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Abstract

We investigate a variety of methods for improving
language recognition accuracy based on techniques in
speech recognition, and in some cases borrowed from
speaker recognition. First, we look at the question of
language-dependent versus language-independent phone
recognition for phonotactic (PRLM) language recogniz-
ers, and find that language-independent recognizers give
superior performance in both PRLM and PPRLM sys-
tems. We then investigate ways to use speaker adaptation
(MLLR) transforms as a complementary feature for lan-
guage characterization. Borrowing from speech recogni-
tion, we find that both PRLM and MLLR systems can be
improved with the inclusion of discriminatively trained
multilayer perceptrons as front ends. Finally, we com-
pare language models to support vector machines as a
modeling approach for phonotactic language recognition,
and find them to be potentially superior, and surprisingly
complementary.

1. Introduction

Language recognition (or language identification, LID)
systems are commonly based on a combination of two
main modeling approaches. One the one hand, short-
term cepstral features (typically including shifted delta
features [1]) are modeled using Gaussian mixture mod-
els (GMMs) with joint factor analysis (JFA) [2, 3]. Sec-
ond, one or more language-specific, unconstrained phone
recognizers are used to tokenize the speech into phone
sequences, which are then modeled using statistical lan-
guage models [4] ([parallel] phone recognition language
modeling, [P]PRLM). Scores from both kinds of sys-
tem are combined and calibrated using a variety of tech-
niques, such as Gaussian back ends [5] or multiclass lo-
gistic regression [6].

In this paper we take a closer look at approaches
based on phone recognition, and investigate if recent ad-
vances in automatic speech recognition (ASR), as well
as corresponding phone-based methods developed for
speaker recognition, can be leveraged for improved lan-

guage recognition. This work was in part inspired by
work at LIMSI [7, 8] showing that advanced ASR tech-
niques, such as lattice decoding,1 speaker-adaptive train-
ing, and context-dependent phone modeling can result
in significant improvements for phonotactic LID sys-
tems and yield state-of-the-art performance. We build on
these techniques here and investigate additional improve-
ments. First, we explore the use of language-independent
phone sets and corresponding phone recognizers, which
should give better coverage of a wide acoustic-phonetic
space as found in language recognition. Second, we in-
vestigate phone recognition based on acoustic front end
features that are themselves estimated by neural net-
works and trained discriminatively for phone recogni-
tion. Such features have yielded substantial improve-
ments for language-specific speech recognition [10], have
been shown to generalize to languages not used in train-
ing [11], and have been incorporated in language-specific
PRLM systems [6].

Additional improvements come from techniques that
have been found to work well for speaker recognition,
but are not yet generally used in language recognition.
In this category we have models that use speaker adap-
tation transforms, estimated by maximum likelihood lin-
ear regression (MLLR), as features [12]. This technique
provides an alternative cepstral modeling approach that is
informed by speech recognition (different transforms for
different phone classes) and should in principle be able
to model language differences as well. MLLR modeling
was already shown to work well for native versus non-
native accent discrimination [13]. A second question in-
spired by developments in speaker recognition concerns
the best modeling approach for phonotactic N-grams. Re-
sults in phone-based speaker recognition showed that dis-
criminative models in the form of support vector ma-
chines (SVMs) are more accurate than statistical lan-
guage models [9]. This suggests using SVMs for phono-
tactic LID as well. Like neural-network-based front ends,
this was previously investigated with a language-specific

1Lattice-based phonotactic modeling was independently found to
give improvements in speaker recognition [9].
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PRLM system [6]; here we revisit SVM N-gram model-
ing in the context of the aforementioned other techniques,
including multilingual phone recognition.

2. Method

2.1. Data

All experiments reported here use the NIST Language
Recognition Evaluation (LRE) 2005 data set.2 The eval-
uation set comprises the seven target languages: En-
glish, Mandarin, Spanish, Hindi, Japanese, Korean, and
Tamil. All training data was drawn from the LDC Call-
Friend corpus and comprised about 56 hours each for En-
glish, Mandarin, and Spanish, and about 26 hours each
for Hindi, Japanese, Korean, and Tamil. The test data
consists of 3662 samples of conversational speech of
about 30 seconds each. For evaluation purposes we split
the test set into two subsets and perform twofold cross-
valuation, i.e., the system combination weights and cali-
bration thresholds are estimated on the complement of the
half of the data that is being scored. The primary metric
used in our experiments is the macro-average of the seven
per-language equal error rates (avgEER).

Phone recognition and other ASR models were
trained on other datasets described further below, which
were separate from the LRE training materials used to
collect language recognition model statistics.

2.2. Cepstral system

We wanted to be able to evaluate different phone-based
LID methods and systems not just in isolation but also
in combination with a state-of-the-art cepstral baseline
system. To this end, we developed a GMM-JFA system
based on a 56-dimensional feature vector consisting of
energy and a shifted-delta cepstrum in 7-1-3-7 configura-
tion [1]. Deltas were computed over the whole file (in-
cluding nonspeech regions), and feature frames were re-
moved based on SRI’s speech/nonspeech segmenter. We
estimated 2048-component GMMs with the LRE training
data in the seven target languages. The same data was
used to train a 300-dimensional eigenchannel subspace
[14]. Scores for each test sample were produced using
dot product scoring [15].

Combination of raw system scores (if multiple sys-
tems are used) and their calibration is performed using
multiclass logistic regression as implemented in Niko
Brümmer’s FoCal Multi-class toolkit [16].

The baseline system achieved an avgEER of 2.87%
on the test data.

2At the time of this study, this was the most recent publicly available
LRE dataset from the Linguistic Data Consortium (LDC).

3. Phonotactic Language Modeling

3.1. Phone recognizers

As a baseline for phonotactic language recognition, we
build a PPRLM system utilizing three language-specific
recognizers (for American English, Spanish, and Lev-
antine Colloquial Arabic), trained on available con-
versational telephone corpora available from the LDC.
Language-dependent properties of these systems are
listed in Table 1. Apart from gender dependence (which
is enabled by larger training data size) all systems use
similar acoustic modeling: perceptual linear prediction
(PLP) front end with up to third-order difference fea-
tures, vocal tract length normalization, dimensionality
reduction via heteroscedastic linear discriminant analy-
sis (HLDA), and triphone acoustic models trained us-
ing the minimum phone error (MPE) criterion. Decod-
ing uses an open phone loop (no phonotactic constraints)
and generates phone lattices, from which phone N-grams
with posterior probability weighted frequencies are ex-
tracted. Following [8], we also perform constrained
MLLR speaker adaptation prior to decoding.

Language-dependent recognizers by their nature will
model different languages more or less accurately, and
might not perform as well for recognizing languages that
are outside the acoustic or phonotactic space covered by
the languages chosen. An alternative is to train a single
recognizer that incorporates data from a variety of lan-
guages. While still possibly biased, such a recognizer
might achieve better generalization for LID purposes if
commonalities among all languages are modeled to some
extent.

To test the suitability of multilingual recognizers for
LID, we developed a system that is based on a shared
set of 52 phones that give a reasonable representation of
four fairly diverse languages (American English, Man-
darin, Spanish, and Egyptian Arabic), while glossing over
fine-grained distinctions in the language-specific phone
sets (such as tone in Mandarin).3 For training purposes,
the word-level transcripts in each language were mapped
to the multilingual phone set, and the training data was
pooled. Training statistics for Spanish and Egyptian Ara-
bic were given extra weight to achieve a more balanced
coverage of all languages in the final models. Also,
American English data was selected to roughly equate the
amount of data from native and nonnative speakers, since
the raw training corpora tend to be dominated by the for-
mer. The composition of the multilingual training corpus
is given in Table 2. Note that the combined multilingual
training set is 370h, or less than one quarter of the largest
language-dependent (English) training set.

Language recognition scores are obtained by com-

3The choice of the Egyptian colloquial dialect of Arabic (ECA) was
determined by the fact that vowelized transcripts for ECA are available,
but are not for other dialects.
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Table 1: Properties of language-specific phone recognizers.

Language Phoneset size Training data Gender dependence
American English 47 1400 h yes
Spanish 33 18 h no
Levantine Arabic 39 61 h no

Table 2: Data used for multilingual phone recognizer training.

Language Sources Duration Weighting
American English (native) Fisher, Switchboard, CallHome 123h 1x
American English (nonnative) Fisher 108h 1x
Mandarin Chinese CallHome 103h 1x
Spanish CallHome 19h 3x
Egyptian Arabic CallHome 17h 3x

Table 3: Results with phone recognition language mod-
eling

Systems used %avgEER
American English 4.17
Levantine Arabic 4.91
Spanish 5.49
Am.Eng.+Levant. 2.99
Am.Eng.+Levant.+Span. 2.76
Multilingual 3.01
Am.Eng.+Levant.+Span.+ML 2.09

puting the length-normalized log likelihood ratio of the
target phone language modelL relative to the nontarget
language model, given the test sample phone decoding
outputX: s = 1jXj logP (XjL)logP (Xj�L) (1)

wherejXj is the number of phone tokens in the sample,
and�L is the union of all nontarget languages.

3.2. Language-dependent versus multilingual PRLM

Table 3 shows results with various PRLM and PPRLM
configurations. All results were obtained with 3-gram
phone language models, since 4-grams did not give bet-
ter results. English is the single best language-dependent
system (4.17%), and combining two or three such sys-
tems gives substantial gains (to 2.99% and 2.76%, respec-
tively), albeit with diminishing returns. The multilingual
PRLM by itself gives almost the same level of perfor-
mance (3.01%) as the combination, and by adding it to
the combination a further 24% relative gain (to 2.09%
absolute avgEER) can be achieved.

Table 4: Results with phone recognition enhanced with
MLP features

System Front end %avgEER
Multilang. PRLM PLP 3.01
Multilang. PRLM PLP+MLP 2.82
PPRLM PLP 2.09
PPRLM PLP+MLP 1.77

3.3. Use of discriminative MLP features

In prior work we have made extensive use of acoustic fea-
tures computed by multilayer perceptrons (MLPs, or neu-
ral networks), trained to perform phone discrimination at
the frame level, with excellent gains in word recognition
accuracy [10]. More recently, the Brno team has exper-
imented with a similar hybrid MLP/HMM phone recog-
nizer for PRLM language recognition [6].

Although the MLP features used here were not
trained specifically for the languages of our phone rec-
ognizers (or the languages of the LRE task), we had pre-
viously found that training such MLPs on a large English
database yielded features that could help recognition in
other languages as well [11]. This suggests appending the
English-trained MLP features to the standard PLP fea-
tures of our multilingual recognizer. We observed that
phone recognition accuracies increase between 2 and 4%
absolute with the modified recognizer. The question is
whether this improvement also translates into improved
language recognition.

Table 4 shows results for both PRLM and PPRLM
(combined with language-dependent PRLMs). As
shown, the avgEER is reduced for both PRLM, for a rel-
ative gain of 6%, and for PPRLM, by 15% relative, com-
pared to otherwise similar systems that use only the stan-
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Figure 1: Feature extraction via MLLR model adaptation

dard PLP acoustic front end. (Note that only the multilin-
gual PRLM system is augmented with MLP features in
these experiments.)

4. Speaker Adaptation Transform Models

4.1. Feature extraction and modeling

In speaker recognition, approaches based on modeling
an affine transform that adapts speaker-independent mod-
els to speaker-dependent models have been very ef-
fective [12]. In the language recognition setting, we
can similarly estimate MLLR transforms that map from
a language-independent speech model to a language-
dependent one, and model the transform parameters as
features (Figure 1). In fact, as with PRLM, the underly-
ing speech models can be derived from any specific lan-
guage, or using multiple languages, as long as transforms
are estimated consistently for target language training and
test data.

Following the general recipe in [12], the modeling
proceeds as follows. Given a speech sample, phone-loop
ASR is used to assign frames to phone classes, and an
MLLR transform is estimated for each class. The trans-
form for the nonspeech class is discarded, and the coef-
ficients for all other transforms are concatenated into a
linear vector. Each vector component is rank-normalized
[17] using the combined target language training data
as the reference distribution. For each target language,
an SVM model with linear kernel function is trained
with target language samples as positive instances and
all others as negative instances. Given a test sample, the
(signed) distance between the test feature vector and the
SVM hyperplane serves as the raw (pre-calibration) lan-
guage recognition score.

4.2. Results

We implemented this MLLR-SVM approach using three
MLLR reference acoustic models: an English male-

Table 5: Results with MLLR transform modeling

MLLR model %avgEER
English, female 12.98
English, male + female 10.25
Multilingual 7.47

speaker model, an English female-speaker model, and a
gender-independent multilingual model. In all cases the
acoustic feature dimension is 39, and 8 MLLR transforms
(phone classes) were used, yielding an SVM feature vec-
tor of length8� 39� 40 = 12,480.

Results are given in Table 5. Comparing the first and
last result, we again observe that a system based on a sin-
gle speech model trained on multilingual data fares much
better than a similar system trained on monolingual data.
The gender-dependence of the English speech models ac-
tually affords an advantage, because the feature vectors
from the male and female MLLR versions (regardless of
test speaker gender) can be concatenated. This approach
is effective for speaker recognition [18] and also gives
a gain for language recognition, as shown in the second
line of Table 5. However, the combination of gender-
dependent English MLLR transforms still does not yield
as good a result as the gender-independent multilingual
MLLR.

4.3. Improvements

The performance of MLLR models is still substantially
below that of the cepstral and phonotactic models. How-
ever, we can improve the general approach in several
ways. First, we note that so far we have extracted one fea-
ture vector per training/test sample, regardless of speech
duration. This is unlike the cepstral GMM and PRLM
systems, which obtain more data points the longer the
speech duration. While test samples are roughly 30 sec-
onds in length, training samples consist of much longer
recordings (up to several minutes long). We can there-
fore partition the training samples into shorter segments
of roughly 30 seconds each, and obtain multiple training
vectors per conversation. Not only does this increase the
amount of training samples, it should also do a better job
of modeling the variability inherent in short speech ex-
cerpts.

Second, we can optimize the number of Gaussians in
the MLLR reference models, which was originally cho-
sen for good phone recognition performance, for best lan-
guage recognition results instead. We were hoping that a
more compact reference model would improve language
discrimination, as it forces the MLLR transforms to do
more of the work of matching the reference model to the
language sample (if the MLLR GMM is too large it can
do so in part by simply choosing among its Gaussians).
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Table 6: Effect of improved MLLR transform modeling

MLLR system %avgEER
One transform per training sample 7.47
Multiple transforms per training sample 5.98

+ Reduced number of Gaussians 5.19
+ NAP 4.54

+ MLP features 3.96

Third, we can estimate the intra-language variability
of the feature space, and apply nuisance attribute projec-
tion (NAP) [19] to remove the subspace that has the high-
est nuisance variability. (This is the same method used to
remove intra-speaker variability in SVM-based speaker
recognition systems.) NAP is especially attractive in
combination with the training-set partitioning method de-
scribed above, as it allows NAP to estimate and remove
intra-session variability, in addition to between-speaker
variability.

Finally, as with PRLM, we augment our standard
PLP front end with MLP features optimized for (English)
phone discrimination. In our case, this adds 25 dimen-
sions to the acoustic feature space. To limit the increase
in MLLR parameters we estimate block-diagonal adapta-
tion transforms, increasing the number of MLLR coeffi-
cients by8� 25� 26, for a total of 17,680.

Results from implementing these modifications incre-
mentally are shown in Table 6. The largest improvement
(20% relative) comes from splitting of training samples,
with smaller gains from the other measures. Reducing the
number of Gaussians in the MLLR phone models model
by a factor of 4 (from 64 to 16), applying NAP, and added
MLP features each give about 13% relative error reduc-
tion.

5. Phonotactic Modeling with Support
Vector Machines

In this section we revisit the modeling choices in phono-
tactic language recognition. Comparisons on speaker
recognition systems based on phone N-grams showed
that SVM models can give quite substantial gains over
statistical language models [9]. The Brno team has re-
ported good results with SVM modeling of phone N-
grams from a Hungarian recognizer [6], so it was im-
portant to assess the relative merits of this modeling ap-
proach under our multilingual phone recognition frame-
work, leaving all other parameters constant.

We implemented a phonotactic SVM (“PRSVM”)
system based on the same phone N-gram frequencies as
used by the multilingual PRLM system with MLP fea-
tures (Section 3.3). The lattice-based relative frequencies
of the most frequent phone N-grams (as determined on

Table 7: Results with multilingualphone N-gram systems
Systems used %avgEER
Phone N-gram LM 2.82
Phone N-gram SVM (3-gram) 3.01
Phone N-gram SVM (4-gram) 2.74
Phone N-gram LM + SVM 2.42

Table 8: Results with combinations of multiple systems.
All noncepstral systems are based on multilingual phone
models, but PPRLM also incorporates language-specific
models.

Systems used %avgEER
PRSVM 2.74
Cepstral GMM 2.87

+ MLLR-SVM 2.59
+ PRLM 1.43
+ MLLR-SVM + PRLM 1.19
+ MLLR-SVM + PPRLM 1.24
+ MLLR-SVM + PRLM + PRSVM 1.14

the combined training set) are assembled into a feature
vector. Each relative frequency is scaled by the inverse
square root of the global frequency of that N-gram, so
as to implement the TFLLR pseudo-likelihood-ratio ker-
nel proposed by [20]. The resulting feature vectors are
modeled and scored by linear-kernel SVMs as described
in Section 4.1. Also, as for MLLR transform SVMs, we
split training sessions into 30-second segments to obtain
multiple feature vectors per session.

Table 7 summarizes results. The trigram SVM yields
an avgEER of 3.01%, slightly worse than the correspond-
ing trigram LM. However, unlike with phonotactic LMs,
we found that increasing the maximum N-gram length
to 4 lowers the error rate, to 2.74%. We also found that
a score-level combination of phonotactic LM and SVM
models gives a 12% relative reduction over the single best
system, in spite of the two systems differing merely in
their modeling.

6. Combining Systems

We now look at score-level combinations of the various
systems at our disposal: the cepstral baseline system,
phonotactic PRLM and PRSVM, and MLLR-SVM. Re-
sults are shown in Table 8. We use the cepstral GMM
as our baseline and starting point for all combinations.
Adding the MLLR-SVM to the baseline reduces error by
10% relative. Recall that the MLLR-SVM by itself still
has a much higher error rate (3.96%), yet the two alter-
native ways of modeling cepstra apparently give some-
what complementary information. Adding the multilin-
gual PRLM to the cepstral system gives the largest rela-
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tive error reduction: 50%. This might be explained by the
fact that both features and modeling paradigms are very
different in these two systems. Adding the MLLR-SVM
as a third system gives a surprisingly large gain of 17%
relative.

Earlier we saw that adding the three language-
dependent PRLM systems to the multilingual PRLM
gave a large error reduction. However, this is no longer
true once the cepstral and MLLR systems are also in-
cluded. In fact, there is a slight increase (from 1.19%
to 1.24%) in avgEER, which is most likely due to insuffi-
cient training data for the logistic regression combiner.
(Given sufficient training data, adding another system
should never degrade performance.) On the other hand,
adding our alternative, SVM-based phonotactic model
does give a small (4% relative) additional improvement
over the three-way system combination. Overall, we see
a 55% relative error reduction over the PRSVM, the sin-
gle best system.

7. Conclusions and Future Work

Starting from standard cepstral and PRLM systems, we
have investigated a number of improved modeling tech-
niques for language recognition, inspired by work in
speech recognition and speaker recognition. An alterna-
tive form of ASR-mediated cepstral modeling, MLLR-
SVMs, while not improving on the cepstral GMM by it-
self, does give gains in combination with the latter, even
after adding phonotactic models. We found that both
phonotactic (PRLM) and cepstral MLLR-SVM models
work best when based on ASR acoustic models trained
with multiple languages and a unified phone set. A mul-
tilingual PRLM is much better than any of the language-
specific PRLMs, and, by itself, approaches the perfor-
mance of a three-language PPRLM. Both PRLM and
MLLR-SVM can also be improved by adding MLP fea-
tures trained for phone discrimination to the acoustic
front end. Finally, we found that replacing the tradi-
tional phonotactic language models with discriminatively
trained SVMs over N-gram frequency features can lower
error, as the SVMs can apparently benefit from longer N-
gram lengths than the statistical language models. Also,
combining PRLM and PRSVM models gives additional
gains.

We believe that further improvements can be ob-
tained by building on the techniques developed here,
and addressing some key open questions. For example,
one could train multiple language-specific PRSVMs and
combine these systems at either the feature level (vector
concatenation) or score level (“PPRSVM”). N-gram fea-
ture selection could probably be improved beyond a sim-
ple frequency criterion, in order to take advantage of even
longer N-grams as long as they provide discriminative in-
formation. Finally, an effective form of nuisance variabil-
ity compensation, which is critical to good cepstral sys-

tem performance (JFA for GMMs, NAP for SVMs), has
so far not been found for phonotactic systems (we tried
NAP with PRSVMs but found no gains).
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