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Abstract

It is common to use a single speaker independent large Gaussian

Mixture Model based Universal Background Model (GMM-

UBM) as the alternative hypothesis for speaker verification

tasks. The speaker models are themselves derived from the

UBM using Maximum a Posteriori (MAP) adaptation tech-

nique. During verification, log likelihood ratio is calculated be-

tween the target model and the GMM-UBM to accept or reject

the claimant. The use of a single UBM for different groups of

population may not be appropriate especially when the impos-

tors are close to the target speaker. In this paper, we investigate

the use of Speaker Cluster-wise UBM (SC-UBM) for a group

of target speakers based on two different similarity measures.

In the first approach, speakers are grouped into different clus-

ters depending on their Vocal Tract Lengths (VTLs). The group

of speakers having same VTL parameter indicates similarity in

vocal-tract geometry and constitutes a speaker-dependent char-

acteristic. In the second approach, we use Maximum Likeli-

hood Linear Regression (MLLR) matrices of target speakers to

create MLLR super-vectors and use them to cluster speakers

into different groups. The SC-UBMs are derived from GMM-

UBM using MLLR adaptation using data from the correspond-

ing group of target speakers. Finally, speaker dependent mod-

els are adapted from their respective SC-UBM using MAP. In

the proposed method, log likelihood ratio is calculated between

target model and its corresponding SC-UBM. We compare per-

formance of the above method with the single UBM method for

varying number of clusters. The experiments are performed on

the NIST 2004 SRE core condition and we show that the pro-

posed method with a slight increase in the number of UBMs

always outperforms the conventional single GMM-UBM sys-

tem.

1. Introduction

Speaker verification is a binary decision problem. The claimant

is accepted or rejected based on Log Likelihood Ratio (LLR),

Λ(X) calculated between claimant model (λc) and alternative

hypothesis (λalt−hyp) for a given test feature (X). Mathemati-

cally,

Λ(X) = log Pr(X|λc) − log Pr(X|λalt−hyp) (1)

If Log Likelihood Ratio is greater than the predefined threshold,

then claimant is accepted, otherwise the claim is rejected.

There are several techniques available in the literature for

selecting the alternative hypothesis. These can be broadly di-

vided into two categories: one is cohort based [1, 2, 3] speaker-

dependent technique and the other is speaker-independent Uni-

versal Background Modeling (UBM) [4]. In cohort based ap-

proach, either each speaker maintains a set of models (other

closest speakers) called cohorts for alternative hypothesis or a

single model obtained from the cohorts called Individual Back-

ground Model (IBM) [5]. During verification, the log likeli-

hoods of the test utterance are calculated against the claimant

model and the cohort set corresponding to the claimant model.

In case of cohort, the likelihood values from cohort set are com-

bined into a single value before LLR calculation. Several stud-

ies related to the combination of the likelihood values can be

found in [1, 3, 6, 7]. In case of IBM, LLR is calculated between

the claimant and the corresponding IBM.

Reynolds et al. [4] proposed the commonly used UBM

technique, where a large Gaussian Mixtures Model (e.g. 2048

components) UBM (GMM-UBM) is trained using data from

many speakers. Hence, GMM-UBM represents a speaker in-

dependent model in the feature space. The speaker models

are then adapted from GMM-UBM using his/her training data

by Maximum a Posteriori (MAP) adaptation technique. Dur-

ing verification stage, log likelihood ratio is calculated between

the GMM-UBM and claimant model. The GMM-UBM is con-

sidered as the alternative hypothesis for all speakers in the

database.

In [1, 7], it was argued that it is more logical for the closest

speaker to the target to be in the cohort set to protect the system

from false acceptance of close imposters. Hence the conven-

tional GMM-UBM system, which maintains a single UBM for

all target speakers, may not be appropriate to reject close im-

posters to the target in all cases.

In this paper, we propose to use a separate UBM for a group

of target speakers (instead of a single UBM for all speakers)

and refer to this approach as Speaker Cluster-wise UBM (SC-

UBM). Since the SC-UBM models will be more specific to cor-

responding target speaker groups for which they are trained,

they will be able to reject imposters close to the target. We

propose to use the idea of Vocal Tract Lengths (VTLs) [8] to

group the speakers into different clusters. VTL can vary from

approximately 13cm for adult female speakers to over 18cm for

adult male speakers. Speakers with same VTL factor have simi-

lar vocal-tract geometry and therefore the corresponding speech

signals have similar spectral characteristics. VTL factor can

therefore be used as a speaker-dependent characteristic.

In another approach to grouping of speakers, we cluster

the target speakers based on the Maximum Likelihood Lin-

ear Regression (MLLR) matrices which are estimated for each

speaker using the training data and the speaker-independent

GMM-UBM. The columns of the MLLR matrices are stacked to

form super-vectors. The speaker specific MLLR super-vector

represents the speakers in high dimensional space. Then speak-

ers are grouped into cluster using their super-vector by K-means
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algorithm.

In our proposed method, the speakers are clustered into

groups based on either of the similarity measures described

above. Then separate UBM, called Speaker Clustered wise

UBM (SC-UBM), are obtained for every speaker group from

the speaker-independent GMM-UBM model. The target

speaker dependent model for a speaker is then derived from

his/her corresponding group dependent SC-UBM by MAP

adaptation using his/her training data. The SC-UBMs will be

close to the respective group of target speakers, and hence will

be able to reject close imposters as proposed in [1, 7]. During

verification, log likelihood ratio is calculated between claimant

model and its corresponding SC-UBM.

The paper is organized as follows. In Section 2 & 3, we

describe the method for target speaker clustering using VTLN

factor and MLLR super-vector respectively. In Section 4, we

describe how SC-UBMs are formed. In Section 5, the exper-

imental setup is described. Section 6 describes the baseline

system. The experimental results for our proposed method is

compared with the baseline system in Section 7. Finally, in

Section 8, we conclude the paper.

2. Vocal Tract Length

A major source of inter-speaker variability is due to differences

in Vocal Tract Lengths (VTLs) among the speakers. If the

vocal-tract is modeled as a uniform tube, then differences in

VTL lead to scaling of the resonant frequencies. Therefore, the

spectra of two speakers having different VTLs are related as

follows:

SA(f) = SB(αf) (2)

where, α is the ratio of VTLs of speakers A and B. The α is

also called VTLN (or VTL) factor or warp factor. Fig. 1 shows
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Figure 1: The spectra of vowel /eh/ for male and female speaker.

the smoothed spectra of vowel /eh/ enunciated by a male and

a female speaker. To match the formants of male speaker to

that of the female speaker (as reference), it is required to scale

frequency axis, i.e. expand the spectra of the male speaker.

In practice, there exists no reference speaker with respect

to whom α can be estimated. Therefore, a Maximum Likeli-

hood (ML) based grid search is used to find the best warp factor

for each speaker with respect to the speaker-independent (SI)

model. We consider GMM-UBM as the SI model for α estima-

tion,i.e.

α̂ = arg max
α

Pr(Xα|λGMM−UBM ) (3)

where, Xα is the warped feature obtained by scaling the spectra

with α. Due to physiological constraints on the geometry of the

vocal-tract, the ratio of VTLs are usually in the range of 0.80 to

1.20. In this paper, we use steps of 0.02 for grid-search in this

range.

2.1. Speaker Clustering using VTLN factors

In this case, target speakers are grouped into clusters based on

their VTLN factor. Algorithm 1 describes the steps followed

to form the speaker clusters using VTLN factors. Some VTLN

related work can be found in [9, 10, 11].

Algorithm 1: Target speaker clustering using VTLN factor

Initial Step: Generate warped features of all utterances,

{Xα
r }, for a target speaker (r) for α ǫ [0.80, 1.20]

Step 1: Estimate best α̂ for target speaker, r using,

α̂r = arg max
0.80≤α≤1.20

Pr(Xα
r |λGMM−UBM )

Step 2: Repeat Step 1 for all target speakers.

Step 3: Group the target speakers into different clusters

based on their VTLN factor α, i.e. cluster Cαj
contains

speaker r if ML estimate of warping factor for speaker r
is αj . For example, if speaker r has VTLN factor 1.04,

then it will belong to cluster C1.04.

Figure 2: Histogram of VTLN factor for male and female target

speakers.

Fig. 2 shows the histogram of VTL factor, α, for male and

female target speakers. As expected, since male speakers gen-

erally have larger VTL than female speakers, most of the male

speakers have α larger than 1.0 and most of the female speak-

ers have α less than 1.0. Each target speaker cluster is formed

by pooling the speakers who belong to the the same α class as

shown in Fig. 3.

All target speakers

α1.20α0.82

α0.80

{spk: 2, 8, 15, . . .} {spk: 1, 7, 3, . . .} {spk: 6, 10, . . .}

Figure 3: Illustration of target speaker grouping/clustering

based on their VTLN factor (α).
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In our experiment, we get 14 speaker groups based on

VTLN factor on NIST 2004 SRE in core condition.

3. MLLR for Speaker Adaptation

Maximum Likelihood Linear Regression (MLLR) [12] is a

commonly used technique in Automatic Speech Recognition

(ASR) for speaker adaptation. In MLLR adaptation the mean

vectors of the speaker independent (SI) model are linearly trans-

formed and the transform is estimated using speaker adaptation

data in a Maximum Likelihood framework. Mathematically,

µ̂ = Wµ + b, Σ̂ = Σ (4)

where µ and Σ represent the mean and co-variance matrix of the

SI model, and (W,b) are the MLLR transformation parameters.

The transformed model parameters are µ̂ and Σ̂.

3.1. Speaker clustering using MLLR super-vector

During training, MLLR transforms (W, b) are estimated for ev-

ery target speaker in the training set with respect to the speaker

independent GMM-UBM. The MLLR super-vectors are formed

by concatenating the columns of their MLLR transformation

similar to [13, 14]. This is illustrated in Fig. 4.

GMM−UBM 

Extraction
Feature 

Training Data

Adaptation
MLLR

MLLR Supervector

......

m11

m12

mMN

(W, b)

for speaker , r

for speaker, r

Figure 4: MLLR super-vector concept.

In [13, 14], it is shown that speaker specific super-vector

obtained from MLLR or constrained-MLLR matrix contain

speaker related information. Then, they use the speaker wise

super-vector in Support Vector Machines (SVMs) environment

for speaker recognition task. In our case, we just use the

speaker wise super-vector (obtained from MLLR transforma-

tion) containing speaker specific information for grouping the

target speakers in GMM-UBM framework. Then speaker clus-

ters are formed from the MLLR super-vector using K-means

algorithm. Euclidean distance measure is considered for simi-

larity measure in K-means algorithm. The convergence of the

K-means algorithm is achieved when cluster membership does

not change. The steps are described in Algorithm 2.

Algorithm 2: Target speaker clustering using MLLR super-

vector

Initial Step: Store MLLR super-vector, ~Mi from all

speakers, (say, 1 ≤ i ≤ R).

Step 1: Randomly select N super-vectors as cluster cen-

troids, ΩN

Step 2: Compute Euclidean distance from ~Mi to ΩN , for

1 ≤ i ≤ R.

Step 3: Assign ~Mi and corresponding speaker, i to the

cluster with minimum distance.

Step 4. Update the cluster centroid

Step 5. Repeat the Step 2 to 4 until cluster membership

does not alter.

In our experiments, we have studied the performance with dif-

ferent number of clusters, N , and have found that 5 clusters

give the best performance for MLLR based clustering. A more

detailed analysis is presented later in the paper.

4. Building SC-UBM

Irrespective of the clustering scheme (i.e. MLLR super-vector

or VTLN factor), the SC-UBMs are formed as described in

Algorithm 3.

Algorithm 3: SC-UBMs formation

Step 1: Load the feature vectors of all the training utter-

ances, XCj
, from all the target speakers in cluster Cj .

Step 2: Build a SC − UBMCj for speaker cluster Cj

with single iteration of MLLR adaptation from speaker-

independent GMM-UBM using Eqn. ( 4),

ˆµCj
= WCj

µ + b, ˆΣCj
= Σ (5)

ˆµCj
and ˆΣCj

are the model parameters of SC −

UBMCj .

Step 3: Repeat Step 1 to 2 for all clusters.

SC−UBM 1
Obtained by MLLR

Adaptation

Using VTLN/MLLR
Cluster 1 Cluster N

Non−target

data

GMM−UBM

2048 mixt.
Obtained by MLLR

Adaptation

SC−UBM N

2048 mixt.

GMM−UBM

Target data

Figure 5: Illustrates how SC-UBMs are derived for respective

speaker group.

Fig. 5 illustrates how cluster dependent SC-UBMs are built af-

ter clustering the target speaker using VTLN factor or MLLR

super-vector. Speaker dependent models are then obtained from

the corresponding SC-UBM using 2-iterations of MAP adapta-

tion. Only mean adaptation is performed.

5. Experimental setup

All experiments are performed on NIST 2004 SRE core condi-

tion, i.e., single-side training and single-side test as per NIST

evaluation plan [15]. The data set consists of 616 single-

sided, single conversation for training 616 target speaker mod-

els. Each conversation is approximately 5 minutes long with

2.5 minutes of speech collected over various channels, handsets

and languages. Details of the database can be found in [15].
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The speaker independent GMM-UBM with 2048 mixture

components with diagonal covariance matrices, is trained us-

ing data from non-target speakers in NIST 2002 SRE and

Switchboard-1 Release -2. A 39 dimensional MFCC feature

vector (C1 to C13 with ∆ and ∆∆ coefficients, excluding C0)

is extracted at a frame rate of 10ms with 20ms Hamming win-

dowed signal.

Two different frame removal techniques [16] are used to re-

move silence and frames with less energy. One is a bi-gaussian

modeling of the energy component of the frames (for NIST

2002 SRE & Switchboard-1 Release-2 corpora) and the other

is a tri-gaussian modeling of 0-mean and 1-variance normal-

ized energy component of the frames (for NIST 2004 SRE).

Finally, after removal of silence, features are normalized to fit a

zero-mean and unit-variance distribution at utterance level.

6. Baseline System

The baseline system used in our experiment is the conventional

GMM-UBM system proposed in [4]. The following three

different systems are considered (as baselines) to compare the

performance with our proposed method.

Baseline-I: Speaker independent GMM-UBM with 2048
Gaussian components is trained by pooling data from different

population of non-target speakers [4].

Baseline-II: Gender dependent (Male and Female) GMM-

UBMs of 1024 components are trained pooling data from

gender-specific population of non-target speakers. The speaker

independent GMM-UBM with 2048 mixtures is then derived

from the gender dependent models by agglomerating the

Gaussian components and renormalizing the mixture weights

[4].

Baseline-III: Gender dependent GMM-UBMs with 2048

mixtures are derived from speaker independent GMM-UBM

using single iteration of MLLR adaptation using data from re-

spective gender of non-target speakers. Note that in this case,

the speakers used to train the GMM-UBM are clustered accord-

ing to gender, and the corresponding gender dependent UBM

is built. However, the target speakers are not clustered and

they are trained and tested using the corresponding gender-

dependent UBM model.

Male GMM−UBM
2048 mixt.
Obtained by MLLR
Adaptation

Male

Non−target
Data

GMM−UBM
1024 mixt.

GMM−UBM
1024 mixt.

GMM−UBM
2048 mixt.

Baseline−II

Female

2048 mixt.
GMM−UBM

Baseline−I

Obtained by MLLR

Female GMM−UBM
2048 mixt.

Adaptation

Baseline−III

Figure 6: Illustrates the Baseline systems.

A schematic diagram of baseline systems are shown in

Fig. 6. In case of Baseline I & II, speaker adapted models are

derived from speaker independent GMM-UBM using two iter-

ations of MAP. And in the case of Baseline III, speaker adapted

models are derived from gender dependent GMM-UBM using

two iterations of MAP. In all cases only means of the UBMs are

adapted [4]. The value of relevance factor used for MAP is 16
in all experiments in this paper.

During verification, log likelihood ratio between claimant

model and corresponding UBM (GMM-UBM or SC-UBM)

were calculated using fast scoring technique described in [4].

Since, LLR calculation in speaker verification task is associated

with target model and corresponding UBM , hence the proposed

method requires same computation time as single GMM-UBM

based speaker verification system. In our experiment, we con-

sidered top 15 best scoring mixture components for every fea-

ture vector.

7. Results and discussion

The different verification systems are evaluated using Equal

Error rate (EER) and Minimum Detection Cost Function

(MinDCF) as performance measures. EER value is calculated

from the Detection Error Tradeoff (DET) curves [17]. The De-

tection Cost Function is defined as

DCF = CMiss × PMiss|Target × PTarget

+ CF A × PF A|NonTarget × (1 − PTarget)

where CMiss = 10, CF A = 1 and PTarget = 0.01.

7.1. Effect of Number of Speaker-Clusters

Table 1: Variation of EER and MinDCF values for different

number of speaker clusters using VTLN factor.

System No. of clusters EER(%) MinDCF

4 14.32 0.0595

SC-UBM 6 14.05 0.0591

using 8 14.05 0.0593

VTLN 10 14.10 0.0592

14 13.96 0.0593

Table 2: Variation of EER and MinDCF values for different

number of speaker clusters using MLLR super-vector.

System No. of clusters EER(%) MinDCF

2 13.83 0.0578

SC-UBM 4 13.54 0.0566

using 5 13.37 0.0565

MLLR 10 13.62 0.0564

20 14.29 0.0558

30 13.98 0.0569

40 13.75 0.0575

Table. 1 & Table. 2 show the effect on EER and MinDCF as

the number of target speaker clusters are varied for the two clus-

tering methods. In the case of VTL factor based clustering, we

get 14 clusters on NIST 2004 SRE core condition (i.e. only 14
values of α have non-empty clusters). Then number of clusters

are reduced from 14 to 4 by re-estimating the VTLN factor (α)

with a new set of α values by iteratively removing that α value

which has the least number of speakers. In the case of MLLR

super-vector clustering, different number of clusters are formed
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Table 3: Comparison of EER and MinDCF for different Systems on NIST 2004 SRE core condition.

System EER (%) (%) improv. by MinDCF (%) improv. by

(a) (b) (a) (b)

Baseline-I 15.42 9.47 13.29 0.0597 0.67 5.36

Baseline-II 15.28 8.64 12.50 0.0589 -0.67 4.07

Baseline-III 15.07 7.37 11.28 0.0597 0.67 5.36

SC-UBM using VTLN (a) 13.96 - - 0.0593 - -

SC-UBM using MLLR (b) 13.37 - - 0.0565 - -

by initializing the cluster centroids with the desired number of

clusters and building the clusters from scratch.

From Table. 1 & 2, the following observation can be made:

• In the case of VTLN factor based clustering, the best re-

sults are obtained using 14 clusters, and the trend is im-

proving performance as the number of clusters increase.

The degraded performance for lesser number of speaker

groups could be due to different VTLs being assigned to

the same class. This leads to speaker variability within

the same clusters leading to an increase in EER.

• Clustering using MLLR super-vector shows the best re-

sult for 5 speaker-cluster. The EER value increases as the

number of clusters are increased beyond 5. This may be

due to clusters being split even for speakers with similar

characteristic.

• MLLR super-vector based clustering gives better perfor-

mance than the VTLN based clustering, although both

methods provide significant improvement over the con-

ventional single-UBM based method as shown in the

DET curves and tables below.

Fig. 7 shows the DET curves of the two proposed methods and

the three baseline systems described in Sec. 6. We have used 14
clusters for VTL method and 5 clusters for MLLR-super-vector

method since they provide the best performance. In Table. 3 the

EER and MinDCF performances of our proposed methods and

the baseline systems are shown.
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Figure 7: Comparison of Baseline systems with SC-UBM based

systems on NIST 2004 SRE core condition.

From Table. 3, the following observations can be made:

• The proposed method always gives lower EER value

compared to all baseline systems. VTLN-wise SC-

UBM system shows MinDCF which is comparable to

baseline systems. But SC-UBM system using MLLR

super-vector shows significant relative improvement of

minDCF value over the baseline.

• SC-UBM system using MLLR super-vector performs

better than VTLN factor based SC-UBM system.

Figure 8: Distribution of data in each speaker group using

VTLN factor.

Figure 9: Distribution of data in each speaker group using

MLLR super-vector.

7.2. Gender-wise Speaker Clustering

To investigate why MLLR-super-vector based system performs

better than VTLN-based target speaker clustering, we plot the

distribution of gender, language, handset etc. within each
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speaker cluster in Fig. 8 & 9. The most striking observation

from the figures is that the MLLR super-vector wise clustering

separates the male and female target speakers into distinct clus-

ters. On the other hand, in many of the VTLN based speaker

clusters there is a mix of the both male and female target speak-

ers for the same VTLN factor. This is possible, since male and

female speakers may have same physical geometry especially

in the neighborhood of α being unity which corresponds to an

“average” VTL.

Male
Female

Cluster 1 Cluster N Cluster 1 Cluster N

VTLN/MLLR

Using

Non−target
data

MLLR Adpt.
Obtained by
SC−UBM1

Male

MLLR Adpt.
Obtained by

Male
SC−UBM N

MLLR Adpt.
Obtained by
SC−UBM1

MLLR Adpt.
Obtained by
SC−UBM N

Female Female

2048 mixt.
GMM−UBM

2048 mixt.
GMM−UBM

Target data

Figure 10: Illustrates SC-UBMs are formed after clustering the

target speaker in gender-wise using VTLN factor/MLLR super-

vector.

Therefore, we perform another set of experiments where

we cluster the target speakers within each gender using VTLN

factor and MLLR super-vector as shown in Fig. 10. In this

case, VTLN factor, α and MLLR super-vector are estimated

with respect to the gender-dependent GMM-UBM Baseline-III

system. Please note that the Baseline-III system corresponds to

partitioning the (non-target) “train” speakers according to gen-

der. In the proposed SC-UBM methods, we partition the target

speakers into different clusters. We now describe the gender-

dependent speaker-clustering of target speakers below.

Table 4: Variation of EER and MinDCF values for gender wise

speaker clusters using VTLN factor.

System No. of clusters EER(%) MinDCF

SC-UBM 2M+2F 13.50 0.0575

using 4M+4F 13.54 0.0575

VTLN 6M+6F 13.61 0.0577

Table 5: Variation of EER and MinDCF values for gender wise

speaker clusters using MLLR super-vector.

System No. of clusters EER(%) MinDCF

SC-UBM 2M+2F 13.14 0.0562

using 4M+4F 13.33 0.0557

MLLR 6M+6F 13.13 0.0566

7.2.1. Effect of Number of cluster

Table. 4 & 5 show the effect of the number of clusters within

each gender class (M-male, F-female). As seen from the ta-

bles, there is an improvement in performance in both meth-

ods of speaker-clustering. However, MLLR super-vector is still

marginally better than VTLN based method. Since splitting

each gender into two clusters seem to give the best performance

in both methods, we will use two cluster per gender in all sub-

sequent experiments.

Table 6: Performance of gender wise speaker verification for

2M and 2F SC-UBM per gender.

System No. of clusters EER(%) MinDCF

SC-UBM 2M 13.08 0.0520

using VTLN 2F 13.79 0.0618

SC-UBM 2M 12.62 0.0494

using MLLR 2F 13.45 0.0612

From Table. 6, it is observed that in both cases male speak-

ers performance is better than female speakers.

7.2.2. Performance of gender-wise clustering

We now compare the performance of our proposed method with

the conventional single-UBM method. Further, since we are

using gender-wise clustering, it is also useful to show the per-

formance of our proposed method with a simple gender-wise

splitting of target speakers. We consider the following systems

in our experiments:

(i) Two cluster gender-dependent SC-UBM: SC-UBM

(M, F) Target speakers are grouped into male and

female clusters. Two gender dependent SC-UBMs are

derived from speaker-independent GMM-UBM using

data from respective speakers in the gender cluster.

The SC-UBMs and speaker-dependent models are built

using the method described before.

(ii) Four cluster gender-dependent SC-UBM using

VTLN factor: VTLN (2M, 2F) Male and female

speakers are separately clustered into two groups using

VTLN factor, α. Hence, we get four SC-UBMs – 2

VTLN-based cluster for each gender.

(iii) Four cluster gender-dependent SC-UBM using

MLLR super-vector: MLLR (2M, 2F) It is similar

to VTLN system, the only difference is that MLLR

super-vector is used for grouping the speakers.

Fig. 11 shows the DET curves of the systems (i)-(iii) with

baseline systems. Table. 7 shows the performance of the sys-

tems in term of the EER and MinDCF value. From Fig. 11 and

Table. 7 following observations can be noted:

• System (i), (ii) and (iii) performs better than all the base-

line systems.

• System (ii) & (iii) are better than (i).

• Gender dependent, VTLN factor wise speaker grouping

shows similar performance to using MLLR super-vector

for speaker clustering.

• All SC-UBM system perform consistently better than the

earlier case i.e. without gender wise target speaker clus-

tering.
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Table 7: Comparison of EER and MinDCF for different Systems on NIST 2004 SRE core condition.

System EER (%) (%) improv. by MinDCF (%) improv. by

(i) (ii) (iii) (i) (ii) (iii)

Baseline-I 15.42 9.66 12.45 14.79 0.0597 3.18 3.69 5.86

Baseline-II 15.28 8.84 11.65 14.01 0.0589 1.87 2.38 4.58

Baseline-III 15.07 7.56 10.42 12.81 0.0597 3.18 3.69 5.86

SC-UBM (M, F) (i) 13.93 - - - 0.0578 - - -

SC-UBM using VTLN (2M, 2F) (ii) 13.50 - - - 0.0575 - - -

SC-UBM using MLLR (2M, 2F) (iii) 13.14 - - - 0.0562 - - -
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Figure 11: Comparison of Baseline systems with gender wise

SC-UBM systems on NIST 2004 SRE core condition.

It is important to note that speaker clustering using VTLN

factor or MLLR super-vector is done in training phase to form

the SC-UBM and corresponding speaker models from their

respective SC-UBM. The LLR calculation during verification

is associated with target model and corresponding SC-UBM.

Hence, the proposed method requires same amount of compu-

tation as single GMM-UBM based speaker verification system.

8. Conclusion

In this paper, we have proposed the use of a separate back-

ground model for each groups of speakers, i.e. speaker clus-

ter wise UBM (SC-UBM). We have investigated clustering of

speakers using their Vocal Tract Length factor as well as MLLR

super-vectors. The SC-UBMs are derived from speaker inde-

pendent GMM-UBM using data from the respective speaker

cluster. Finally, speaker dependent model are adapted from

their respective SC-UBM using MAP. The experiments are

performed on NIST 2004 SRE core condition. Experimental

results show that SC-UBM systems achieve lower EER and

MinDCF over conventional single-UBM baseline systems. Fur-

ther, we show that using gender-wise speaker-clustering pro-

vides additional gain in performance. Therefore, we conclude,

that for a small increase in the number of background models,

we get a significant improvement in speaker-verification perfor-

mance.
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