.

We have done experiments adapting PLDA from the NIST
database to the EVALITA09 database. We have shown results
on all EVALITA09 training and test conditions that indicate that
this technique improves the performance of the system. We
have seen that the improvement is mainly due to the adaptation
of theW matrix that describes the channel space.

We have compared this method with the length normal-
ization. We have seen that, for this dataset, conditions with
longer training or test data get better results combining both
techniques. Otherwise, using only model adaptation is better
than length normalization. We have seen that, here, length nor-
malization needs score normalization to achieve optimum per-
formance, contrary to what happens when we do the test on the
telephone conditions of NIST datasets.

As future work, we want extend our work doing Bayesian
adaptation of the UBM and the i-vector extractor. Besides, we
want to try this technique on other datasets.
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