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ABSTRACT 

 
In phonotactic language recognition systems, the use of 
acoustic model adaptation prior to phone lattice decoding 
has been proposed to deal with the mismatch between 
training and test conditions. In this paper, a novel approach 
using diversified phonotactic features from parallel acoustic 
model adaptation is proposed. Specifically, the parallel 
model adaptation involves independent mean-only and 
variance-only MLLR adaptation. A quantitative method to 
measure the diversity between two sets of high-dimensional 
phonotactic features is introduced. Our experiment shows 
that this novel approach achieves an EER of 3.07% in the 
30-second condition of the 2007 NIST Language 
Recognition Evaluation (LRE) tasks. It brings a 17.3% 
relative improvement in EER over the baseline system using 
a SAT phone model and CMLLR for model adaptation.  
 

Index Terms— MLLR adaptation, phone recognizer, 
phone lattice, spoken language recognition 
 

1. INTRODUCTION 
 
Automatic spoken language recognition is a task to 
determine the identity of the language corresponding to a 
given spoken utterance. Most automatic spoken language 
recognition systems can be classified into two main 
categories, namely phonotactic and acoustic approaches. 
We are interested in the phonotactic approach in this paper. 

In a typical phonotactic system, a phone recognizer (PR) 
or a parallel phone recognizer (PPR) frontend performs 
phonotactic information extraction and a backend classifier 
discriminates between target languages using the extracted 
phonotactic information. Recently various advanced 
techniques have been studied in phonotactic systems. For 
instance, Constrained Maximum Likelihood Linear 
Regression (CMLLR) adaptation [1,2], Speaker Adaptive 
Training (SAT) [2] and discriminative training [3] in phone 
modelling, and the use of phone lattice [4] instead of single 
best phone sequence have been proposed for the phone 
recognizer frontends. Moreover, vector space modelling 

(VSM) approach [5] (A similar approach was referred to as 
the PPR-SVM in the MIT Lincoln Lab’s language 
recognition system [6]) and anti-model training [7] have 
been studied for the backend classifiers. 

The idea of phonotactic feature diversification has been 
well adopted in phonotactic systems. The rationale for 
diversified features is that we expect the incorrect decisions 
(false acceptance and false rejection) made by different 
subsystems using different types of useful features occur in 
different test trials and so the incorrect decisions made by 
each subsystem can be corrected by other subsystems 
through fusion (in feature-level, model-level, score-level 
and etc).  The use of parallel phone recognizers can be 
considered as a way to utilize feature diversification. Of 
course, a number of phone recognizers can have a larger 
phonetic coverage and thus a better phonotactic analysis. 
Moreover, the phone transcription made by each individual 
phone recognizer is inevitably error-prone and the 
phonotactic features provided by different phone 
recognizers can provide complementary information. 
Instead of using 1-best hypotheses, multiply hypotheses in 
phone lattice provide another way of feature diversification. 

The use of MLLR adaptation prior to phone lattice 
decoding and SAT in phone recognizer frontend has been 
proposed to deal with the mismatch between training and 
test conditions, and showed a satisfactory result [1,2]. In 
this paper, a novel approach using diversified phonotactic 
features from parallel acoustic model adaptation is 
proposed. Specifically, in our experiments, the parallel 
model adaptation is implemented by a score-level fusion of 
systems using mean-only and variance-only MLLR 
adaptation respectively. A quantitative method to measure 
the diversity between two sets of phonotactic features is 
introduced. Various types of phone models and MLLR 
adaptation techniques are also tested in our phonotactic 
system. The remaining of this paper is organized as follows: 
Section 2 describes the model adaptation and phonotactic 
feature extraction in a VSM-based phonotactic system. 
Section 3 and 4 describes the experimental setup and results 
respectively. Finally we conclude in Section 5. 
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2. PHONOTACTIC LANGUAGE RECOGNITION 
 
In a state-of-the-art phonotactic system with a parallel 
phone recognizer frontend, the language identification task 
can be viewed as a two-step optimization as follows: 
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Eq. (2) represents the phone recognizer frontend in 
which most possible phone sequences 

fT̂  for phone 
recognizer f  are decoded using its acoustic model AM

fλ  and 
the sequence of feature vectors O  for the spoken utterance. 

fB  is a set of multiply hypotheses represented in phone 
lattice. 

Eq. (1) represents the system backend in which each 
candidate spoken language l  is represented by a set of 
language models LM

lf ,λ . VSM [5] is adopted as language 
models in this paper. )( fP  is the prior probability of phone 
recognizer f  and it can be considered as a combination 
weight of the phone recognizer towards the overall a 
posteriori probability. F  is the number of phone 
recognizers used. To focus on parallel model adaptation, 
only one phone recognizer is used in our experiments. Our 
proposed parallel model adaptation takes acoustic model 
adaptation a  into account and modifies the computation of 
Eq. (1) as: 
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Similarly, ),( afP  is the prior probability of phone 
recognizer f  using acoustic model adaptation a . An equal 
combination weight is used in our experiments. To evaluate 
our proposed method, a detection task in the 2007 NIST 
Language Recognition Evaluation (LRE) [10] is used. The 
detection decision based on log likelihood ratio llr  can be 
computed as: 
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where LM
laf +,,λ  represents a hypothesized language model and 

LM
laf −,,λ  represents a language model formed by other 

competing languages. 
 
2.1. Model Adaptation in Phone Recognizer Frontend 
 
Prior to the phone lattice generation, a set of linear 
transformation for the mean and variance parameters of a 

Gaussian mixture HMM system can be computed so as to 
reduce the mismatch between the phone model and the 
adaptation data (i.e. the estimate of phone sequence in the 
first-pass decoding of training or test data). Given the 
adaptation data, the transformation is as follows: 

 cc bA += μμ̂  (6) 

 T
cc HH ∑=∑̂  (7) 

where μ and μ̂  are the original and transformed Gaussian 
mean vectors, ∑  and ∑̂  are the original and transformed 
Gaussian covariance matrices (the original covariance 
matrix is usually diagonal in implementation), cA  and cH  
are the transformation matrices, and cb   is the bias vector of 
class c. Single class/global transform and full transformation 
matrices are used in this paper. In our preliminary 
experiments, iterative CMLLR adaptation [8] and CMLLR 
adaptation with multiple regression classes were tested and 
they could not bring any improvement in language 
recognition, so they are not considered in this paper. 

In CMLLR adaptation, the mean and its corresponding 
variance parameters share the same transform (i.e. cc HA = ). 
Instead of applying the same set of transformation to the 
mean and variance parameters, unconstrained transforms 
can be used. Mean-only, variance-only and mean-and-
variance MLLR transforms are considered in this paper. In 
the mean-and-variance MLLR adaptation, the mean 
transform is firstly estimated from the phone model and the 
adaptation data. Then the variance transform is estimated 
given the mean transform, the phone model and the same 
adaptation data. 

Instead of using the speaker independent (SI) phone 
model, a SAT model with less speaker- or session-induced 
effect can be used in the phone recognizer frontend. In the 
SAT model training, a set of single-class CMLLR 
transforms (one per speaker) is generated using the training 
utterance and the SI model. The resultant SAT model is 
formed using the training features with their speaker-
specific CMLLR transforms. 
  
2.2 Diversified Phonotactic Features with Parallel 
MLLR Adaptation 
 
In the VSM approach, language classification is performed 
using a high dimensional vector space from phone n-gram 
statistics [5]. Suppose that p is the size of phone set in a 
phone recognizer. The phone sequence/phone lattice 
generated by the phone recognizer from a training/test 
utterance can be transformed to a high dimensional 
phonotactic feature },...,...,,{ 21 si ccccc = . If an n-gram order 
of 3 is considered, ic  can be a phone unigram, bigram or 
trigram statistics. The dimension of this phonotactic feature, 
which depends on the n-gram order n and the phone set size 
p, equals ∑=

=
n

i
ips

1
. 
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In unconstrained mean-and-variance MLLR adaptation, 
it was reported that the variance adaptation can further 
increase the likelihood of the adaptation data: 

 )|Pr()|Pr()|Pr( λλλ OOO ≥′≥′′  (8) 

where λ is the original model, λ′  is the model adapted by a 
mean transform, λ ′′  is the model adapted by a mean and a 
variance transforms and O  is the observation sequence of 
the adaptation data. However, this does not necessarily 
bring a further word error rate reduction in ASR tasks [9]. 
This motivates us to generate different phonotactic features 
using different adapted models (from independent mean-
only and variance-only MLLR transforms) and investigate 
the language recognition performance when the diversified 
features are combined in the same way as 
combining diversified features from parallel phone 
recognizers. 

To study the relationship between the diversity of 
phonotactic features from different adapted models and the 
language recognition performance, we assume ac  and bc  
are two phonotactic features extracted from an utterance 
using two different adapted models. We define the diversity 
between the two phonotactic features using the Euclidean 
distance between their “seen” phone n-gram statistics as: 
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where a
ic and b

ic  are the i-th n-gram statistics from the two 
phonotactic features, U  is the set of n-gram statistics which 
are non-zero in both or either of the phonotactic features, 
and Un  is the number of elements in the set U . 
 

3. EXPERIMENTAL SETUP 
 
We conducted our experiments on the 30-sec test trials of 
the 2007 NIST Language Recognition Evaluation (LRE) 
tasks [10]. Given a speech trial, the system decided whether 
the target language was spoken. There were 14 target 
languages in the evaluation task. In the experiments, we 
reported the results on the 30-second closed-set trials. Equal 
error rate (EER) was used to evaluate system performance. 
To ensure each target language have an equal contribution 
to the EER, all the trials are grouped according to their 
target languages and an average EER is calculated from the 
EER of each target language group. The training data of the 
target languages was obtained from CallFriend corpus, 
OHSU corpus and the training dataset of NIST LRE-07. 

In the frontend, an English phone recognizer was trained 
using around 15 hour utterance in Switchboard I Cellular 
corpus. A standard three-state left-to-right HMM topology 
was adopted. 32 Gaussian components per state were used 
in each phone model. Twelve Mel-frequency cepstral 
coefficients (MFCC) with the energy coefficient as well as 
the first and second derivatives (i.e. 39-dimension feature) 

were used and normalized using Histogram equalization 
[11]. 

Two-pass decoding (Three-pass in certain systems using 
the SAT model) for the training data of each target 
language/dialect and test speech data was performed. A 
monophone loop grammar was used. In the first-pass 
decoding, single best phone sequences were generated. In 
the second-pass decoding with the model adaptation (the 
third-pass in certain systems using the SAT model), phone 
lattices were generated and then converted to expected n-
gram statistics (n≤3) for forming high dimensional 
phonotactic features in the VSM. To optimize for the 
language recognition task, a phone insertion penalty of 0 
was chosen in phone/phone lattice decoding. 
 

4. EXPERIMENTAL RESULTS 
 
4.1. Comparison of Model Adaptation Techniques 
 
In the first experiment, we compared the performance of 
different model adaptation techniques with the SI and SAT 
models. Their performance in the PR-VSM system is shown 
in Table 1. When SI model was used, different model 
adaptation techniques provided a similar system 
improvement. CMLLR and mean-only MLLR adaptation 
performed the best, improving around 10% relatively in 
EER over the system without adaptation. Although mean-
and-variance MLLR could further increase the likelihood of 
the adaptation data as described in Eq. (8), it did not provide 
a further improvement in language recognition. 
 

Table 1. Performance of PR-VSM systems with different 
adaptation techniques and different phone model types 

Phone 
Model 
Type 

System 
ID Adaptation Technique EER 

(%) 

A1 No 4.39 
A2 CMLLR 3.97 
A3 Mean-only MLLR 3.97 
A4 Variance-only MLLR 4.18 

SI 

A5 Mean-and-variance MLLR 4.14 
B1 CMLLR 3.71 
B2 CMLLR => Mean-only MLLR 3.94 SAT 
B3 CMLLR => Variance-only MLLR 3.85 

 
Generally a further performance gain could be obtained 

by model adaptation when the SAT model was used. Since 
mean-and-variance MLLR did not improve the language 
recognition performance, it was not further tested with the 
SAT model. Moreover, our experiment found that when 
mean-only and variance-only MLLR were used with the 
SAT model, a better performance could be achieved if 
CMLLR was applied before applying the corresponding 
transforms. This was the reason why CMLLR was always 
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used first when decoding with the SAT model. The best 
individual configuration, which uses the SAT model with 
CMLLR adaptation, provides an overall 15% relative 
improvement over the system using SI model and without 
adaptation. 
 
4.2. System Fusion with Different Model Adaptation 
Techniques 

 
Secondly, we tested whether the phonotactic systems with 
different types of adapted models provided complement 
information to each other and whether the corresponding 
system fusion could provide a further system improvement. 
The system fusion is performed using an equal-weight 
combination of the trial scores from different systems. 

By considering the eight phonotactic systems listed in 
Table 1, 28 possible ways of two-system fusion were made. 
For each fused system, the average diversity between the 
two sets of phonotactic features was measured using Eq. (9) 
and the EER was calculated. A graph showing the 
relationship between the average feature diversity and the 
corresponding EERs is given in Figure 1. A trend can be 
observed that when two systems with more diversified 
phonotactic features are fused, better performance can be 
achieved in the fused system. 
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Figure 1. Phonotactic feature diversity and EER(%) in fusion of 

any two PR-VSM systems 

 
In the last experiment, we fused the system using mean-

only MLLR (system A3 and B2) and variance-only MLLR 
(system A4 and B3). In the diversity test, we found that 
these two kinds of adaptation provide relatively high 
phonotactic feature diversity between each other (see 
system fusion A3+A4 and B2+B3 in Figure 1). Our 
preliminary test showed that more gain could be made if 
more systems with different model types and adaptation 
techniques are fused. However, this involves many passes 
of decoding (and with different models) and makes the 

resultant system inefficient. It is worth noting that our major 
interest is to investigate whether incorporating different 
adapted models leading to highly diversified phonotactic 
features can effectively improve the language recognition 
performance. The fused system is obtained by an equal-
weight combination of the trial scores from different 
systems, each with different adaptation techniques, and the 
corresponding result is shown in Table 2. 

  

Table 2. Fusion of PR-VSM systems using mean-only and 
variance-only MLLR adaptation 

Phone 
Model 
Type 

System Fusion EER(%) 
Relative 

Improvement 
in EER (%)* 

SI A3 + A4 3.25 12.4 
SAT B2 + B3 3.07 17.3 

* Comparison based on system B1 (EER: 3.71% as shown in Table 1) 
 
The fusion of systems with diversified phontactic 

features showed a substantial performance improvement. 
Even when the SI model was used, the fusion of systems 
using mean-only and variance-only MLLR adaptation could 
outperform the system using the SAT model and CMLLR 
adaptation. This fusion still provided substantial 
improvement when the SAT model was used. The fused 
system using the SAT model obtained the EER of 3.07%, 
which represents a 30% relative improvement over the 
system using the SI model and without adaptation. The 
improvement should be comparable with the performance 
gain obtained by a parallel phone recognizer frontend. 

  
5. CONCLUSIONS 

 
In this paper, various types of CMLLR/MLLR adaptation 
techniques prior to the phone lattice decoding are studied in 
a phonotactic language recognition system. Apart from 
phonotactic feature diversification provided by parallel 
phone recognizers, diversification using parallel acoustic 
model adaptation is illustrated. Generally CMLLR or mean-
only MLLR adaptation is used in phone lattice decoding. 
However, it is showed that an independent variance-only 
MLLR adaptation can give another set of phonotactic 
features, which provides complementary information to the 
original one. 

Our experiment shows that parallel model adaptation can 
provide a substantial language recognition improvement 
even when SAT model and CMLLR adaptation are adopted. 
The parallel model adaptation effectively reduces the 
mismatch between training and test data (e.g. speaker and 
session variation). This performance gain is comparable to 
the one obtained by a parallel phone recognizer frontend. In 
our future work, the interaction with a parallel phone 
recognizer frontend will be studied. 
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