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Abstract
Both the memory and computational requirements of algo-
rithms traditionally used to extract i-vectors at run time and
to train i-vector extractors off-line scale quadratically in the i-
vector dimensionality. We describe a variational Bayes algo-
rithm for calculating i-vectorsexactly which converges in a few
iterations and whose computational and memory requirements
scale linearly rather than quadratically. For typical i-vector
dimensionalities, the computational requirements are slightly
greater than those of the traditional algorithm. The run time
memory requirement is scarcely greater than that needed to
store the eigenvoice basis. Because it is an exact method, the
variational Bayes algorithm enables the construction of i-vector
extractors of much higher dimensionality than has previously
been envisaged. We show that modest gains in speaker verifi-
cation accuracy (as measured by the 2010 NIST detection cost
function) can be achieved using high dimensional i-vectors.

1. Introduction
An important recent advance in speaker recognition is the dis-
covery that speech signals of arbitrary duration can be effec-
tively represented by i-vectors of relatively low dimension (with
this dimension being independent of the utterance duration)
[1]. I-vectors have worked equally well in language recog-
nition [2, 3] and both i-vectors and speaker factors extracted
from segments of very short duration (on the order of 1 second)
have been successfully used in diarizing telephone conversa-
tions [4, 5, 6]. (Speaker factors are extracted in the same way
as i-vectors. They differ in the way the data used to estimate the
eigenvoice basis is organized.)

I-vectors are so easy to work with that they are now the pri-
mary representation used in many state of the art speaker recog-
nition systems. By banishing the time dimension altogether, the
i-vector representation enables the speaker recognition problem
to be cast as a traditional biometric pattern recognition problem
like face recognition. This allows well established techniques
such as cosine distance scoring, Linear Discriminant Analysis
and Probabilistic Linear Discriminant Analysis (PLDA) to be
applied. The advantage of a low, fixed dimensional feature rep-
resentation is particularly apparent in the case of PLDA as this
can be regarded as a simplified version of Joint Factor Analysis
(JFA) which results when each utterance is represented by sin-
gle feature vector (rather than by a sequence of cepstral vectors
of random duration, as is traditional in speech processing).

The i-vector representation of speech utterances can be
viewed as a type of principal components analysis of utterances
of arbitrary duration, based on the assumption that each utter-
ance can be modeled by a Gaussian Mixture Model (GMM)
and applying probabilistic principal components analysis to the
GMM supervectors. Thus the basic assumption is that all utter-
ance supervectors are confined to a low dimensional subspace

of the GMM supervector space so that each supervector is spec-
ified by a small number of coordinates. These coordinates can
be thought of as representing physical quantities which are con-
stant for a given utterance (such as vocal tract length, room
impulse response etc.) but which differ from one utterance to
another. The i-vector representation of the utterance is defined
by these coordinates. The standard algorithm for extracting i-
vectors is eigenvoice maximuma posteriori (MAP) estimation
(Proposition 1 of [7]) and the primary training algorithm used
in building an i-vector extractor is the eigenvoice estimation al-
gorithm given in Proposition 3 of [7] (applied in such a way that
each utterance is treated as coming from a different speaker).

Both the computational and memory requirements of these
algorithms scalequadratically in the i-vector dimensionality.
This accounts for the fact that, although principal components
analyzers of several thousand dimensions are commonly used
in other fields, there are to our knowledge no instances in the
current speaker recognition literature of i-vector extractors of
dimension greater than 800. For example an i-vector extractor
of dimension 1000 (with a standard configuration of 2048 Gaus-
sians and 60 dimensional acoustic features) requires 8.8 Gb of
storage (in double precision) at run time and twice that amount
of memory is needed to train it.

In this paper, we will show how to minimize the mem-
ory requirements of i-vector extraction (both at run time and
during training) using an iterative variational Bayes algorithm
to perform the eigenvoice MAP computation. The algorithm
converges very quickly (3 variational Bayes iterations are typ-
ical) and no cost in speaker recognition accuracy is incurred.
A 1000 dimensional i-vector extractor can be accommodated in
less than 1 Gb at run time and the computational overhead is
quite modest: the CPU time required to extract a 1000 dimen-
sional i-vector from an utterance is on the order of 1 second,
assuming that the Baum-Welch statistics for the utterance are
given.

A key aspect of the variational Bayes algorithm is that
both the computational and memory requirements scalelin-
early rather than quadratically in the i-vector dimensionality.
This makes it possible to explore the question of whether im-
provements in speaker recognition accuracy can be obtained
using very high dimensional i-vector representations. (It is
well known that approximate methods can be used to ex-
tract i-vectors at run time without seriously compromising
speaker recognition accuracy but exact computations appear to
be needed for training i-vector extractors [8]. This was our prin-
cipal motivation for developing the variational Bayes method.)
We have experimented with i-vectors of dimension as high as
1600 and we will show that minor improvements in the value
of the normalized 2010 NIST detection cost function can be ob-
tained using very high dimensional i-vectors.

Odyssey 2012 
The Speaker and Language Recognition Workshop 
25-28 June 2012, Singapore

1



2. Review of i-vectors
2.1. Notation

The probabilistic model underlying eigenvoice MAP is an ex-
tension of probabilistic principal components analysis [9]. We
assume that we are given a universal background model (UBM)
with C mixture components indexed byc = 1, . . . , C. For each
mixture componentc we denote bywc, mc andΣc the corre-
sponding mixture weight, mean vector and covariance matrix.
We denote byF the dimension of the acoustic feature vectors.

To account for inter-utterance variability, we associate with
each utterance anR × 1 vectory (the i-vector) and with each
mixture componentc an F × R matrix Vc. For the given ut-
terance, the acoustic feature vectors associated with the mixture
component are supposed to be distributed with meanµc and
covariance matrixΣc where

µc = mc + Vcy.

Thus, if we are given an utterance represented as a sequence
of framesX1, . . . , XT and the aliment of frames with mixture
components is given, the likelihood of the utterance is

X

c

“

Nc ln
1

(2π)F/2|Σc|1/2

−
1

2

X

t

(Xt − Vcy −mc)
∗Σ−1

c (Xt − Vcy −mc)
”

wherethe sum overc extends over all mixture components; the
sum overt extends over all frames aligned with the mixture
componentc; andNc is the number of such frames. This ex-
pression can be evaluated in terms of the first and second order
statistics for each mixture component, namely

Fc =
X

t

Xt

Sc =
X

t

XtX
∗
t .

Since the alignment of frames with mixture components isnot
in fact given, we use the Baum-Welch statistics instead. These
are defined by

Nc =
X

t

γt(c)

Fc =
X

t

γt(c)Xt

Sc =
X

t

γt(c)XtX
∗
t

where, for each timet, γt(c) is the posterior probability thatXt

is generated by the mixture componentc, calculated with the
UBM. (This choice is intuitively natural and it can be motivated
by variational Bayes [10].)

In [7], the only roles played by the second order Baum-
Welch statistics are in the calculation of the likelihood function
(Proposition 2) and in the estimation of the covariance matrices
Σc (Proposition 3). In practice, for each mixture componentc,
mc andΣc can be copied from the UBM and only the matrixVc

needs to be estimated from the training data. Furthermore, the
contribution of the second order statistics can be dropped from
the expression for the likelihood function without compromis-
ing its usefulness. Thus the second order statistics do not play
an essential role in most implementations.

2.2. i-vector extraction

Proposition 1 of [7] shows how to calculate the posterior dis-
tribution of y for a given utterance on the assumption that the
prior is standard normal. (There is no gain in generality by as-
suming a non-standard normal prior.) The posterior covariance
matrix Cov (y, y) and mean vector〈y〉 are given by

Cov (y, y) =

 

I +
X

c

NcV
∗

c Σ−1

c Vc

!−1

〈y〉 = Cov (y, y)
X

c

V ∗
c Σ−1

c Fc. (1)

The usual procedure to alleviate the computational burden
is to store the matricesV ∗

c Σ−1

c Vc and, for each utterances, use
these matrices together with the 0 order Baum-Welch statistics
to evaluate the precision matrix

I +
X

c

Nc(s)V
∗

c Σ−1

c Vc

for the given utterance. Because of symmetry, onlyR(R+1)/2
real numbers (i.e. the upper triangular part ofV ∗

c Σ−1

c Vc) need
to be stored for each mixture component. Of course it would be
possible to economize on memory by calculating the precision
matrix for each utterance from scratch but this is not done in
practice as the computational burden would be excessive.

2.3. Whitening the Baum-Welch statistics

A simplification which can be applied if the mean vectors and
covariance matricesmc andΣc are taken as given (rather than
estimated in the course of training the i-vector extractor) is that
the first order statistics can be pre-whitened by subjecting them
to the transformation

Fc ← L−1

c (Fc −Ncmc)

where

LcL
∗
c = Σc

is the Cholesky decomposition ofΣc. (Of course changing the
Baum-Welch statistics in this way will change the the estimates
of the matricesVc produced by the eigenvoice training algo-
rithm summarized below. But these changes cancel each other
out in the sense that, for each utterance, the posterior distribu-
tion of the hidden variablesy remains unchanged. Thus the
point estimate of the i-vector — that is, the mean of the poste-
rior — remains unchanged which is all that we require.)

Performing this transformation enables us to takemc = 0
andΣc = I in all of the equations in [7]. This simplifies the
implementation and, more importantly, it facilitates building i-
vector extractors which do not have to distinguish between full
covariance and diagonal covariance UBMs. (It was shown in
[11] that full covariance UBMs outperform diagonal covariance
UBMs in speaker recognition.) We will assume henceforth that
the Baum-Welch statistics have been whitened.

2.4. Training the ivector extractor

As for estimating the matricesVc, suppose we have a training
set where for each utterances, the first and second order mo-
ments〈y(s)〉 and〈y(s)y∗(s)〉 have been calculated. The max-
imum likelihood update formula forVc is

Vc =

 

X

s

〈y(s)〉F ∗
c (s)

! 

X

s

Nc(s)〈y(s)y∗(s)〉

!−1
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where the sums overs extendover all utterances in the training
set, and for each utterances, Nc(s) andFc(s) are the Baum-
Welch statistics of order 0 and 1 for mixture componentc. Cal-
culating the first and second moments is just a matter of evalu-
ating the posterior ofy(s). For example,

〈y(s)y∗(s)〉 = Cov (y(s), y(s)) + 〈y(s)〉〈y∗(s)〉.

As for minimum divergence estimation, the idea is to mod-
ify the matricesVc in such a way as to force the empirical distri-
bution of the i-vectors to conform to the standard normal prior
[12, 13]. LetLL∗ be the Cholesky decomposition of the matrix

1

S

X

s

〈y(s)y∗(s)〉

whereS is the number of training utterances and the sum ex-
tends over all utterances in the training set. The transformations

Vc ← VcL

y(s) ← L−1
y(s)

have the desired effect.
Both maximum likelihood and minimum divergence esti-

mation increase the likelihood of the training set where the like-
lihood is evaluated as in Proposition 2 of [7]. Note that, just as
for run-time i-vector extraction, calculating i-vector posteriors
is the principal computation for both maximum likelihood and
minimum divergence training.

3. The variational Bayes algorithm
We will show how the memory requirements of the posterior
calculation can be substantially reduced at the cost of a modest
computational overhead by working with a basis of the i-vector
space with respect to which the i-vector posterior covariance
matrices are approximately diagonal, so that the i-vector com-
ponents are approximately statistically independent in the pos-
terior.

The variational Bayes (VB) method is a standard way of
enforcing this type of posterior independence assumption. In
the case at hand, variational Bayes produces an approximation
to the true posterior which is of very high quality in the sense
that, at convergence, the mean of the posterior distribution —
that is, the point estimate of the i-vector — is calculatedex-
actly. The only inaccuracy is in the posterior covariance matrix
which is only approximately diagonal. These posterior covari-
ances are used in training the i-vector extractor (not at run time)
but the effect of the diagonal approximation is minimal so that
it turns out that using the VB method in training i-vector extrac-
tors leads tono degradation in speaker recognition accuracy.

If the VB algorithm is initialized properly, very few iter-
ations (typically 3, independently of the i-vector dimension)
are needed to obtain accurate i-vector estimates. Because the
off-diagonal elements of the posterior covariance matrix are ig-
nored, it follows thatthe computational and memory require-
ments of the VB method scale linearly rather than quadratically
in the i-vector dimension.

3.1. VB updates

Suppose we are given an utterance represented as a sequence of
acoustic feature vectorsX1, . . . , XT or X for short. We sup-
pose that the prior distribution ofy is standard normal. Assume
provisionally that it is reasonable to impose diagonal constraints

on the posterior covariance matrix ofy givenX so that we can
write

y = (y1, . . . , yR)

Q(y) = Q(y1) . . . Q(yR).

whereQ(y) approximates the true posteriorP (y|X). We will
return to the question of why this assumption is reasonable in
the next section. Meantime, we derive a variational Bayes algo-
rithm to calculateQ(y). We introduce the following notation.
For r = 1, . . . , R, we denote therth column ofVc by V r

c so
that

Vcy =
R
X

r=1

V r
c yr

and

diag (V ∗
c Vc) =

0

B

@

V 1∗
c V 1

c

. . .
V R∗

c V R
c

1

C

A
.

The memory overhead of the VB algorithm is the cost of stor-
ing this diagonal matrix for each mixture componentc, rather
than (the upper triangle of)VcVc as required by the standard
posterior calculation outlined in Section 2.2.

Following the standard procedure given in [9] the VB up-
date forQ(yr) is

ln Q(yr) = Ey\yr

»

ln
P (y, X)

Q(y)

–

+ constant.

So using≡ to indicate equality up to an additive constant, we
have

ln Q(yr)

≡ −
1

2

X

c

Ey\yr

"

X

t

(Xt − Vcy)∗(Xt − Vcy)

#

−
1

2
(yr)2

≡ −
1

2
(1 + NcV

r∗
c V r

c ) (yr)2

+
X

c

V r∗
c

“

Fc −Nc

X

r′ 6=r

〈yr′

〉V r′

c

”

yr.

Letting

Lr = 1 +
X

c

NcV
r∗

c V r
c ,

we can read off the posterior expectation and variance ofyr

from this expression:

〈yr〉 =
1

Lr

X

c

V r∗
c

“

Fc −Nc

X

r′ 6=r

〈yr′

〉V r′

c

”

Var(yr) =
1

Lr
.

A completeVB update iteration consists in applying this for
r = 1, . . . , R. Readers familiar with the Jacobi method in nu-
merical linear algebra will recognize that successive VB itera-
tions implement the Jacobi method for solving the linear sys-
tem (1). It is well known (and easy to verify) that, if the Jacobi
method converges, then it converges to the solution of the linear
system. Convergence in this case is guaranteed by variational
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Bayes [9]. Thus, if is run to convergence, the VB method cal-
culatesi-vectors exactly.

For efficient implementation, we can use the following re-
formulation. SetRc = Fc − NcVc〈y〉 for each mixture com-
ponentc (R for remainder). The VB update of〈y〉 consists in
performing the following operations forr = 1, . . . , R:

1. Rc ← Rc + Nc〈y
r〉V r

c (c = 1, . . . , C)

2. 〈yr〉 = 1

Lr

P

c V r∗
c Rc

3. Rc ← Rc −Nc〈y
r〉V r

c (c = 1, . . . , C)

More efficiently (sincediag (V ∗
c Vc) has been precomputed), 1)

and 2) can be combined as

〈yr〉new =
1

Lr

X

c

V r∗
c (Rc + Nc〈y

r〉oldV r
c )

=
1

Lr

X

c

V r∗
c Rc + 〈yr〉old

1

Lr

X

c

NcV
r∗

c V r
c

=
1

Lr

X

c

V r∗
c Rc +

„

1−
1

Lr

«

〈yr〉old

sothat the VB update of〈y〉 reduces to performing the follow-
ing operations forr = 1, . . . , R:

1. 〈yr〉new = 1

Lr

P

c V r∗
c Rc +

`

1− 1

Lr

´

〈yr〉old

2. Rc ← Rc − Nc (〈yr〉new − 〈y
r〉old) V r (c =

1, . . . , C).

3.2. VB Initialization

The VB algorithm is guaranteed to calculate i-vectors exactly
but a good initialization is needed to ensure that it does so
quickly.

We are free to postmultiply the matricesVc by any orthog-
onal matrix without affecting the assumption thaty has a stan-
dard normal prior distribution; in particular we can choose a
basis of the i-vector space such that the matrix

X

c

wcV
∗

c Vc

is diagonal where, for each mixture componentc, wc is the cor-
responding mixture weight (i.e. prior probability). Since, for a
given utterance of sufficiently long duration,

Nc ≈ Nwc

it follows that the posterior covariance matrix for an utterance,
namely Cov (y, y) in (1), is approximately diagonal (as we
mentioned in Section 3.1). Note that the quality of the approx-
imation may degrade in the case of very short utterances (for
which it may not be the case thatNc ≈ Nwc for each mix-
ture component component). Thus a reasonable initial estimate
of 〈y〉 for VB is the approximate solution of (1) obtained by
ignoring the off-diagonal elements inCov (y, y). (Solving a
system of equations with a diagonal coefficient matrix is com-
putationally trivial.) Unlike the approximation used in [8], this
is only an initial estimate chosen so as to ensure rapid conver-
gence of the VB algorithm. Note that in [8] the approximation
is only for extracting i-vectors at run time; it turns out to be too
crude to use in training i-vector extractors. On the other hand,
since the variational Bayes approach to calculating i-vectors is
exact, it can be used in off-line training of i-vector extractors.
This is the reason why we are able to experiment with i-vectors
of very high dimensionality.

3.3. The variational lower bound

The variational Bayes updates are guaranteed to increase the
variational lower boundL on ln P (X) defined by

L = E

»

ln
P (y, X)

Q(y)

–

wherethe expectation is taken with respect toQ(y). Ignoring
the contribution of the second order statistics (which does not
change from one VB iteration to the next), the variational lower
bound can be expressed in terms of the posterior mean and co-
variance as follows

L =
X

c

(Vc〈y〉)
∗Fc −

1

2

X

c

Nc(Vc〈y〉)
∗Vc〈y〉

−
1

2

X

c

tr (NcV
∗

c Vc Cov (y, y))− D (Q(y) || P (y))

whereD (Q(y) || P (y)) is the Kullback-Leibler divergence be-
tween the posteriorQ(y) and the standard normal priorP (y)
which (by the formula for the divergence of two multivariate
Gaussians [13]) is given by

D (Q(y) || P (y)) = −
R

2
−

1

2
ln |Cov (y, y) |

+
1

2
tr ([ Cov (y, y) + 〈y〉〈y∗〉]) .

Evaluating the variational lower bound on each VB update turns
out to be rather expensive so in practice it is more useful for
troubleshooting than for monitoring convergence of the VB al-
gorithm at run time. (A simple, effective run-time convergence
criterion is the Euclidean norm of the difference between suc-
cessive i-vector estimates||y

new
− y

old
||.)

In constructing an i-vector extractor, the usual criterion
used to monitor convergence of the maximum likelihood and
minimum divergence training algorithms is the exact likelihood
function described in Proposition 2 of [7] whose evaluation re-
quires computing exact posterior covariances. If the posteri-
ors are calculated with the VB algorithm, the appropriate crite-
rion to use is the aggregate variational lower bound calculated
by summing the variational lower bound over all training ut-
terances. If posteriors are evaluated with the VB method, this
criterion is guaranteed to increase from one training iteration to
the next (both for maximum likelihood training and minimum
divergence training) so it is useful for troubleshooting.

4. Experimental Results
4.1. Testbed

We report the results of experiments conducted on the det 2 tri-
als (normal vocal effort telephone speech) in the female portion
of the extended core condition of the NIST 2010 speaker recog-
nition evaluation (thus using a larger set of trials than was pro-
vided for in the original evaluation plan1). Results are reported
using the following metrics: the equal error rate (EER), the
normalized detection cost function used in evaluations prior to
2010 (2008 NDCF) and the normalized detection cost function
defined for the 2010 evaluation (2010 NDCF) which severely
penalizes false alarms. The purpose of the experiments was to
compare the performance of the VB i-vector extractor with that
of our earlier JFA-based implementation and to investigate the

1http://www.itl.nist.gov/iad/mig/tests/spk/2010/NISTSRE10evalplan.r6.pdf
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question of whether improvements in speaker verification accu-
racy could be achieved with very high dimensional i-vectors.

Speaker verification was carried out with heavy-tailed
PLDA, using the front end and data sets for training the UBM,
the i-vector extractors and the PLDA classifiers described in
[13]. In comparing the VB i-vector extractor with the JFA-based
implementation, we used the in house CRIM voice activity de-
tector (VAD) in extracting Baum-Welch statistics. However we
learned in the course of the Bosaris workshop at BUT in 2010
that the CRIM voice activity detector did not perform as well as
the celebrated BUT Hungarian phoneme recognizer and BUT
kindly made their transcripts available to us for the experiments
with very high dimensional i-vectors.

4.2. Accuracy of VB

We evaluated the accuracy of the variational Bayes method by
comparing it with our original i-vector implementation, where
the i-vector extractor was built using executables written for
Joint Factor Analysis. (The scripts were modified in such a
way as to ignore the speaker labels attached to recordings in
the Switchboard and Mixer training corpora.) We used a stan-
dard UBM configuration (2048 diagonal Gaussians, 60 dimen-
sional acoustic feature vectors) to extract Baum-Welch statis-
tics. However, in our JFA implementation, the Baum-Welch
statistics were not whitened, the means and covariances asso-
ciated with the various mixture components were re-estimated
in the course of factor analysis training rather than copied form
the UBM (and only UBMs with diagonal covariance matrices
were supported).

To test the accuracy of the variational Bayes method we
used it in conjunction with the diagonal covariance UBM both
to train an i-vector extractor and to calculate the i-vectors at run
time. Our implementation in this case used whitened Baum-
Welch statistics so the means and covariances associated with
the various mixture components werenot re-estimated in the
course of training the i-vector extractor. We used 5 iterations of
variational Bayes to extract i-vectors.

The i-vector dimensionality was 400 in both cases, reduced
to 100 by linear discriminant analysis as in [1, 11] and heavy-
tailed PLDA classifiers [13] were used for verification. The re-
sults were essentially identical: an equal error rate of 3.1% for
the JFA implementation versus 3.0% for VB and a detection
cost of 0.50 for JFA versus 0.49 for VB (where the detection
cost was measured with the 2010 NIST cost function).

The slight edge observed for the VB method may seem sur-
prising. It appears to be attributable to the fact that the variances
were copied from the UBM in this case but not in the case of
the JFA-based implementation. The effect of this copying is
to overestimate the variances in the i-vector extractor by about
5%. (Copying results in overestimates since the UBM variances
are estimated in a way which takes no account of inter-utterance
variability.) It is well known that overestimating variances often
proves to be helpful in speech modeling.

4.3. Efficiency of VB

We evaluated the efficiency of the VB method by performing a
comparison with the standard approach summarized in (1), us-
ing whitened Baum-Welch statistics in both cases. On a 2.40
GHz Intel Xeon CPU, the time taken to extract an i-vector with
the standard approach was about 0.5 seconds. Almost all of the
time was spent in BLAS routines (in particular 75% of the com-
putational burden is spent accumulating the covariance matrix
in (1)). An estimate of about 0.25 seconds is given [8] which

appears to indicate that compiler optimization might be useful.

For the VB approach we performed 5 VB updates at run
time. Under these conditions the time taken to extract an i-
vector was 0.9 seconds. Thus, as expected, the VB method is
slower (by about a factor of 2 in the case of 400 dimensional
i-vectors) but still quite quick compared with the cost of ex-
tracting Baum-Welch statistics using a large UBM. In working
with higher dimensional i-vectors, we always found that 3–5
variational Bayes iterations were sufficient. (The exact num-
ber of iterations performed was determined by the Euclidean
norm stopping criterion mentioned in Section 3.3). It follows
that, like the memory requirements, the computational overhead
of the VB method scaleslinearly rather than quadratically in
the i-vector dimension. So the computational advantage of the
standard implementation relative to the VB method actuallyde-
creases as the i-vector dimension increases.

4.4. High dimensional i-vectors

Since the VB method enables very high dimensional i-vector
extractors to be trained with relatively modest computational
resources, we conducted some experiments to see if any gains
in accuracy could be achieved by increasing the i-vector dimen-
sionality. We used the same 2048 component diagonal UBM
as in the previous sections but we replaced the CRIM VAD with
the BUT VAD which accounts for the lower error rates. In every
case we reduced the number of dimensions to 100 by linear dis-
criminant analysis (LDA). Table 1 shows the results of increas-
ing the i-vector dimension from 400 to 1600 in steps of 400.
The equal error rates degrade, but there is a minor improvement
in the 2010 NDCF.

Table 1: EER / 2010 NDCF female extended core condition.
100 dimensional LDA. Diagonal UBM, 2048 Gaussians.

i-vector EER 2008 NDCF 2010 NDCF
400 2.5% 0.13 0.45
800 2.7% 0.13 0.44

1200 2.7% 0.13 0.42
1600 2.8% 0.14 0.43

5. Conclusion

We have shown how a variational Bayes approach enables ex-
act i-vector extraction to performed in such a way that com-
putational and memory requirements scale linearly rather than
quadratically in the i-vector dimensionality. Because it is an
exact method, the variational Bayes algorithm can be used in
training i-vector extractors as well as at run-time. This makes it
possible to experiment with i-vectors of much higher dimension
than has previously been envisaged, yielding modest improve-
ments in speaker verification accuracy as measured by the NIST
2010 detection cost function.
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