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Abstract

This paper confirms the huge benefits of Factor Analysis over
Maximum A-Posteriori adaptation for language recognition (up
to 87% relative gain). We investigate ways to cope with the
particularity of NIST’s LRE 2009, containing Conversational
Telephone Speech (CTS) and phone bandwidth segments of ra-
dio broadcasts (Voice Of America, VOA). We analyze GMM
systems using all data pooled together, eigensession matrices
estimated on a per condition basis and systems using a concate-
nation of these matrices. Results are presented on all LRE 2009
test segments, as well as only on the CTS or only on the VOA
test utterances. Since performances on all 23 languages are not
trivial to compare, due to lacking language–channel combina-
tions in the training and also in the testing data, all systems
are also evaluated in the context of the subset of 8 common
languages. Addressing the question if a fusion of two chan-
nel specific systems may be more beneficial than putting all
data together, we study an oracle based system selector. On
the 8 language subset, a pure CTS system performs at a mini-
mal average cost of2.7% and pure VOA at1.9% minCavg on
their respective test conditions. The fusion of these two systems
runs at2.0% minCavg. As main observation, we see that the
way we estimate the session compensation matrix has not a big
influence, as long as the language–channel combinations cover
those used for training the language models. Far more crucial is
the kind of data used for model estimation.

1. Introduction
The focus of this paper is language recognition, which con-
sists in processing a speech signal to detect which language the
speaker is talking in.

It is obvious that the data we observe includes not only use-
ful information, but also information that does not help in the
task of language recognition. The unwanted information covers
speaker specificities including vocal tract configuration, current
emotion or health status. It covers as well recording conditions
with background noise, microphone setup, transmission chan-
nel and speech signal encoding. We propose here to qualify this
perturbing information assessiondependent. The data we ob-
serve is then composed of useful information, the information
that depends on the language, and useless or even perturbing
information: the information that depends on the session.

The feature extraction and modeling strategy (e.g. with
GMMs) should attempt to focus on the useful information and
to discard the language independent perturbing information.
However, usual feature extraction approaches can only partially
discard perturbing information related to the recording setup

and transmission channel. Furthermore, a lot of the speaker de-
pendent specificities are kept in the features. The systems pro-
posed in this work keep track of this session variability. This
helps distinguishing the language dependent information.

For this, we need several sessions for every language (the
more the better). Typically, each utterance recording can be
seen as a different session. In order to detach language depen-
dent information from session variability, we consider the lan-
guage part being the information that is common to all sessions
(utterances) of a given language and the residuals being the ses-
sion variability.

In testing stage, where we are left alone with only one ses-
sion, the perturbing variability contained in the data is estimated
and removed based on the variability seen in the training data.
What remains should hopefully emphasize the useful part of the
information and thus, the classification should be more precise.

These principles can actually be implemented using the
Factor Analysis(FA) approach. FA has triggered significant
advances in speaker verification as described in [1, 2]. The con-
text of language recognition is sensibly different from speaker
recognition. Each class has far more training data than is usu-
ally the case for speaker verification. Bigger models can thus
be estimated more robustly as some analysis in [3] show on dif-
ferent model sizes. We have less classes (only some languages
instead of a lot of speakers), but there are a lot of different ses-
sions for each language. This big speaker variability may be
caught at the same time as the finer (e.g. session) variabilities.

In 2009, it was the first time that NIST’s Language Recog-
nition Evaluation (LRE) [4] included data of two quite differ-
ent conditions. Namely the classical Conversational Telephone
Speech (CTS) and the major part coming from telephone band-
width parts of Voice Of America (VOA) radio broadcasts. This
LRE disposes of a total of 23 target languages.

This paper will analyze different ways to cope with the
challenge induced by these two channel conditions. As pointed
out in recent works [3], FA systems presented here will show a
very important gain over traditional MAP adaptation systems.
These FA systems require a projection matrix that keeps track
of the session and channel variabilities observed in the training
data. Since the present evaluation setup contains two rather dis-
tinct channel conditions (CTS and VOA), this paper will study,
amongst others, the possibility to estimate one compensation
matrix for each of these.

In regard to system setup, one possibility is to build one
unique system including data from both conditions pooled to-
gether. But initially, it may be a better idea to cope with these
two conditions separately up to a certain point and then putting
them together. There are several possible setups: we may es-
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timate one FA session variability matrix using both, CTS and
VOA data and then train condition dependent models using this
common compensation matrix. Another strategy could be to es-
timate session variability matrices separately and train the lan-
guage models using both conditions (this case is not handled
here because it does not seem optimal to use some training ma-
terial of a condition which the compensation was not designed
for). Finally, we may estimate separate matrices and estimate
the models using only data of the same condition as used for
the matrix.

We will thus have a look at systems with a global approach
putting all data together and systems handling these conditions
separately. These systems will be evaluated following the NIST
LRE 2009 protocol with its23 languages, as well as on a com-
mon subset of8 languages since we do not have training and
testing data for both channels in all23 languages (more on this
in Section 4.2). Each system will also be evaluated on the CTS
segments of these23 and8 language evaluation sets only and on
the VOA utterances only. We will further present results for a
fusion of channel-dependent systems. This fusion is done by se-
lecting the scores of one or the other system based on an oracle
revealing the true channel of each test utterance.

All reported experiments are conducted using the free soft-
ware framework MISTRAL [5], which uses the ALIZE lib-
rary [6]. The evaluation protocols are the ones of NIST Lan-
guage Recognition Evaluation 2009. System performance is
measured, as in LRE 2009 [4], in% minCavg and may be de-
picted in the form of mean DET curves.

Section 2 gives a description of the general working of our
FA systems along with the way they are scored and evaluated.
In Section 3, we present all the data that was used for training
and for testing. The different systems analyzed in this work
are stated in Section 4, together with some explanations on the
reason of testing on an8 language subset. The elucidations on
the experimental setup in Section 5 are succeeded by the results
of the various single systems and their fusion in Section 6 and
give place to conclusions and some lookout in Section 7.

2. Basic Factor Analysis system
2.1. GMM system using a UBM

To keep our models general enough to cover also feature vectors
which have not been seen during training, the models are based
on aUniversal Background Model(UBM). The parameters of
the UBM are estimated taking as much and as different data as
possible from a large set of languages. For a baseline system,
the model for each language is then obtained through aMaxi-
mum A-Posteriori(MAP) adaptationof this very general UBM
towards the training data [7]. For the means (µ) of the Gaus-
sians, the MAP adaptation can be expressed as a weighted sum
of the UBM means and the means of one language’s training
data (factorα being the importance of the training data means):

µlanguage = (1 − α) ∗ µubm + α ∗ µdata (1)

This keeps both, a certain generality coming from the UBM side
and a good fitting to the training data of the language.

2.2. GMM-UBM with Factor Analysis

For simplicity and because it has proven to work well, we oper-
ate the factor analysis solely on the means of the Gaussian mix-
tures and do not touch their variances [2]. If we concatenate all
the means of one model, we obtain one bigmean super-vector

(SV). The basic factor analysis (FA) formula can be stated as:

mobserved = mubm + Dylanguage + Uxsession (2)

wherem are mean supervectors,y is the part which is specific
to the language, weighted byD (a diagonal matrix), andUx is
the session variability, which is included in the observed data
but which we do not want to be included in the language model.
The Factor Analysis model assumes that the session variability
is located in a low-dimensional subspace. This subspace is gen-
erated by the vector columns of theU matrix. x are the session
factors in this subspace. The data we observe is thus modeled as
being of a global base (mubm) with a language specificity (Dy)
and some session variability (Ux).

2.2.1. Estimating eigensession compensation matrix

The matrixU , here calledeigensession matrix, is common to
all languages. It is iteratively estimated using expectation max-
imization (EM) algorithm with maximum likelihood (ML) opti-
mization criterion. Each step, the differentxsession (variability)
vectors are estimated, then aylanguage is estimated for each
language (using the newx) and finally U is estimated glob-
ally, based on thesex andy. Sincex andy also depend onU ,
the process is iterated. The step by step algorithm is described
in [2].

2.2.2. Training language models

The model for each language, which is stored at training stage,
is them + Dy part of factor analysis formula (2). Very sim-
ilar to MAP adaptation, it is a weighted combination of the
UBM meanm and the mean supervectorDy estimated using
all training data corresponding to the target language,D being
the weighting factor. It can be seen as MAP adaptation operat-
ing on session-compensated (Ux part removed) information.

When estimating the model for a given language, the per
sessionx are estimated. Using the storedU matrix, theUx

part is subtracted from the data’s mean supervector andy gets
estimated. Finally, the remainingm + Dy part is stored as the
language’s model means (see [2] for details). To obtain full
language model parameters, mixture weights and covariances
are taken unchanged from UBM.

2.2.3. Testing using compensated models

We assume that the observed feature vectors contain session
perturbation (speaker and channel). In testing stage, different
strategies may be applied to cope with this:

Feature normalization An often used strategy [8] consists in
normalizing each feature vector by removing the session effect,
which is theUx component weighted by the feature vector’s
posterior probability against hypothesized language’s model.x

is estimated using statistics of the testing utterance as detailed
in [2]. Once the feature vectors are normalized, they are tested
against the model of the hypothesized language. We may sketch
this by:

feat − Uxutterance | m + Dylanguage

So, we try to remove the impurity (normalizing byUx compo-
nent) to match them up with the clean models issued from train-
ing stage (which do not include session variabilityUx). Most
of the FA using systems of LRE 2009 participating sites apply
session compensation on the feature level [13].
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Model compensation Instead of removing session variability
from the features, we may likewise compensate this estimated
variability on the model itself and leave the features untouched:

feat | m + Dylanguage + Uxutterance

We simply add theUx component to the model (we’re still in
mean supervector context). So that un-normalized test data is
tested against a modified model. This is not the same as saving
the full model (includingUx) at training stage, since here,x is
estimated on the current test utterance only. This strategy will
be used for the systems presented here.

2.3. Scoring

Scores are normalized separately for each test utterance among
all languages. This is done by dividing each score (usually the
likelihood of the test utterance being of a given language) by
the sum over the scores obtained against all language models.

System performance can be enhanced by powering each
score with a constantK. Matějka et al. describe in [9] that
this procedure attempts to introduce some correction to the as-
sumption of the frames being independent to each other.

ŝcorel(utterance) =
scorel(utterance)K

X

i∈L

scorei(utterance)K

l being the hypothesized language andi being each language in
turn. In our case, aK of 35 has been chosen. This is based
on consequent observations of the impact of differentKs (in
steps of5) prior to our participation to the Language Recogni-
tion Evaluation 2009.

2.4. Evaluation

System performance is measured usingminimal average cost
(minCavg). It is the detection system choosing the decision
threshold in such a way that the average expected cost of misses
(utterances not recognized as being of the true language) and
false acceptances (mistakenly detecting the presence of a lan-
guage) among all target/non-target language pairs is minimal
(see Section 4.1f of the LRE 2009 plan [4] for a description).

In our case, a false negative (a miss) and a false positive
(false acceptance) decision have the same cost and the prior of
a target trial is0.5. The cost function that will be minimized is
thus:

Cavg =
1

NL

X

l∈L

h

0.5 · PMiss(l) +
0.5

NL − 1

X

k 6=l∈L

PFA(l, k)
i

(3)
where NL is the number of languages in our (closed-) set,
PMiss is the probability that a language model misses a match
(false negative) andPFA(l, k) is the probability that an utter-
ance of languagel is mistakenly recognized as being of lan-
guagek. These probabilities are calculated in function of a
global threshold. It is thus the mean over all target languages
of its probability to be missed and its average probability to be
detected by a false language model.

For evaluations using test utterances of one channel condi-
tion only and not having all languages present in the test data
set (in the context of23 languages), this cost function turns to

Cavg =
1

NLT

X

l∈LT

h

0.5·PMiss(l)+
0.5

NLM
-1

X

k 6=l∈LM

PFA(l, k)
i

(4)
whereLT is the set of languages in the test data set (also called
target languages) and LM is the set of languages for which

we have models (non-target languages). For the23 language
evaluations on a per-channel basis, these two sets are not iden-
tic. Since the test set is not complete, we have less languages
in the test set than we have models. In a general manner,
NLT

≤ NLM
.

3. Data parts
3.1. Training data

Training material is drawn from various sources. Let us define
the different data sets as follows:

3.1.1. CTSsmall

The following corpora are used, providing data for theCTScon-
dition:

• All three parts (train, devtestand evltest) of the Call-
Friend1 [10] corpus. Each of these three parts of the
corpus contains 20 complete two-ended, half-hour con-
versations per language. The CallFriend corpora of8
languages2 are used, including available dialects.

• The 120 Indian English recordings of NIST’s LRE 2005
development data3.

• The full conversations of the LRE 2007 evaluation data4

for 9 languages5.

Each language has between 40 and 317 segments representing
between 2.7 and 58.6 hours of speech. In total for 11 languages,
we have 312 hours in 1867 segments.

3.1.2. CTS

This set includesCTSsmall, augmented by the 10 and 30 second
evaluation segments (ranging from 284 to 1934 segments per
language) of LRE 20056 for 6 languages7.

For this set, the 3 second Indian English segments of
LRE 2005 development have been avoided, since we added
other utterances of this language. Each language has between
40 and 2253 segments representing between 2.7 and 64.8 hours
of speech. In total for 11 languages, we have 337 hours in 7870
segments.

3.1.3. VOA

This data comes from the Voice Of America 3 (VOA3) data set8

and is used together with thephone/widebandandspeech/non-
speechsegmentation provided by NIST for the LRE 2009 cam-
paign and which were built by the Brno University of Technol-
ogy (BUT) lab [11]. Each language is represented by 347 to 400
artificial speakers (described in Section 5.1), summing up to 3.0
to 27.9 hours of speech. In total for 22 languages, we have 333
hours across 8632 segments.

1LDC1996S*.
2English, Farsi (Persian), French, Hindi, Korean, Mandarin, Span-

ish and Vietnamese. Both dialects for English, Mandarin and Spanish
(having thus 40 conversations).

3lid05d1 aka. NIST-R103 aka. LDC2006E104 aka. LDC2009R31,
part of LDC2008S05 and LDC2009E41.

4LDC2009R31.
5Cantonese, English, Indian English, Korean, Mandarin, Persian

(Farsi), Russian, Spanish and Vietnamese.
6lid05e1 aka. NIST-R104-1.1 aka. LDC2006E105, part of

LDC2008S05 and LDC2009E41.
7English, Hindi, Indian English, Korean, Mandarin and Spanish.
8LDC2009E40 (which includes also the VOA2 set).
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3.1.4. VOA10k

This set contains the data of theVOAset and a lot of additional
VOA3 data for a total of 141 599 segments (1111 to a maximum
of 11 029 per language). This data set is only used for training
the Universal Background Model.

3.2. Testing data

Tests are conducted on NIST-LRE 2009 data [4]. This evalua-
tion set is composed of 41 794 utterances containing nominally
3, 10 and 30 seconds of speech each. Our processing did not
detect any speech in 106 of these files. The other sum up to
133.3 hours of speech.

The primary condition aggregates just utterances of the 23
languages (closed-set condition) with a total of 31 178 utter-
ances. We focus mainly on the 30 second ones, which comes
down to 10 571 files giving that many target trials and thus
232 562 non-target trials. There are between 315 and 1015 test-
ing files per language.

This set of utterances comprises data drawn from CTS and
from VOA sources [4, 12]. There are 8708 testing files in
10 languages9 originating from CTS sources. Thereof 3081
for the 30 second condition with 32 to 625 for each language.
Drawn from VOA are 22 470 testing files with 7490 of 30 sec-
onds. We count between27 and399 testing utterances for each
of 22 of the23 languages.

4. System descriptions
4.1. Universal Background Model

The Universal Background Model of a preceding experiment
(using all CallFriend data of the7 NIST LRE 2005 languages)
has served as starting point for initializing the new one. It has
then been trained iteratively by an EM/ML algorithm. During
the 6 iterations, the amount of training data has been increased
from 65 mio up to 787 million speech frames, which represents
2185 hours and143 466 speakers. For this, the training data
parts VOA10kand CTSsmall, described in Section 3.1, have
been used, thus including six times more VOA3 data than stan-
dard phone data.

The same UBM has served for all experiments. This is re-
quired if we want to concatenate eigensession matrices (for the
systems described in Section 4.6).

4.2. Setup particularity

We have CTS training data available for only11 of the lan-
guages10 and VOA data for22 of the23 languages11 included
in NIST LRE 2009. The fact that we do not have training data
of both conditions for every language poses some troubles. To
be still able to obtain a full set of23 language models, we will
use data of the other condition where needed (Section 6.2.1 will
introduce the augmented data sets).

Similarly, on the testing segments side, some condition–
language combinations are missing. This presents a more con-
sequent problem. CTS test utterances are available for10 lan-
guages12 only (of which 9 correspond to the available CTS

9Cantonese, English, Hindi, Indian English, Korean, Mandarin, Per-
sian, Russian, Urdu and Vietnamese

10Spanish, English, Korean, Mandarin, Hindi, Indian English, Can-
tonese, French, Persian (Farsi), Russian and Vietnamese.

11The missing language is Indian English.
12Cantonese, English, Hindi, Indian English, Korean, Mandarin, Per-

sian, Russian, Urdu and Vietnamese.

training data languages13). VOA test utterances are present
for the same22 languages as the training data. So we end up
comparing system performances on a different number of lan-
guages. But this is not a big problem since the evaluation is a
detectiontask, which answers binary questions (in contrast to
an identification task that has to select one language out of a
set) and under which the average expected cost of a system de-
livering random decisions is50%, independent of the number
of classes.

There are only8 languages that we find everywhere, in CTS
and VOA, in training and in testing data. So results will also be
presented for this subset of8 common languages.

4.3. System using pooled data

For this system, all training data, thus theCTSand theVOAdata
sets defined in Section 3.1, is used for estimating the session
compensation matrix as well as the language models.

4.4. pure CTS system

The CTS system uses only standard phone data (CTSdata set)
for estimating the session compensation matrix. The language
models are then estimated using this pure CTS session compen-
sation matrix and theCTStraining data set.

4.5. pure VOA system

The pure VOA system estimates a session compensation matrix
on VOA data only (VOAdata set), which are phone calls trans-
mitted over broadcast. This matrix serves then for estimating
language models using this sameVOAdata set.

4.6. System with merged session compensation matrices

For this system, the session compensation matrix is built con-
catenating the two condition dependent matrices of the CTS and
the VOA systems described above to form a matrix of double
rank (80 instead of40). The difference to an eigensession ma-
trix of the same rank80 is that, in the present case, there are40
channels assured for each condition, whilst for the pooled case,
the channels are allotted dynamically - some channels may even
be similarly present in both conditions. Two sites participating
in NIST LRE 2009 have used a similar strategy of stacking ses-
sion compensation matrices14.

Using this merged (thus dual-condition) matrix, we may
train the language models using either training data pooled to-
gether or we may build condition specific models using either
data setCTSor VOA.

5. Experimental setup
The framework used for all experiments is principally the free
software MISTRAL [5, 6]. For cepstral feature extraction,
SPro4 [14] has been used.

In a first step the systems are evaluated on the8-language
subset sketched in Section 4.2 and which includes Cantonese,
English, Hindi, Korean, Mandarin, Persian, Russian and Viet-
namese.

The experiments are also run in the23-language con-
text of NIST’s Language Recognition Evaluation (LRE)

13The above except Urdu.
14ATVS, Universidad Autonoma de Madrid, Spain and IFLY, iFly-

TekSpeech Lab, EEIS University of Science and Technology ofChina
systems described in [13].
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2009 [4], which comprises Amharic, Bosnian, Cantonese, Cre-
ole (Haitian), Croatian, Dari, English (American), French,
Georgian, Hausa, Hindi, Indian English, Korean, Mandarin,
Pashto, Farsi (Persian), Portuguese, Russian, Spanish, Turkish,
Ukrainian, Urdu and Vietnamese.

5.1. Parametric setup

In our experiments, we useShifted Delta Cepstra(SDC) param-
eters in the configuration 7-1-3-7 (in concordance with other re-
searches in this domain [15, 16, 8, 9]). This means we’re having
6 cepstral MEL-scale coefficients plus energy (cepstra and en-
ergy are kept in the parametric vector) and seven delta blocks
stacked, each block calculated on framest− 1 andt + 1 with a
t shifted by3 each time. This yields feature vectors of size56.

Energy basedspeech detectionis conducted on all utter-
ances to spot speech and non-speech parts. All features are then
normalizedin such a way that the features containing the speech
part of one utterance have an average of0 and a variance of1.

For VOA3 training data, the following particular step has
been inserted. Since Factor Analysis’ session compensation
requires the concept of individual ”speaker” utterances (what
would be recording sessions in a speaker verification context),
we emulated the speakers as follows. For this VOA3 data,
NIST provided two kinds of labels [11]:speech/non-speech
andphone/wideband. We assume allphonelabeled segments
within the same longerspeechsegment belonging to the same
real speaker (thinking of a possible dialog between a modera-
tor (wideband) and a phone-caller). We thus concatenate the
phone&speechsegments to longer ”speaker” segments, which
are subsequently used as individual training files. The speech
activity detection and0|1 normalization steps are applied prior
to this concatenation. We have recently seen that other re-
searchers do a similar concatenation step [11].

The evaluation data has been processed in a similar manner
(bypassing the concatenation of artificial speakers). Our speech
activity detection did not detect any speech in 106 of the evalu-
ation files. For these files all scores are set to a constant value,
so the system makes50% errors on these trials (due to the flat
prior and equal costs, as stated in Sect. 2.4).

6. Results

The results presented here feature full systems using mixtures of
2048 Gaussians. All results are for 30 second segments, NIST
LRE 2009’s closed-set primary condition. Results are first pre-
sented on the8-language subset and then on all23 languages in
order to match the NIST LRE 2009 protocol.

We define tests ofmatching conditionas CTS test segments
tested on theCTSsystem or VOA segments on theVOAsystem.
Similarly, cross conditiontests are tests where the segment con-
dition does not match the channel condition on which the sys-
tem was trained.

6.1. Evaluation on 8 languages

We observe that both data parts (CTSandVOA) have about the
same total amount of training data, but forCTSdistributed on
only half the number of languages, benefiting thus in average
from twice as much data each (30.6 vs. 15.1 hours). So VOA
seem to be the easier tests, since trained on less data in average,
they give a far better performance.

6.1.1. MAP adapted GMM-UBM system

We will use these GMM-UBM systems as baseline to compare
the FA systems to. The GMM-UBM language models are ob-
tained by simple MAP adaptation with a factorα of 14.0, where
only the mean values are changed (neither Gaussians’ weights
nor variances are adapted).

While seeing the GMM-UBM system as baseline, it ob-
tains, evaluated on8 languages,18.21% minCavg when
trained onCTSdata and18.31% with VOAdata. Using all data
for training, its mean average cost is at16.91%. Table 1 high-
lights the number of tests totally and on a per condition basis as
well as the results of the MAP adapted UBM GMMs.

Table 1: MAP adapted GMM-UBM systems evaluated using
only the8 mutual languages on all test segments and on a per-
condition basis, in% minCavg

system data for model 8 languages closed-set 30s tests
estimation all CTSonly VOAonly

nb of testing languages 8 8 8
total number of test files 4635 2475 2160

per language 315–1015 52–625 27–397

MAP CTS&VOA 16.91 19.69 14.27
MAP CTS 18.21 19.64 19.27
MAP VOA 18.31 24.62 12.27

6.1.2. UBM-based factor analysis systems

For the different Factor Analysis systems we analyze here, the
eigensession matrices are obtained using the unique UBM and
are set to have arank of 40 (number of session factors inx).
They are iteratively estimated during 14 iterations. In the case
of concatenated compensation matrices, we have a rank of80.

For training each language model, statistics over training
data against the UBM are collected andx andy are estimated.
The model, being them + Dy part of the Factor Analysis for-
mula (2), gets then fashioned in one step.

Evaluated on the8 language subset, the base factor anal-
ysis system pooling together the training data of both condi-
tions performs at2.23% minCavg. Evaluating only on the CTS
test utterances yields3.03% minCavg and on the VOA files
1.75% minCavg.

Table 2:Different UBM-based FA systems evaluated on all test
segments and on a per-condition basis, in% minCavg

data for estimating 8 languages closed-set 30s tests
U matrix models all CTSonly VOAonly

pooled CTS&VOA 2.23 3.03 1.75
pure CTS CTS 3.06 2.71 4.28
pure VOA VOA 6.78 10.15 1.90
merged U CTS&VOA 2.33 3.06 1.69
merged U CTS 3.32 2.61 4.76
merged U VOA 6.78 10.34 1.92

Table 2 shows the results on all FA systems. The num-
ber of tests is indeed the same as indicated in Table 1. As
expected, channel condition dependent systems are better on
matching tests than on cross condition tests. The pureVOA
system presents a striking difference between matching tests
with 1.90 and cross condition tests with a cost as high as
10.15% minCavg!
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Let us have a look at following (pessimistic ap-
proach-) sequence for the CTS tests only: Cross-condition
MAP is at 24.62% minCavg, pure cross-condition FA
drops to 10.15% (−59% relative), adding some match-
ing channels (merged eigensession matrix) stays similarly at
10.34% minCavg. Adding some channel-matching data for
language model training improves the performance to3.06 (an-
other−70% relative). So we see that FA is very useful, even
for channels purely estimated on sessions of a quite different
condition. These results tend also to show that the session vari-
ability captured by the eigensession matrix is of global nature,
somehow independent of the channel condition. We further
see the importance to have data as similar to the testing data
as possible – this seems to be even of more benefit for FA (the
above−70% relative) than for MAP (−20% relative). Anal-
ogously for VOA tests only, we observe: Cross-condition MAP
19.27% minCavg, pure cross4.28% (−78% relative), adding
matching channels gives4.76% and adding matching training
data yields1.69% minCavg (another−64% relative).

For matching condition, CTS test utterances, we have a
cost reduction of86% relative between simple MAP and the
pure system. For matching VOA, the cost reduction is of about
84% relative.

Globally, we see that performance does not vary much by
changing the way the session compensation matrix is estimated.
Thus the most important, besides having some compensation
matrix, is to have at one’s disposal a lot of training data, with a
part of it as similar to the testing data as possible.

6.1.3. Oracle based fusion

We observe that performance is very good when eigensession
matrix, training data and test part are of matching conditions.
This leads to the question if we could not fuse two condition de-
pendent systems by selecting the score that matches the channel
to obtain the benefit of both systems. Thus, the fusion of two
systems is done employing a channel-based system selector.

This section presents and discusses the results using anora-
cle type selector. The oracle tells us of which condition the test
utterance really is. Our fuser then selects the scores of the cor-
responding channel-dependent system for that utterance. Since
this selector is perfect in terms of channel detection, we can in-
terpret the result as being the best performance a fuser based on
automatic channel detection can approach.

We note that the result on all 30s tests (grouping CTS and
VOA segments) can differ from the calculated linear combi-
nation of the corresponding channel performances of the two
fused single systems (their sum weighted by the number of
tests). This happens since the indicated performance uses the
average cost function (Cavg) and is thus a mean of language
pair (mis-) detection costs.

Table 3:Fusion of FA systems using an oracle type system se-
lector, in% minCavg

Fusion of 8 languages closed-set 30s tests
system 1 & system 2 all CTS only VOA only

CTS,CTS&VOA,VOA 2.06 2.71 1.90
merged U, CTS&VOA 2.04 2.61 1.92

Evaluating the fusion (Table 3) of the pure CTS
(2.71% minCavg on the matching tests) and the pure
VOA (1.90% minCavg on VOA) systems yields a global
2.06% minCavg. This result is interesting since it is better

than the global results of the system merging the session com-
pensation matrices (−12% relative) or the system pooling all
data together since beginning (−7.7% relative).

The same kind of fusion applied on the merged eigens-
ession matrix-based condition-dependent systems performs at
2.04% minCavg, which is even8.6% relative better than the
best single system.

Figures 1 depicts the per-condition trained (and tested)
merged-matrix systems along with their fusion.
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Figure 1: DET curves for8-language systems based on con-
catenated eigensession matrix, per-condition trained and tested
on the matching tests only and the oracle type fusion of these
systems tested on all 30 second segments.

6.2. Evaluation on 23 languages

This section presents the same systems under NIST LRE 2009
condition, where there are language–condition combinations
missing as well in the training as in the testing set. It also
shows to which extent the systems are robust enough to rec-
ognize languages on a channel condition for which no training
data is available.

As described in Section 4.2, NIST’s LRE 2009 evaluation
concerns23 languages. Hence, we need some data to train each
of the 23 language models. For this, we extend the data sets
used for training as follows:

6.2.1. Extended data sets

CTS+ The CTS+data set comprises theCTSdata set for its
11 languages, extended by theVOAparts for the other12 lan-
guages.

VOA+ This set analogously contains theVOAdata set for the
22 languages contained in it plus theCTSpart for Indian En-
glish, which is missing VOA data.
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6.2.2. MAP adapted GMM-UBM system

In the 23 language context and still with 2048 Gaussians,
they evaluate to20.60% minCavg when using all data to
train the models. Taking theCTS+ data set for training,
it obtains 23.54% minCavg and when trained onVOA+
21.62%. The best matching condition MAP system runs at
17.30% minCavg. These results are presented in Table 4 – in-
dicating again the number of tests for this23 language context.

Table 4: MAP adapted systems using all23 languages, on all
test segments and on a per-condition basis, in% minCavg

system data for model LRE 2009 closed-set 30s tests
estimation all CTSonly VOAonly

nb of testing languages 23 10 22
number of test files 10571 3081 7490

per language 315–1015 32–625 27–399

MAP CTS&VOA 20.60 22.41 21.21
MAP CTS+ 23.54 21.50 27.89
MAP VOA+ 21.62 35.48 17.30

6.2.3. UBM-based factor analysis systems

The base factor analysis system pooling together the training
data of both conditions performs at4.79% minCavg. Evaluat-
ing only on the CTS test utterances yields6.71% minCavg and
on VOA files4.57% minCavg. Table 5 also shows the results
on the other systems.

Table 5:All UBM-based FA systems, in% minCavg

data for estimating LRE 2009 closed-set 30s tests
U matrix models all CTSonly VOAonly

pooled CTS&VOA 4.79 6.71 4.57
pure CTS CTS+ 9.22 7.75 10.06
pure VOA VOA+ 7.95 21.51 3.91
merged U CTS&VOA 4.47 7.16 4.14
merged U CTS+ 6.23 6.96 6.86
merged U VOA+ 6.16 13.13 3.72

Further on, systems using a merged eigensession matrix
(and still trained on one or the other condition only) ben-
efit from the extended channel modeling (80 instead of40
and more diverse channels): an improvement of−32 and
−39% relative minCavg for cross-condition tests and also
slightly (−5 to −10% relative) for tests with matching con-
dition. This observation cannot be confirmed in the ”cleaner”
8 language setup. In that setup, we have all required language–
channel combinations in our training data and thus the addi-
tional channels are not of much use. An interpretation of this
difference between the8- and the23-language setups is that
the data used for estimating theU matrix has at least to cover
the language–channel combinations used for model training.
Maybe the session variability mapping in the compensation ma-
trix are fairly on a per-language basis – perhaps even catching
some language-dependent part. So adding additional (foreign–
condition) channels does not help in a context where training
data covers the set of testing languages. But can be useful when
correct channels are missing from the training data for some
languages.

The drastic degradation compared to Table 2, occurring on
theCTSsystems (doubling or tripling the number of errors) can

be explained by the fact that in this23 language case, not even
half of the models could really be trained withCTSdata (the
CTS+data set containingVOAdata for12 of the languages).

Looking at the performances on all 30 second tests, no sin-
gle channel dependent system performs as well as systems with
models trained on all data together.

6.2.4. Oracle based fusion

The oracle fusion is also applied on the whole set of23 lan-
guages to match LRE 2009 protocol. The results using an oracle
as selector for fusion are shown in Table 6.

Table 6:Fusion of UBM-based FA systems using an oracle type
selector, in% minCavg

Fusion of LRE 2009 closed-set 30s tests
system 1 & system 2 all CTS only VOA only

CTS,CTS+&VOA,VOA+ 4.16 7.75 3.91
merged U, CTS+&VOA+ 3.91 6.96 3.72

The fusion of the two pure systems with4.16% minCavg

is slightly outperformed by the fusion of the systems built on
a common, merged eigensession matrix with3.91% minCavg

(−6% relative). This is similar to the differences that has been
observed between unfused pure and unfused common-matrix
systems in Table 5. A big part of the easier recognition on VOA
tests is still due to the fact that nearly all language–channel
combinations are present in the training data. This fused sys-
tem with a minimal average cost of3.91% has a cost reduction
of 12.6% relative compared to the best single system with its
4.47% minCavg.

Table 7:Oracle type fusion of merged-U systems, confusions of
language pairs of interest, in%PFA.

language pairs detection confusions
A as B B as A

language A language B PFA(A,B) PFA(B,A)

Cantonese Mandarin 19.58 6.40
Portuguese Spanish 6.05 7.53
Creole French 78.73 60.37
Russian Ukrainian 11.74 71.39
Hindi Urdu 73.01 94.20
Persian Dari 63.85 70.69
Bosnian Croatian 68.45 75.53
English Indian English 38.39 54.01

Table 7 shows the error rates on the set of language pairs
of particular interest (as announced in the LRE Plan [4]) for the
merged-U oracle fusion. They are from the23 language setup
since none of the pairs is present in the8 language subset. The
presented values are rates of false positives,PFA of Eq. (3) and
may thus exceed50%. They are calculated using the global
threshold that gives3.91% minCavg for the whole system. All
big confusions (> 33%PFA) fall into the presented language
pairs. 40.9% of all false positives are made on these language
pairs – the remaining have an averagePFA of 2.36%.

7. Conclusions and perspectives
In this paper, we investigated ways to cope with the particularity
of NIST’s LRE 2009 data containing conversational telephone
speech (CTS) as well as phone bandwidth parts of radio broad-
casts (VOA). All systems were evaluated under full LRE 2009
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condition as well as only on the CTS or only on the VOA seg-
ments. To avoid bias introduced by testing data without match-
ing training data or vice versa, we evaluated the systems also on
a common subset of8 languages.

We confirmed the benefits of the factor analysis method for
language recognition. We compared the results in a first time
to the traditional GMM-UBM approach using MAP adaptation.
Using FA over MAP generally reduces the expected system
costs by at least60% relative and up to87% relative.

For FA systems, we see that performance does not vary
much by changing the way the session compensation matrix is
estimated – on only one condition, pooling data of both con-
ditions together or concatenating the single-condition matrices,
the latter generally being slightly better.

Results obviously show that systems trained on data of one
condition only have the best performance on tests of the match-
ing condition: 2.71% minCavg for pure CTS and1.90% for
pure VOA systems on8 languages.

We also show the possible enhancement by fusing two
channel dependent systems over systems which pool both data
types together. This fusion is analyzed by selecting, for each
test utterance, the scores of one or the other system – in our case
following an oracle indicating the real channel of an utterance.
Evaluated on8 languages, fusing systems that perform globally
at3.32 and6.78% minCavg puts us to2.04% minCavg.

Most observations in the data-complete8 language context
also hold for the lacunary23 language context – especially the
benefit of fusion.

During preparation, we observed that we could re-apply
a score normalization step described in Section 2.3 on the
fused scores and boost the error rates from2.04% down to
1.56% minCavg (−24% relative). This seems to occur due
to a non-optimal exponentK. A value of35 has proven well-
suited for experiments on data from CallFriend or previous
NIST LREs but seems not the best for this kind of evaluation
including data of a quite different nature (VOA). We will have
to investigate ways to optimize thisK.

The possible gain of the fusion presented herein probed by
an oracle system selector has to be assessed using a selector
that automatically detects the channel. First attempts indicate
a performance of about2.15% minCavg for fusing the pure
systems in the8 language context. This is still3.5% relative

better than the best single system and suggests that this type of
fusion can be useful.

The analysis presented here can be spun further to find ways
to build systems on several automatically detected (think of
”clustering”) macro-channels. This would allow us to loosen
the limitation to the two conditions we had in the present
work. Since the fusion enhances the performance (about
−8% relative for an oracle based selector), we can hope that
we may improve even more by slicing the data into multiple
channel classes, each one modeled by an adapted specific sys-
tem, and then fusing these.

Furthermore, nothing prevents from using a more sophisti-
cated fusing system, once we dispose of the single systems. But
the presented system selection is very simple and nevertheless
performant.

This work is supported by MOBIO, the European
project FP7-2007-ICT-1.
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