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Abstract

This paper addresses the problem of language distribu-
tion estimation from unlabeled data. We present a new
algorithm that treats automated classifier identification
outputs as likelihoods and iteratively applies Bayes’ rule
to reclassify the data using successively improving dis-
tribution estimates as “priors”. Experimental results us-
ing the MIT LL submission to the NIST LREQ7 evalua-
tion show significant improvements in estimation of non-
uniform distributions as compared to a baseline counting
approach. In addition, we show how to incorporate these
estimated distributions into the classification task. Fur-
ther experiments on the LREO7 corpus show large gains
for both the detection/verification and identification tasks
when only a small set of languages are actually present in
the test set.

1. Introduction

In many situations, it may be useful to characterize the
language distribution of an unlabeled set of speech data
using only automated classifier output scores [1]. For ex-
ample, we may wish to know what percentage of call cen-
ter customers are speaking Spanish, or which of many
data streams is most likely to contain a particular lan-
guage.

In addition, it may be desirable to utilize this language
distribution information to improve the performance of
the classifier itself. We would expect that the knowl-
edge that one of two highly-confusable languages is not
present in the current dataset would enable higher accu-
racy in a language identification task.

This paper presents an improved algorithm for distri-
bution estimation using an iterative approach, and experi-
mental results confirming the usefulness of the algorithm
for speech data from the 2007 NIST Language Recog-
nition Evaluation (LRE-07) [2]. In addition, we present
a straightforward way to incorporate this estimated lan-
guage distribution into the classifier output using Bayes’
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rule, and show that this can result in significant improve-
ment in classifier performance in situations where the
language distribution is highly non-uniform, in particu-
lar when some languages are not present at all.

The paper is organized as follows. First, Section 2
presents a baseline distribution estimation algorithm, our
new iterative approach, and experimental performance
evaluations. Section 3 then presents our approach for
improving language identification and verification per-
formance by utilizing the estimated language distribu-
tions, as well as experimental results. Finally, Section 4
presents concluding remarks.

2. Distribution Estimation
2.1. Baseline Approach

The most straightforward way to estimate the language
distribution of unlabeled set of speech files is to run a lan-
guage classifier over all the files, classify each file based
on the highest-scoring candidate, and count the number
of occurences of each language in the set. The proba-
bility distribution estimate for each language can then be
written as

ey

where n(7) is number of times language i was chosen and
N is the total number of speech files in the test set. This is
a generalization of the maximum likelihood distribution
estimator for labeled data to the unlabeled case.

This approach is straightforward to implement and
understand, and it provides good performance if the lan-
guage classifier is very accurate. Unfortunately, this dis-
tribution can easily be shown to be biased, with the bias
becoming more severe for non-uniform distributions and
errorful classifiers [1] . An intuitive explanation for this
bias is that even if a language is not present at all in the
test set, these estimates will not fall below the false alarm
rate of the classifier. Therefore, the resulting distribution
estimate will be too high for rare classes, and is biased
towards a flat distribution.



2.2. Iterative Algorithm

We have developed an algorithm for more accurate es-
timation of the distribution based on the iterative appli-
cation of Bayes’ rule to the calibrated classifier outputs.
Before presenting the algorithm, we first review the use
of Bayes’ rule and calibration in language identification.

2.2.1. Bayes’ Rule

If the raw language classifiers estimate the likelihoods of
each class for each speech file z, we can use Bayes’ rule
to estimate the class posteriors for a given prior distribu-
tion:

P(Lijz) = p(z|Li)P(Li) )

X p(a|Ly)P(Ly)

Classification can then be performed on each utterance
by selecting the language with the largest posterior.

If the prior distribution of languages is not known, but
instead estimated from a training set 7, we can write

p(z|Li, T)P(Li|T)
> p(@|L;, T)P(L;|T)
p(z|Li)P(L;|T)

= S Y

P(Lilz,T) =

3

where we have used the assumption that the current file
is not in the training set.

2.2.2. Calibration

It is well known that even for a statistical language rec-
ognizer based on Gaussian Mixture Models (GMMs), the
raw classifier scores do not correspond to the true like-
lihoods needed for Bayes’ rule [3]. Fortunately, we can
overcome this problem by using a back-end for calibra-
tion of the classifier. In particular, identification poste-
riors generated with equal priors for all classes can be
treated as a form of normalized likelihoods. Therefore, a
back-end that calibrates equal-prior identification poste-
riors, such as multiclass logistic regression, can be used
for our purpose. Even a detection/verification back-end
can be used, where the posterior for each class was gen-
erated with a target prior and remaining classes equally
distributed. In this case some additional algebra is needed
to back-out the target/non-target priors and generate the
equal-prior identification posteriors.

2.2.3. Algorithm

Eq. 4 suggests an iterative approach to language distri-
bution estimation, where the classification of utterances
is updated at each pass using the current distribution es-
timates as priors in Bayes’ rule. This algorithm can be
summarized as follows:
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e Run a calibrated language identification system
over the test set to generate equal-prior identifica-
tion posteriors (likelihoods) for all classes per file.

o Initialize the language distribution estimate with a
uniform distribution.

e For iterations 1 to M:

— Use Bayes’ rule (Eq. 4) to generate identi-
fication posterior estimates for each utterance
based on likelihoods and the current language
distribution.

— Update the distribution estimate using the
counts of each language (Eq. 1).

We typically use M = 10 iterations. Notice that the com-
plexity of this algorithm is not high, since it does not re-
quire multiple passes of the computationally-expensive
raw language identification system. The original scores
can be reused in each iteration to generate the updated
posterior estimates.

2.2.4. Example

To demonstrate the potential performance improvement
from this approach, we show a simple example. In this
experiment, the true distribution uses only two of the
fourteen possible classes. The language identification
system is the MIT LL submission [4] for the 2007 NIST
Language Recognition Evaluation (LRE). This state-of-
the-art system uses a fusion of four individual classifiers,
two acoustic and two phonotactic, followed by Gaussian
fusion and per-class detection calibration. To make this
example challenging to the distribution estimation algo-
rithm, we use the evaluation scores from the relatively er-
rorful short duration (3 second) test condition. This con-
dition produced an equal error rate of 14.4% for the 14-
language detection task, with an identification error rate
of 38.6%.

As shown in Figure 1, the estimated distribution from
the baseline algorithm does not represent the missing
classes well. Due to identification errors (particularly
false alarms) in the underlying classifier, the counts for
the empty classes are too high.

By comparison, the estimated distribution from the
iterative algorithm in shown in Figure 2 is much better,
zeroing out most of the empty classes.

2.3. Refinements

The proposed iterative estimation algorithm can be
viewed as a form of the EM algorithm [5] commonly
used in statistical speech processing. In particular, this
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Figure 1: True and estimated language distributions for
two-class problem,single pass estimation (baseline).
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Figure 2: True and estimated language distributions for
two-class problem, iterative estimation.

is similar to maximum likelihood mixture weight estima-
tion for Gaussian Mixture Models [6] and to the unsuper-
vised language adaption method proposed in [7]. To see
this more clearly, we write the likelihood for each speech
file as

plan) = plan|L;) P(L)). ®)

J

In this form, the language distribution plays exactly the
same role as the mixture weights in a mixture model, so
that the maximum likelihood EM estimation algorithm
for GMM weights given in [6] provides a maximum like-
lihood estimation for the language distribution in our
problem. We see that in our iterative language estimation
algorithm of Section 2.2.3, the first step in each iteration
is the estimation (E), and the second step performs maxi-
mization (M).
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Based on the GMM EM analogy, we have added
two refinements to the distribution estimation algorithm.
First, we replace the counts of hard classification deci-
sions of Eq. 1 with the expected counts using the poste-
rior estimates for each class and input file; this leads to a
soft count version of the algorithm where

n'(i) =Y P(Lilan). (6)

In our informal comparisons, this often results in a small
performance improvement.

In a second refinement, we address the problem of
insufficient training set size by incorporating MAP adap-
tation of the distribution estimates:

+ (1 —a)Py(Li) @)
where
_ N 8)
*TN¥R (

We use a uniform prior distribution for Py, and incorpo-
rate a small relevance factor R (1 to 10). This has the
practical benefit of preventing the algorithm from esti-
mating a zero probability for a class based on only a lim-
ited number of observations.

In summary, our refined iterative language estimation
algorithm is as presented in Section 2.2.3, but Eq. 1 for
updating the distribution estimate is replaced by Eq. 7.

2.4. Performance Evaluation

We have evaluated this distribution estimation algorithm
on an extensive sweep of possible distributions. Again,
we used the 3 second test scores from the 14-language
MIT LL NIST LREO7 submission converted to equal-
prior identification posteriors. However, since good cal-
ibration is important for the success of the algorithm,
we have also evaluated a different back-end combining
Gaussian classifiers with multiclass logistic regression as
described in [8]. As compared to the MIT LL LREOQ7
back-end, this newer version provides joint multiclass
calibration rather than separate two-class calibration per
target, yielding more accurate identification posterior es-
timates. For these experiments, non-flat true distributions
were generated by holding out classes from the testing
sets and using the true counts for the remaining classes.
The size of the true subset was swept from 2 to 13 classes,
and for each subset the results were averaged over 14 ran-
dom selections of the preserved classes.

2.4.1. Metrics

Two distance measures were used to evaluate the perfor-
mance of the distribution estimation. The first measure is
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Figure 3: Average RMS error of distribution estimation.

the RMS error between the true and estimated language
distributions, given by

YE P - Q)2

MS =
RMS 7

©)
where P; represents the true probability of language ¢ and
@; is the corresponding probability estimate.

The second measure is the cross entropy between the
true and estimated distributions, also known as the KL
divergence:

P;
Qi
Note that this measure will highly penalize estimated dis-

tributions with incorrect very small values, as the ratio
can become extremely large.

L
CE = Z P, log (10)

2.4.2. Results

First, we measured the average error of the distribution
estimation algorithms. As shown in Figure 3, the EM
algorithm using the submitted system with original back-
end provides a significant improvement in RMS error as
compared to the single-pass baseline, particularly as the
true distribution becomes more uneven with smaller sub-
sets. The bias of the baseline counting approach towards
a flat distribution results in increasing estimation error as
more classes are not present, while the iterative approach
gives comparable error regardless of the subset size in
the true distribution. Also, using the multiclass back-end
in the EM algorithm provides further improvement, re-
flecting the benefit of improved identification calibration
accuracy.

The results for the cross entropy measure, given in
Figure 4, show the same trends.
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Figure 4: Average cross entropy of distribution estima-
tion.

3. Classifier Performance Improvement

As mentioned in the Introduction, in many situations es-
timating the distribution is the final goal. However, it is
also possible to use these estimated distributions to im-
prove the performance of the underlying classifier in un-
known environments. Implicit in the iterative distribution
estimation algorithm is the assumption that the classifier
can be improved at each iteration by utilizing the distri-
bution estimate as a prior in Bayes’ rule. This reduces
classifier confusions in the case where one of the two con-
fusable classes is known not to be present in the current
test.

Using the same LREO7 language subsets as in the pre-
vious section, we measured the potential performance im-
provement from using these estimated priors to adjust the
verification or identification posteriors from the system
using Bayes’ rule. For these tests, we used the multiclass
back-end since it provides better performance. As shown
in Figure 5, exploiting the estimated language distribu-
tions results in a significant reduction in Equal Error Rate
(EER). As the priors become more non-uniform, unlikely
candidates are eliminated from consideration, reducing
the potential for false alarms. Even the baseline prior es-
timation algorithm provides considerable improvement,
but the EM approach works better and is quite close to
actually using the known priors of the test corpus.

Figure 6 shows that the average Bayes’ verification
cost with a target prior of 0.5, the NIST-defined C,,4 [2],
shows very similar trends. In this case, the theoretical
optimal threshold was applied to the verification poste-
rior to make a hard decision for each trial. Finally, Fig. 7
shows the average identification error rate, where the lan-
guage for each task is estimated by the maximum poste-
rior probability. While identification is fundamentally a
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Figure 6: Verification Bayes Cost (NIST priors).

harder task than verification, the trend for this measure is
very similar to the previous examples.

4. Conclusion and Future Work

We have presented an improved algorithm to estimate
language distributions from unlabeled data. The algo-
rithm treats automated classifier identification outputs as
likelihoods, and iteratively applies Bayes’ rule to reclas-
sify the data using successively improving distribution
estimates as “priors”. By sweeping subsets of the NIST
LREOQ7 evaluation corpus, we have shown experimentally
that very large improvements can be attained by this algo-
rithm over a baseline counting approach in cases where a
significant number of languages are not present.

In addition, we have shown that incorporation of
these estimated distributions into the classification task is
straightforward, and can produce big gains in either de-
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Figure 7: Identification error rate.

tection/verification or identification tasks when the raw
classifier is errorful and this prior information is strong.

These encouraging results suggest a number of poten-
tial areas for future work. First, these experiments have
focused on the closed-set task; it would be interesting to
know the effect of unknown out of set data on the al-
gorithm performance. Second, these concepts could be
extended to include unsupervised adaptation of the back-
end and/or classifiers to the test set conditions, potentially
allowing even greater performance gains. Finally, while
these results have been presented for the language distri-
bution estimation task, this algorithm is appropriate for
any classification application and for example could be
readily applied in speaker identification.

5. Acknowledgements

The author gratefully acknowledges interesting discus-
sions related to this work with Doug Reynolds, John
Grothendieck, and Allen Gorin.

6. References

[1] J. Grothendieck and A. Gorin, “Towards link char-
acterization from content: Recovering distributions
from classifier output,” IEEE Trans. Audio, Speech,
and Language Processing, vol. 16, pp. 847-858, May
2008.

“The NIST year 2007 language recognition eval-
vation plan,”  http://www.nist.gov/speech/tests/
Ire/2007/LREO7EvalPlan-v8b.pdf, 2007.

N. Brummer and D. A. van Leeuwen, “On calibration
of language recognition scores,” in Proc. Odyssey,
2006, pp. 1-3.



[4]

[6]

(8]

P. Torres-Carrasquillo, W. Campbell, T. Gleason,
A. McCree, D. Reynolds, F. Richardson, W. Shen,
E. Singer, and D. Sturim, “The MIT/LL NIST LRE
2007 language recognition system,” in Proc. Inter-
speech, 2008, pp. 719-722.

A. Dempster, N. Laird, and D. Rubin, ‘“Maximum
likelihood from incomplete data via the EM algo-
rithm,” J. Royal Statistical Society, vol. 39, pp. 1-38,
1977.

D. A. Reynolds, T. F. Quatieri, and R. B. Dunn,
“Speaker verification using adapted Gaussian mix-
ture models,” Digital Signal Processing, vol. 10, pp.
19-41, 2000.

M. Bacchiani and B. Roark, “Unsupervised language
model adaptation,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, 2003, pp. 1224-1227.

A. McCree, F. Richardson, E. Singer, and
D. Reynolds, “Beyond frame independence:
Parametric modeling of time duration in speaker and
language recognition,” in Proc. Interspeech, 2008,
pp. 767-770.

214



