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Abstract
The total variability based i-vector has become one of the most
dominant approaches for speaker verification. In addition to
this, recently the sparse representation (SR) based speaker ver-
ification approaches have also been proposed and are found
to give comparable performance. In SR based approach, the
dictionary used for sparse representation is either exemplar or
learned from data using the KSVD algorithms and its variants.
Recently the use of the total variability matrix of the i-vector
system as the dictionary for the SR based approach has also
been reported. Motivated by these, in this work, we first high-
light the similarity between the i-vector and the learned dictio-
nary SR based approaches for speaker verification. It is fol-
lowed by the exploration about various kinds of learned dic-
tionaries, their sizes and the sparsity constraint in context of SR
based speaker verification. Further we have explored the feature
level as well as the scores level fusions of these two approaches.
Index Terms: speaker verification, sparse representation,
learned dictionaries, total variability space.

1. Introduction
Speaker verification systems are predominently based on ei-
ther generative or discriminative modeling techniques. The
most commonly used generative modeling method is the Gaus-
sian mixture model-universal background model (GMM-UBM)
where as the most successful discriminative techniques are
based on support vector machines (SVM). The SVM based ap-
proach requires a fixed dimension representation of the speaker
utterance for the classification. There are a number of methods
to achive this from a utterances having varying numer of fea-
tures, but the most sccessfull one is based on the concatenation
of the mean vectors of the GMM-UBM derived from speech
utterances which are commonly reffered to as GMM mean su-
pervectors. Later, various mehtods like LDA, WCCN, NAP and
JFA were proposed to futher improve the performance of the
SVM based systems by intersession variability compensation.
In recent years, the total variability i-vector based speaker veri-
fication [1] has attained large popularity because of its excellent
performance with reduced complexity compared to the GMM
supervector based approaches. It removes the less significant
dimensions from the supervector representation of speech utter-
ance by projecting it to a low dimensional space called the total
variability space.

In last few years, thesparse representation and its proper-
ties have been actively for signal processing applications. The
sparse representation involves the representation of a target vec-
tor in terms of a sparse linear combination of the columns of a

redundant matrix representing the target signal space. In the
sparse representation literature, the redundant matrix is com-
monly referred to as the ‘dictionary’ and its columns as ‘atoms’.
Recently the discriminative abilities of the sparse representa-
tion have been exploited for various pattern recognition tasks
including speaker recognition and verification. In [2], Kua et.
al. proposed a speaker recognition system which uses sparse
representation classification (SRC) with an exemplar dictionary
created using GMM mean supervectors. Later speaker verifi-
cation tasks using the SRC with exemplar dictionary created
using GMM mean supervectors and total variability i-vectors
were also reported in [3] and [4] respectively.

In our recent work [5], we have explored the use of ex-
emplar dictionary based SRC for the speaker verification task
in realistic environment, which gave an improved performance
compared to the conventional GMM-UBM based system. Later,
motivated by the fact that the learned dictionaries not only out-
perform the exemplar ones but also are more data-independent,
in [6] we have presented a speaker verification system employ-
ing sparse representation of centered GMM mean supervectors
over a redundant dictionary learned using the KSVD algorithm.
This system uses the sparse representation of centered GMM
mean supervectors over the learned dictionary as a speaker rep-
resentation, and is referred to as SRSV system. We have ex-
tended this work with the use of discriminatively learned dic-
tionaries in [7] and the proposed system was compared to the
SRC over exemplar dictionary based SV system as well as the
existing i-vector based SV system. On NIST 2003 SRE dataset,
the proposed system with discriminatively learned dictionary
found to outperform all other SV systems considered both with
and without session/channel variability compensation.

In [8], an SV system which employs sparse representation
of centered GMM mean supervectors using the total variability
matrix of the i-vector based system as the dictionary has been
explored. The system was reported to give comparable perfor-
mance to the i-vector based system and a score level fusion of
it with the i-vector based system resulted in an improved per-
formance showing the complementary information carried by
these systems. In this work, we compare the i-vector and the
learned dictionary based SRSV systems in a consistent setup
and also study the different aspects of the dictionary used for
the SRSV system. We also present a novel method of com-
bining the i-vector and SRSV sparse representation over KSVD
learned dictionary based SV systems at the feature represen-
tation level. Here, the centered GMM mean supervectors are
smoothed using the total variability matrix of the i-vector sys-
tem prior to the sparse representation over the dictionary. We
also report the results of the score level fusion of various sys-
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tems considered in this paper.
The organization of the paper is as follows: In the Section 2,

we describe the total variability i-vector based SV system. In
Section 3 the SRSV system employing sparse representation
of GMM supervectors is explained. In Section 4, we explain
the proposed smoothing of GMM mean shifted supervectors.
The various session/channel compensation methods used in this
work are explained in Section 5. The details of the database and
the experimental setup are given in Section 6 followed by the
discussion of results in Section 7. The paper is concluded in
Section 8.

2. Total variability i-vector SV system
In this section we describe the total variability i-vector based
speaker verification system. In this system, the centered GMM
mean supervectors are projected to a low rank matrix to get the
i-vector representation. The low rank projection matrix repre-
sents the dominant speaker and channel variabilities simultane-
ously and hence is called the total variability matrix. For a given
total variability matrixT , the i-vectorw can be related to the
centered GMM mean supervectory as,

y = Tw (1)

Given a GMM-UBMλ consisting ofC components with mean
µc, and varianceΣc, wherec = 1, 2, . . . , C and a sequence of
L speech feature vectors{f1, f2, . . . ,fL}, the centered GMM
mean supervectory is formed by concatenating the component
specific centered GMM mean vectorsyc which are computed
as,

yc =
Fc

Nc

(2)

where,Nc andFc are the0th order and the1st order statistics
of the speech frames on thecth component of the GMM-UBM
which are given by,

Nc =

L
∑

t=1

P (c|ft, λ) (3)

Fc =

L
∑

t=1

P (c|ft, λ)(ft − µc) (4)

The matrixT is learned using probabilistic PCA (PPCA)
method using the centered GMM mean supervectors of suitable
development data as described in [1]. For a givenT andy, the
estimated i-vector̂w is computed as,

ŵ = (I + T
′Σ−1

NT )−1
T

′ΣNy (5)

In the training and testing phases, speech utterances are repre-
sented in the form of i-vectors. Let̂wclm andŵtst represent
the i-vectors of the claimed and the test speakers utterances re-
spectively, then the verification of a claim is performed by com-
paring the cosine kernel score between these two i-vectors to a
thresholdγ as given below.

< ŵclm. ŵtst >

‖ŵclm‖ ‖ŵtst‖
≶ γ (Threshold) (6)

3. Sparse representation based SV system
In this method, the supervectory derived from a speaker utter-
ances is modeled using the sparse representation with a dictio-
naryD as,

y = Dx (7)

The dictionaryD is of M ×N size whereM corresponds to
the dimension of supervector andN is the number of atoms.
AssumingD to be sufficiently redundant, the sparse solution
x̂, estimated using suitable algorithms can be considered as a
representation of the speaker. In the training phase, the sparse
representation for all speakers are derived. During the testing
phase, the sparse representation of the test utterance is also de-
rived in a similar fashion and is compared with the sparse rep-
resentation of the claimed speaker using an appropriate metric.

In our previous work [6] the mean supervector for an utter-
ances was derived from the GMM obtained by relevance MAP
adaptation [9] of means of the UBM by that utterance. Then the
centered GMM mean supervectors were derived by subtracting
the UBM mean supervector from the adapted mean supervec-
tor. The dictionaryD is learned using KSVD [10] algorithm
with the centered GMM mean supervectors of a large set of ut-
terances from the development database. The sparse represen-
tation x̂ was estimated using the orthogonal matching pursuit
(OMP) algorithm which minimizes representation error with a
constraint on thel0-norm as,

x̂ = argmin
x

‖y −Dx‖22 such that, ‖x‖0 < s (8)

where,s is the constraint on the number of atoms selected for
representation. The cosine kernel metric can be used for finding
the similarity between the claimed and the test sparse vectors
and that is compared with a threshold for the verification pur-
pose as given in Equation 9. To be consistent with the i-vector
based system which does not involve any relevance factor in
creation of the supervectors, in this work the supervectors for
the SRSV system are derived with relevance factor set to zero.
With zero relevance factor, the MAP adaptation method and the
formulation of centered GMM mean supervectors described in
Section 1 become identical.

3.1. Dictionaries for SR-SV system

The choice and design of the dictionary plays a crucial role in
sparsifying the signal and hence in the success of the sparse rep-
resentation based classification. In the following subsections,
we describe various dictionary learning algorithms that are used
for learning the dictionaries for the SRSV system.

3.1.1. Dictionary learned using KSVD

The KSVD [10] is one of the most widely used algorithms for
learning redundant dictionaries for sparse representations. It is
a generalization of the well known K-means clustering algo-
rithm. KSVD algorithm constructs a dictionary of K atoms that
leads to the best possible representation for each member of the
training examples with a minimum sparsity constraint. The dic-
tionary learning problem is represented as,

min
D,X

{

‖Y −DX‖22
}

subject to‖xi‖0 ≤ T0 ∀i (9)

where,Y is the set of dictionary training vectors,D is the dic-
tionary,X is the set of sparse vectors corresponding toY and
T0 is the constraint on sparsity. The learning is an iterative pro-
cess and each iteration has two stages: the sparse coding stage
and the dictionary update stage. In the sparse coding stage, any
of the pursuit methods such as OMP can be used for finding
the sparse representation of the given set of examples based on
the current dictionary. The update of the dictionary atoms is
done jointly with an update of the sparse representation coef-
ficients related to it, thus resulting in accelerated convergence.
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The SRSV system which uses KSVD dictionary is referred to
asKSVD-SRSV system in this paper.

3.1.2. Dictionary learned using S-KSVD

The SKSVD [11] is asupervised version of the KSVD algo-
rithm for learning discriminative dictionary. It usesclass super-
vised simultaneous OMP (CSSOMP) in the sparse coding stage
of the dictionary learning process which differs from OMP in
two aspects: (i) CSSOMP uses the same set of atoms from the
dictionary to represent all examples from a given class and so
attempts to extract the common internal structure of that class
whereas OMP treats each example independently (ii) In addi-
tion to the original reconstruction criterion of minimum squared
error used in OMP, CSSOMP also uses a discrimination mea-
sure which increases the separability among classes. The sparse
discriminant dictionary learning problem is represented as,

max
D,X

{

θ.J

(

{{

x
j
i

}nj

i=1

}c

j=1

)

−
c

∑

j=1

nj
∑

i=1

∥

∥

∥
y
j
i −Dx

j
i

∥

∥

∥

2

2

}

subject to
∥

∥

∥x
j
i

∥

∥

∥

0
≤ T0, ∀i, j (10)

The functionJ(.) represents the discriminant measure defined
as:= trace(B)

trace(W )
whereB andW are thebetween-class and the

within-class covariance matrices of the learning data, respec-
tively. D is the learned dictionary,yj

i is ith example vector of
jth class from a set of dictionary training data havingc classes
with nj , 1 ≤ j ≤ c examples per class.xj

i is the sparse coef-
ficient vector corresponding toyj

i . θ is a parameter controlling
the trade-off between discriminative and re-constructive terms
in the learning criterion. The SKSVD dictionary based SRSV
system is referred to as SKSVD-SRSV system in this paper.

3.2. Total-variability dictionary for the SRSV system

In [8] the total variability matrixT of the i-vector based system
is used as the dictionary for sparse representation in a setup sim-
ilar to that explain in Section 3. For the purpose of comparison,
we have created an SRSV system which uses the total variabil-
ity matrix derived using PPCA as the dictionary. This system is
referred to as the T-SRSV system in this work. It is to note that,
we have used the OMP algorithm for finding the sparse repre-
sentation while LASSO algorithm has been used for the same
purpose in [8].

4. Total variability matrix smoothing of
supervectors

Motivated by the improvement reported with the score level fu-
sion of i-vector and SRSV based SV systems in [8], we recently
explored a novel feature level fusion of these two systems[12].
In our proposed approach, we basically smooth the centered
GMM mean supervectors using the total variability matrix prior
to dictionary learning and sparse representation. For this pur-
pose, the centered GMM mean supervectors are first projected
using the total variability matrix using the equation 5 to get the
i-vector representations. The resulting i-vectors are then mul-
tiplied with theT matrix to re-synthesize the centered GMM
mean supervectors as given below.

ỹ = T ŵ (11)

As T is a low rank matrix, the re-synthesized supervectors
are the smoothed version of the original supervectors. These

(a) Without smoothing

(b) With smoothing
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Figure 1: Intensity plot showing the similarity among supervec-
tors of five speakers with five utterances per speaker (a) without
smoothing and (b) with smoothing

smoothed supervectors are then used for the speaker verification
using sparse representation as described in section 2. This sys-
tem is referred to as theT-smoothed SRSV system in this work.
The smoothing of supervectors with the total variability ma-
trix would result in the removal of smaller nuisance variations
which is hypothesized to be from the intra-speaker variabilities.
To verify this, we have performed a study with five speakers
each having five utterances taken from the Switchboard corpus
(development data). The centered GMM mean supervector for
each of these utterances were derived and these supervectors
were then smoothed using the total variability matrix which is
learned from the full development data. To understand the ef-
fect of smoothing, we have computed the cosine kernel based
similarity among all supervectors for both cases. The similarity
scores among all the supervectors with and without smoothing
as an intensity plot is shown in Figure 1. On comparing the two
plots, we note that with smoothing the similarity scores among
supervectors have improved in general. Also, the improvement
in similarity score in case of intra-speaker cases is more than
that in case of inter-speaker cases. It is noted that the average
improvement in similarity score due to smoothing is 154% in
case of intra-speaker cases whereas it is 85% in case of inter-
speaker cases. This can be interpreted as higher reduction in
intra-speaker variations compared to that in inter-speaker varia-
tions due to the smoothing.

5. Session/channel variability compensation

The various session/channel variability compensation methods
that are applied to different SV systems considered in this work
are briefly described in this section.
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5.1. Joint factor analysis

In joint factor analysis (JFA) [13], the centered GMM mean
supervectory for a speaker is represented as the sum of three
factors as,

y = Uu+ V v +Dd (12)

where U is the session/channel subspace matrix,V is the
speaker subspace matrix, andD represents the diagonal resid-
ual matrix. The vectorsu, v andd are the projections ofy in
their respective subspaces. The session/channel compensated
centered GMM mean supervector is given byỹ = V v̂ +Dd̂,
wherev̂ and d̂ are the estimated projections to the respective
subspaces. In our implementation, we have usedV v̂ factor
only ignoring the residual factor.

5.2. Linear discriminant analysis

Linear discriminant analysis (LDA) is a commonly used method
for dimensionality reduction and is widely used in pattern
recognition applications. In LDA, the feature vectors are pro-
jected down to a set of new orthogonal axises where the dis-
crimination between different classes is maximum. The pro-
jection matrix is composed by the eigen vectors correspond-
ing to the best eigen values of the eigen analysis equation,
(W−1B)v = λv, whereW is the within-class covariance
matrix,B is the between-class covariance matrix,v is an arbi-
trary vector, andλ is the diagonal matrix of eigen values [1].

5.3. Within class covariance normalization

In within class covariance normalization (WCCN) method, the
feature vectors are transformed using a matrix which minimizes
the upper bounds on the classification error metric and hence
minimizes the classification error [14]. The transformation ma-
trix B is obtained by Cholesky decomposition of the inverse of
the within-class covariance matrixW as,W−1 = BBt.

6. Experimental Setup
The experiments are performed using the NIST 2003 SRE
database. It contains speech data of 356 target speakers col-
lected over cellular phone network. The evaluation of the sys-
tem is done as per the NIST 2003 SRE evaluation plan for pri-
mary task [15]. This experimental setup contains 24981 trials
for verification task including true and false trials. The standard
MFCC feature vectors of 39-dimensions with cepstral mean
and variance normalization are used. An energy based VAD
is used for selecting the speech frames. The Switchboard Cel-
lular Part 2 corpus is used as the development data for all the
systems. A gender-independent UBM model of 1024 Gaussian
mixtures created using approximately 10 hours of the develop-
ment speech data is used for all the systems. The GMM super-
vectors are created by adapting only the mean parameters of the
UBM using maximuma posteriori (MAP) approach with the
speaker specific data. The total variability matrix of the i-vector
based system and the dictionaries for the SRSV systems are cre-
ated using 1872 speech utterances taken from the development
database.θ of value 0.7 is used for learning the discrimina-
tive dictionary. The JFA is made up of 300 speaker factors and
100 channel factors without the residual factor. The LDA and
WCCN matrices are created using the same development data
which is used for learning the total variability matrix and the
dictionaries. The LDA for the i-vector system uses 250 top di-
mensions where as the proposed SRC based system uses LDA
of 375 top dimensions. All the above mentioned parameters

are chosen out of experimentation. The performance of the SV
systems are evaluated using the equal error rate (EER) and the
minimum detection cost function (minDCF).

7. Experimental Results and Discussions

In this section, we first explain the tuning experiments done for
the KSVD-SRSV system to get an optimal sparse representa-
tion. Followed by this we compare the SRSV and the i-vector
based SV systems and then study the sparsity of representation
in SRSV system with different kinds of dictionaries. It is fol-
lowed by exploration of the total variability smoothing of super-
vectors in SRSV system. Motivated by recent usage of PLDA
in i-vector based systems [16], a discriminatively learned dictio-
nary based SRSV system is also presented for contrast purpose.
The performance of various systems are evaluated with ses-
sion/channel compensation and their score level fusion is also
reported.

7.1. Tuning of the SRSV system

In a KSVD learned dictionary based SRSV system, there are
three main tuning parameters : i) the number of atoms in the
dictionary, ii) the number of atoms selected while learning the
dictionary, iii) the number of atoms selected while representa-
tion of target data. The significance of the first parameter is
obvious. For explaining the significance of the other two pa-
rameters, recall that the KSVD dictionary learning process in-
volves two stages: the sparse representation of the development
data and the dictionary updation. Unlike the sparse representa-
tion of the unseen training and test data in an SV system, the
dictionary learning process involves the sparse representation
of the seen development data. Due to this fact, there is a scope
of tuning the other two parameters for optimal system perfor-
mance. To be consistent with the i-vector dimension reported in
literature, all KSVD based learned dictionaries are chosen to be
of 400 atoms. The performances of the system obtained while
tuning the other two parameters are shown in Figure 5. It is
noted that the system with dictionary created with with the best
performance is obtained with selection of 5 atoms while dictio-
nary learning and 50 atoms while representation of training and
testing supervectors. We have used these parameter values for
KSVD based learned dictionary unless specified otherwise.
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Figure 2: Figure showing the effect of number of atoms selected
while dictionary learning and the number of atoms selected for
representation for KSVD-SRSV system
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7.2. Comparison of KSVD-SRSV system with i-vector
based SV system

On comparing Eq. 1 and Eq. 10, it is obvious to note that the
SRSV and the i-vector based systems are having some broad
similarities. The dimensions of matricesD andT are the same
and their respective projectionsx andw of a given centered
GMM mean supervector are used for classification with the
same scoring metric. Thus the main differences between the
two approaches lie in the different criteria used for learning
those matrices and the nature of the projections derived from
them. The matrixD in the SRSV system is designed to be
redundant having non-orthogonal columns and hence the pro-
jections with respect to that are sparse. In case of the i-vector
based system, the columns of the matrixT are orthogonal to
each other and as a result the projections with respect to that are
generally non-sparse.

The performances of similar complexity i-vector based and
KSVD-SRSV systems are shown in Figure 3 in the form of
DET curves. It can be noted that the i-vector based system
performs slightly better than the KSVD-SRSV system with an
EER of 4.61 % against 5.2 %. The nature of the i-vector and the
sparse vector representations are quite different. In case of the i-
vector the energy is distributed to a large number of coefficients
whereas for the sparse representation vector the energy is con-
centrated in a few coefficients only. So the sparse representa-
tion vectors are expected to be more sensitive to session/channel
variability than the i-vectors and we hypothesis that this is the
cause of the slightly inferior performance of the KSVD-SRSV
system compared to the i-vector based system. To analyze the
performance further, the histogram for the true and false trial
scores of the KSVD-SRSV and i-vector based systems are plot-
ted which is shown in Figure 4. On comparing the histograms,
we note that the false trial scores are centered around zero for
both the i-vector and KSVD-SRSV systems but, the spread is
less in case of the KSVD-SRSV system. Although the mean
of the true trial scores are more right shifted for KSVD-SRSV
system compared to that of the i-vector system, but its spread is
much more for the KSVD-SRSV case. As a result, the KSVD-
SRSV system ended up giving poorer performance compared to
the i-vector system.
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Figure 4: Histogram of true and false trial scores of (a) i-vector
based and (b) KSVD-SRSV systems

7.3. Total variability dictionary for SRSV system

In this subsection we explore the use of the total variability ma-
trix of the i-vector approach as a dictionary (T-dictionary)for
the SRSV system. The performance of the SRSV system with
400 atoms T-dictionary is evaluated with varying number of
atoms selected for representations. For comparison purpose, an
SRSV system with KSVD dictionary of 400 atoms with vary-
ing number of atoms selected for representations is also eval-
uated. These performances are shown in Figure 5 along with
the performance of a 400 dimension i-vector based system for
contrast purpose. It can be noted that the SR-SV system with T-
dictionary gives very poor performance when small number of
atoms are selected (say 10 atoms). With increasing number of
atoms, the performance significantly improves and for all 400
atoms selected, it matches that of the 400-dimension i-vector
based system. On comparing with the KSVD-SRSV system, we
note that the T-dictionary based SRSV system (T-SRSV) gives
slightly better performance for more than 200 atoms selected,
but for smaller number of atoms it is found to be significantly
degraded. As reported in [8], for improved performance of an
SRSV system with T-dictionary, a bigger size dictionary (i.e.
more number of columns) and more number of atoms (selected
for sparse representation) are to be used. This is counter intu-
itive to sparse representation and this aspect is explored in the
following subsection.

7.3.1. Effect of size of T-dictionary in SRSV

To explore the effect of the size of the T-SRSV system, dictio-
naries of 200, 300, 400, 600, 700 and 900 columns are created.
The T-SRSV systems with these dictionaries are evaluated for
three different numbers of selected atoms viz. 50, 200 and 400.
The performance of these systems are shown in Figure 6 along
with that of the corresponding i-vector and KSVD-SRSV sys-
tems. For all the systems considered, the performance is found
to degrade consistently for dictionary sizes beyond 400. For
the T-SRSV system with higher number of atoms selected for
representations, the performance is found to be improving and
closely become comparable to that of the i-vector based system.
It is interesting to note that for the three types of systems con-
sidered, the best performances corresponds to dictionary sizes
between 300-400.
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7.4. SKSVD based SRSV system

In our previous work [7] we had explored a discriminative ver-
sion of the KSVD algorithm, referred to as the SKSVD algo-
rithm. The SKSVD algorithm is characterized by inclusion
of discriminative term in the learning criterion. The SKSVD-
SRSV system was found to result in significantly improved per-
formance compared to the simple KSVD-SRSV system. In re-
cent literature we also find the use of PLDA to improve the per-
formance of the i-vector based system [16]. In this work also
we have evaluated the performance the SKSVD-SRSV system
which is given in the given in Table 1 along with that of the
i-vector, KSVD-SRSV, and T-SRSV SV systems. Note that
the performance of the T-SRSV system is evaluated with 200
atoms selected for sparse representation. It can be observed that
the SKSVD-SRSV system hugely outperforms all other above
mentioned systems. The main motivation of considering this
system in this work is to evaluate the significance of the fusion
of the i-vector and sparse representation based approaches ex-
plored in the next subsection.

7.5. T-smoothed supervector based SR-SV system

As already shown in Section 4 with help of a controlled experi-
ment that T-smoothing (TS) of supervectors results in reduction
of intra-speaker variations. To evaluate its effect on SV sys-
tem, the performance of KSVD- and SKSVD-SRSV systems
with TS applied to supervectors are evaluated and are also given
in Table 1. It can be observed that with the inclusion of TS
about 30 % relative improvement is obtained for both KSVD-

Table 1: Performances comparison of i-vector and various
SRSV systems on NIST 2003 SRE dataset

Systems EER (%) minDCF

i-vector 4.21 0.072
KSVD-SRSV 5.23 0.097
T-SRSV 5.05 0.088

SKSVD-SRSV 2.87 0.042

TS + KSVD-SRSV 3.70 0.065
TS + SKSVD-SRSV 1.96 0.031

Table 2: Performances comparison of i-vector and various
SRSV systems with appropriate session/channel compensation
on NIST 2003 SRE dataset
Sys. Kind of system and session/channel EER min
No. compensation (%) DCF

1 i-vector + LDA-WCCN 2.21 0.040
2 KSVD-SRSV + LDA-WCCN 3.61 0.065
3 T-SRSV + LDA-WCCN 3.43 0.063

4 SKSVD-SRSV + LDA-WCCN 1.98 0.036

5 TS + KSVD-SRSV + LDA-WCCN 2.53 0.045
6 TS + SKSVD-SRSV + LDA-WCCN 1.59 0.032

7 JFA + KSVD-SRSV 1.56 0.031
8 JFA + SKSVD-SRSV 1.53 0.031

9 Fusion: 1 + 2 + 3 2.26 0.042
10 Fusion: 1 + 2 + 3 + 5 2.08 0.038
11 Fusion: 1 + 2 + 3 + 5 + 7 1.63 0.027
12 Fusion: 4 + 6 1.27 0.022
13 Fusion: 4 + 6 + 8 0.99 0.018

and SKSVD-SRSV systems over their respective baselines.

7.6. Channel/session compensation

To explore the effectiveness of the proposed SV system in pres-
ence of the session/channel variability compensation, we have
applied suitable methods among JFA, LDA and WCCN to dif-
ferent SV systems considered. The performance of various sys-
tems considered in this work with appropriate channel/session
compensation technique applied are shown in the Table 2. For
the i-vector based system, LDA+WCCN is applied as sug-
gested in [1]. For the comparison purpose, the KSVD- and
T-SRSV systems were applied with LDA+WCCN compensa-
tion. It can be noted that the channel/session compensation us-
ing LDA+WCCN has resulted in about 50 % improvement for
i-vector SV system while about 30% improvement for KSVD-
and T-SRSV systems over their uncompensated baselines. Sim-
ilarly for SKSVD-SRSV system, the LDA+WCCN compensa-
tion also results in about 30% relative improvement over its
uncompensated baseline. For TS based KSVD- and SKSVD-
SRSV systems the LDA+WCCN compensation results in 30%
and 19% relative improvement over its uncompensated base-
line. In [7] we have already reported that with the JFA cleaning
of supervectors prior to the sparse representation, the learned
dictionary based SRSV systems are found to give largely im-
proved performance. The performances of KSVD- and SKVD-
SRSV systems with JFA cleaning are also evaluated for further
gains in system combination and shown in the Table 2.

To explore the complementary information among the i-
vector and SRSV systems in particularly including the T-
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smoothing and JFA cleaning of supervectors, the score level
combination of various systems are explored. On score level
fusion of session/channel compensated i-vector, KSVD-SRSV
and T-SRSV we do not see any further improvement. But, on
adding the TS KSVD-SRSV to the above combination results
in a small improvement which further gets improved to 1.16 %
EER on inclusion of JFA cleaned KSVD-SRSV system. Simi-
larly the fusion of SKSVD and T-smoothing based SKSVD does
not result in any further improvement but with the inclusion of
JFA cleaned SKSVD system to this combination, some signifi-
cant improvement is noted.

8. Conclusions
In this work we have studied the various aspects of the SV sys-
tems using sparse representation over learned dictionaries. The
work compares the similarity between the SRSV and i-vector
based systems and study in detail the use of the T-matrix of the
i-vector based system as a dictionary for the SRSV system. The
study shows that the T-dictionary based SRSV system can give
a comparable performance to that of the KSVD learned dictio-
nary based SRSV system but with significantly more atoms se-
lected for the representation of the target supervectors. From the
experiments conducted to tune the KSVD-SRSV system, it is
noted that in the sparse representation stage of dictionary learn-
ing, very small number of atoms are to be selected whereas, in
sparse representation of target supervectors, a relatively larger
number of atoms need to be selected. We have also explored the
use of T matrix for smoothing of supervectors prior to sparse
representation. The performance of the discriminative dictio-
nary based SKSVD-SRSV system is also evaluated which turns
to be the single best system among different types of SV sys-
tems considered in this work. The score level fusion of the
three SRSV systems incorporating the discriminative dictionary
resulted in a performance of 0.99% EER.
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