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Abstract

We give a unification of several different speaker recognition
problems in terms of the general speaker partitioning problem,
where a set of N inputs has to be partitioned into subsets ac-
cording to speaker. We show how to solve this problem in terms
of a simple generative model and demonstrate performance on
NIST SRE 2006 and 2008 data. Our solution yields probabilis-
tic outputs, which we show how to evaluate with a cross-entropy
criterion. Finally, we show improved accuracy of the generative
model via a discriminatively trained re-calibration transforma-
tion of log-likelihoods.

1. Introduction

The canonical speaker detection problem involves deciding
whether two given speech utterances, denoted train and test, are
spoken by the same speaker or by different speakers. The usual
generalization of this problem is to supply multiple training ut-
terances, all known to be of a target speaker and then to ask
whether the test is from the target or not.

The goal of this paper is to generalize further. We propose
a definition of the most general speaker recognition problem,
whenN ≥ 2 speech utterances (each from a single speaker) are
given. Then we give a practical solution to this problem, which
we experimentally demonstrate.

We define the most general N -input speaker recognition
problem to be the speaker partitioning problem. In this problem
it is required of the speaker recognizer to partition the set of N
inputs into M subsets, where M is the recognizer’s estimate of
the number of speakers and where each subset should contain
all of the inputs of one of the speakers. For large N , this is a
difficult problem, because there is a combinatorial explosion of
ways to partition a set of size N .

In the rest of this paper we discuss the partitioning problem
in more detail and show how it is related to other problems that
have been addressed in the literature and in the NIST Speaker
Recognition Evaluations. Then we show how to implement so-
lutions to the most general problem, as well as a few specializa-
tions, by using a state-of-the-art ‘i-vector’ speaker recognizer.
Our solutions are tractable for small N , while problems with
large N remain challenging.

We conclude with an experimental demonstration on data
from NIST’s 2006 and 2008 Speaker Recognition Evaluations.
We experiment with our solution to the counting problem,
which is of intermediate generality (more general than the
canonical detection problem and more specific than the parti-
tioning problem), where the recognizer has to estimate whether
there are 1,2 or 3 speakers present in a set of 3 input utterances.

2. Notation
In this section we define the necessary notation to express the
speaker recognition problems discussed in this paper.

The reader will possibly find the notation unorthodox. It is
customary to express solutions for speaker detection problems
in terms of likelihood-ratios. In this work however, we find it
more convenient to replace likelihood-ratios with functions that
map priors to posteriors. These functions perform the same
job as the traditional likelihood-ratios, but generalize more nat-
urally to cases where there are more than two hypotheses.

In every problem, the input is a set of N ≥ 2 speech utter-
ances, denoted X = {x1, x2, . . . , xN}, where each utterance
xi is assumed spoken by a single speaker.

In every problem there is a set of K hypotheses, ΘK =
{θ1, θ2, . . . , θK}, of which exactly one is true of the input set
X , but it is not known which one of these hypotheses is true.

Let PK denote the set (simplex) in which probability distri-
butions for θ ∈ ΘK live. If p ∈ PK and p = (p1, p2, . . . , pK),
then pi = P (θi|p) is the probability given by p for θi to be true
of X .

There is a parameter, π ∈ PK , known as the prior and
which is independent of the input and of the recognizer. If π =
(π1, π2, . . . , πK), then πi = P (θi|π) is the prior probability
for hypothesis θi. In practice, the prior is supplied by the user
of the speaker recognizer.

In every problem, the solution is required to be a func-
tion which maps input and prior to posterior. A solution,
say R, must have the form r = R(X ,π), where r =
(r1, r2, . . . , rK) ∈ PK and where ri = P (θi|X ,π,R) is the
recognizer’s posterior for hypothesis θi. A solution enables its
user to compute a posterior for any given input and prior.

A solution is considered good, if its posterior distributions
can be used to make minimum-expected-cost Bayes decisions
that have lower cost on average than Bayes decisions made with
the prior alone. In our experiments, we shall apply this test to
our proposed solution.

3. Catalogue of problems
In this section, we give a detailed description of the speaker par-
titioning problem and we show how it is related to other more
specific problems known from the literature and NIST Speaker
Recognition Evaluations. We present this section in the form of
a catalogue of several different speaker recognition problems.

3.1. The canonical speaker detection problem

The input is a set of N = 2 speech utterances, X = {x1, x2}
and there are K = 2 hypotheses, {θtar, θnon}, where θtar states
that inputs x1 and x2 are from the same speaker and θnon states
they are from different speakers. Traditionally [1, 2], the solu-
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tionR(X ,π) = (rtar, rnon) is implemented in the form:

λ =
P (X|θtar,R)

P (X|θnon,R)
, (1)

rtar = P (θtar|X ,π,R) = 1− rnon

=
“

1 +
“ πtar

πnon
λ
”−1”−1 (2)

where λ is the speaker detection likelihood-ratio and where
πtar = P (θtar|π) = 1− πnon is the prior.

3.2. The speaker partitioning problem

This is the most general of the problems in our catalogue. The
input is a set of N speech inputs, X = {x1, x2, . . . , xN},
where N > 2. There is a set of BN hypotheses, where BN
is the N th Bell number, or the number of ways a set of N el-
ements can be partitioned [3]. The first few Bell numbers are
listed in Table 1.

Each hypothesis gives a different way to partition X into
subsets S1,S2, . . . ,SM , such that each subset has utterances
from only one speaker and no two subsets share a speaker. In
other words, each hypothesis states the hypothesized number of
speakers,M , as well as a hypothesized partitioning of the inputs
intoM subsets. We denote the hypotheses in the following way:

θ12···N is the coarsest partition, where allN inputs are hypoth-
esized to be of the same speaker.

θ13|245|···|··· is a partition where {x1, x3} has one speaker,
{x2, x4, x5} has another, and so on.

θ1|2|···|N is the finest partition, withN hypothesized speakers.

The canonical problem is a special case of the partitioning prob-
lem, where N = 2 and θtar = θ12 and θnon = θ1|2.

We denote a solution to the partitioning problem as r =
R(X ,π), where r,π ∈ PBN . We consider the partition-
ing problem to be difficult, simply because the prior, π, and
posterior, r, have a very large number, BN , of components.
For example, B10 > 105. To compute even one component,
P (θ|X ,π,R), of the posterior in a straightforward way re-
quires summing the denominator over all of the likelihoods for
each of the BN hypotheses (see (12) below).

3.3. The triple input problem

As an example of the partitioning problem, we consider the
triple input problem. The utterances X = {x1, x2, x3} may
be spoken by one, two or three speakers and there are B3 = 5
partitioning hypotheses, each stating that the utterances are par-
titioned according to speaker as:

θ123: 1 speaker.

θ12|3: 2 speakers, x1 and x2 are from the same speaker.

θ13|2: 2 speakers, x1 and x3 are from the same speaker.

θ1|23: 2 speakers, x2 and x3 are from the same speaker.

θ1|2|3: 3 speakers.

3.4. The counting problem

The speaker counting problem hasN inputs, but is a simplifica-
tion of the partitioning problem, because it has just N hypothe-
ses, {θ1, θ2, . . . , θN}, where θi hypothesizes that there are i
speakers amongst the N inputs.

Solutions to the counting problem can be expressed in terms
of solutions to the partitioning problem. For example, when
N = 3, then

θ1 = θ123,

θ2 = θ12|3 ∨ θ1|23 ∨ θ13|2,

θ3 = θ1|2|3

(3)

where ∨ denotes logical or.
In general the probability (posterior or prior) for i speakers

is just the sum of the probabilities for all the different partitions
that have i subsets.

3.5. The extended training detection problem

The extended training detection problem has an input set, X =
T ∪ {xt}, where T is known as the training set and xt as the
test input. The inputs in T are known to be of the same speaker.
There are just two hypotheses:

θtar: xt has the same speaker as the training set.

θnon: xt has a different speaker.

This problem is well represented in the literature and has been
exercised in several NIST Speaker Recognition Evaluations [4].

Solutions to this problem can be expressed in terms of so-
lutions for the partitioning problem by using a prior that assigns
zero cost to all but two of the partitioning hypotheses. As an
example, when T = {x1, x2} and xt = x3, then θtar = θ123

and θnon = θ12|3.

3.6. The unsupervised adaptation detection problem

This problem puts a twist on extended training by relaxing the
assumption that all the speakers in the training set are the same.
Here, the input set is X = {xT } ∪ A ∪ {xt}, where xT is the
training example of the target speaker, A is the adaptation set
and xt is the test input. The motivation for this flavour of detec-
tion is that if the prior probability for finding the target speaker
in the adaptation set is high enough, then accuracy benefits sim-
ilar to those observed in extended training may be expected.

This task was prescribed by NIST in the 2006 [5] and
2008 [6] speaker recognition evaluations. However, NIST failed
to specify a prior probability for finding targets in the adaptation
set, which left participants at the mercy of the unpredictable
proportions of targets in the evaluation data. In our opinion, the
unsupervised adaptation problem can only be tackled in a prin-
cipled way if more detailed prior information is given about the
adaptation set.

3.7. The diarization problem

Speaker diarization [7] is the task of annotating a conversation
between two (or sometimes more) speakers, recorded in a sin-
gle (2-wire telephone) channel, in order to show where each
speaker is speaking. It is assumed that the diarization system
has no previous exposure to any of the speakers involved. The
usual solution to this problem iterates these steps until conver-
gence:

1. Segment the recording into a number, N , of speech seg-
ments, trying to avoid segments that contain more than
one speaker and trying to avoid very short segments.

2. Assuming each segment has a single speaker, do speaker
partitioning, i.e. the problem described in section 3.2.

3. Improve the segmentation, using the results of step 2.

195



Table 1: Bell numbers, BN , versus the number of non-empty subsets of a set of N elements.

N 2 3 4 5 6 7 8 9 10
2N − 1 3 7 15 31 63 127 255 511 1023
BN 2 5 15 52 203 877 4140 21147 115975

4. Repeat from step 2 until convergence.

We note that the solution for speaker partitioning that we pro-
pose in section 4.2 is ill-suited for diarization, because N tends
to be large in step 2 and our method becomes intractable for
large N . It becomes intractable because we do an exact com-
putation of the posterior. For a principled way of computing an
approximate, but tractable, posterior for step 2 of the diarization
problem, using variational Bayes, see [8, 9].

3.8. Speaker identification

Finally, in order to emphasize the generality of the partitioning
problem, we note that open-set and closed-set speaker identi-
fication are also special cases of the partitioning problem. In
these problems, multiple inputs are given, some with known
speakers and others with unknown speakers. Then the recog-
nizer has to decide which of the known speakers (if any) are
present in the utterances with unknown speakers. This prob-
lem can be expressed in terms of the partitioning problem in the
obvious way.

4. The i-vector solution

Here we propose a practical approach to computing the like-
lihoods for the partitioning hypotheses in N -input problems.
These solutions are tractable for small values of N .

This approach is based on a recent innovation [9, 10, 11],
where each input utterance is represented by a single feature
vector called1 an i-vector. We apply a function f , called the
i-vector extractor, to every input xj , so that φj = f(xj)
is the associated i-vector. The set of i-vectors, obtained by
processing the input set X = {x1, x2, . . . , xN} is denoted
Φ = {φ1,φ2, . . . ,φN}. In our implementation, the i-vectors
are 400-dimensional.

Now we ignore the fact that we know how the i-vectors
were extracted and instead pretend they were generated by some
generative probabilistic modelM. This model is not to be con-
fused with a speaker model. It is a model of how all i-vectors,
for all speakers, are generated.

Let θ denote some hypothesis, which partitions the N ele-
ments of Φ into M speaker subsets, S1,S2, . . . ,SM ⊆ Φ. We
assume that if θ is given,M producesM different speaker iden-
tity variables (these are speaker models), y1,y2, . . . ,yM ∈ Y ,
sampled independently from P (y|M). For each speaker i, the
set Si of i-vectors supposedly produced by that speaker is sam-
pled independently fromP (φ|yi,M), for everyφ ∈ Si. These

1The name i-vector is mnemonic for a vector of intermediate size
(bigger than an acoustic feature vector and smaller than a supervector),
which contains most of the relevant information about the speaker iden-
tity.

modelling assumptions can be represented as:

P (Φ|θ,M) =

MY
i=1

P (Si|M), (4)

P (Si|M) =

Z
Y
P (Si|y,M)P (y|M) dy (5)

P (Si|y,M) =
Y
φ∈Si

P (φ|y,M). (6)

Notice that the speaker identity variables are integrated out
in (5)—we do not need point estimates of their values in or-
der to compute (4), the relevant likelihood for θ. The nature of
the speaker model space Y and the details of the distributions
P (y|M) and P (φ|y,M) depend on the generative modelM.
Here we further discuss the general case, deferring the detailed
description ofM to the next section.

We proceed with the key insight that we can use the product
rule to alternatively express (5) as:

P (Si|M) =
P (Si|y0,M)P (y0|M)

P (y0|Si,M)
(7)

Notice that the LHS is independent of y0, so that we may
choose any y0 ∈ Y to compute the RHS, as long as the de-
nominator is non-zero.

At a first glance it may seem as if we have magically solved
the integral (5), but in order to compute the normalization fac-
tor for the posterior P (y0|Si,M), it is always necessary to
integrate (at least implicitly). However, if P (y|M) is a con-
jugate prior [12, 13] to P (φ|y,M), then (7) turns out to be a
convenient way to structure the calculation. This will become
apparent below.

Now use (7) in (4), then expand it using (6) and simplify
the nested products using the fact that the subsets Si form a
partition of Φ. This gives:

P (Φ|θ,M) =

MY
i=1

P (Si|y0,M)P (y0|M)

P (y0|Si,M)

= K(Φ)L(θ|Φ)

(8)

where K(Φ) =
QN
j=1 P (φj |y0,M) is an irrelevant data-

dependent constant, which is independent of the partitioning
hypothesis θ and which we need not compute when recognizing
θ. The required computation is the likelihood L(θ|Φ):

L(θ|Φ) =

MY
i=1

Q(Si), (9)

Q(Si) =
P (y0|M)

P (y0|Si,M)
(10)

which we have conveniently expressed in terms of the statistic
Q(Si).

It turns out Q(Si) is a very useful building block to put
together solutions for several of the speaker recognition prob-
lems listed above. Refer to rows 2 and 3 of Table 1 and notice
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that for N > 4, Q(Si) is a more compact representation of
the speaker recognition information than L(θ|S). The former
grows as 2N − 1, i.e. the number of non-empty subsets of Φ,
while the latter grows as BN . However, both representations
become intractable as N grows.

In section 5, we show how to compute Q(S). Here we
continue by giving solutions in terms of Q(S), for several of
the speaker recognition problems listed above:

4.1. The canonical speaker detection problem

For the canonical two-input problem, we use (9) to express the
speaker detection likelihood-ratio (1) as:

λ =
P (Φ|θtar,M)

P (Φ|θnon,M)
=

Q({φ1,φ2})
Q({φ1})Q({φ2})

(11)

The posterior is computed with (2).

4.2. The partitioning problem

For the N -input speaker partitioning problem, the posterior for
hypothesis θ is:

P (θ|Φ,π,M) =
P (θ|π)L(θ|Φ)P

θ′∈ΘK
P (θ′|π)L(θ′|Φ)

(12)

where ΘK is the set of BN hypotheses, and where L(θ|Φ) is
given in terms of Q(S) by (9).

4.3. The counting problem

Here we give the solution for the counting problem with a triple-
input Φ = {φ1,φ2,φ3}. The general case is similar.

We compute the likelihood for count hypothesis θi in terms
of the likelihoods for the associated partitioning hypotheses,
by using (3) and by assuming that the partitioning hypotheses
θ12|3, θ13|2 and θ1|23 are equally likely a-priori. The likelihoods
for the three count hypotheses are:

L(θ1|Φ) = L(θ123|Φ) = Q(Φ),

L(θ2|Φ) =
1

3

`
L12|3 + L1|23 + L13|2

´
,

L(θ3|Φ) = L(θ1|2|3|Φ) =

3Y
i=1

Q({φi})

(13)

where θi is the hypothesis that there are i speakers in Φ; and
where, using (9):

Ljk|` = L(θjk|`|Φ) = Q({φj ,φk})Q({φ`}) (14)

The posterior is:

P (θi|Φ,π,M) =
P (θi|π)L(θi|Φ)P3
j=1 P (θj |π)L(θj |Φ)

(15)

4.4. The extended training detection problem

Let the input set of i-vectors be Φ = T ∪ {φt}, where T is
the training set and φt is the test input. Using (9), the speaker
detection likelihood-ratio is:

λ =
P (Φ|θtar,M)

P (Φ|θnon,M)
=

Q(Φ)

Q(T )Q({φt})
(16)

The posterior is computed with (2).

4.5. The multiple-train, multiple-test detection problem

Solution (16) suggests a slightly more general solution for the
case where we also have multiple test inputs known to be of the
same (but unknown) speaker. Let the input set be Φ = T ∪ Z ,
where T is the training set and Z is the test set. Each set has
one speaker, but these speakers may or may not be the same.
Now the speaker detection likelihood-ratio is:

λ =
P (Φ|θtar,M)

P (Φ|θnon,M)
=

Q(Φ)

Q(T )Q(Z)
(17)

The posterior is computed with (2).

5. The two-covariance model
Here we show how to compute (10), if we adopt forM a simple
linear-Gaussian [12] generative model, which we call the two-
covariance model.

The speaker model, y, is a vector of the same dimensional-
ity as an i-vector. We suppose that an i-vector φ of speaker s,
observed on occasion t is φ = ys + zt, where zt is Gaussian
noise. Let

P (y|M) = N (y|µ,B−1), (18)

P (φ|y,M) = N (φ|y,W−1) (19)

where N denotes the normal distribution; µ is the speaker
mean; B−1 is the between-speaker covariance matrix; W−1

is the within-speaker covariance matrix; and B and W are the
corresponding precision matrices. Since (18) is a conjugate
prior for (19), the posterior for y is also normal and can be
expressed [13, 12] as:

P (y|S,M) = N (y|L−1γ,L−1), (20)

γ = Bµ+ W
X
φ∈S

φ, (21)

L = B + nW, (22)

where n is the number of utterances in subset S. Notice
that when S = {} and n = 0, then we recover the prior:
P (y|{},M) = N (y|µ,B−1). For the normal posterior, it
is convenient to choose y0 = 0 when computing (10):

logQ(S) =
1

2
(log |B| − µ′Bµ− log |L|+ γ′L−1γ) (23)

5.0.1. Training

The two-covariance i-vector speaker recognizer has two train-
ing steps:

1. First, the parameters of the i-vector extractor have to be
trained. This is done as explained in [10], applying the
EM-algorithm of [14] to a development database of mul-
tiple recordings of each of several hundreds of speakers,
speaking over diverse telephone channels.

2. The same development data is re-used for the sec-
ond step. We apply the newly trained i-vector ex-
tractor to map each development database recording to
an i-vector. The parameters, (B,W,µ), of the two-
covariance model M are then trained on this database
of i-vectors. The training algorithm is another EM-
algorithm [12] that maximizes the likelihood of the true
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partitioning of theM speakers in this database. The EM-
algorithm maximizes:

MY
i=1

P (Si|M) (24)

w.r.t. (B,W,µ), where Si is the set of i-vectors be-
longing to speaker i. Our EM-algorithm was derived by
regarding the speaker identity variables y1,y2, . . . ,yN
as the hidden variables. The key to constructing the EM-
algorithm is the posterior distribution for the hidden vari-
ables, given by (20).

We train two separate i-vector systems, one using male devel-
opment data in both steps and the other using female data in
both steps. In our experiments reported below, we apply these
systems respectively to male and female evaluation data.

6. Evaluation by cross-entropy
In order to evaluate the goodness of our speaker recognizer so-
lutions in our experiments below, we need an evaluation crite-
rion suitable for evaluating posterior probability distributions.
We consider a solution good if the posteriors it produces can
be used to make minimum-expected-cost Bayes decisions that
have lower cost on average than Bayes decisions made with the
prior alone.

Let θ ∈ {θ1, θ2, . . . , θK}. Let cij be the cost of the er-
ror when recognizing θj when θi is really true. Correct de-
cisions have zero cost: cii = 0. Let the recognizer’s pos-
terior distribution for θ be r = (r1, . . . , rK). A user of the
recognizer would make a minimum-expected-cost Bayes deci-
sion as k = arg minj

PK
`=1 r`c`j . The evaluator who knows

the true hypothesis to be θi, judges the cost of this decision as
c∗i (r) = cik. Thus c∗(r) forms an evaluation of the goodness
of a single posterior r.

Now let rt = R(Φt, π̄), t = 1 · · ·T be the recognizer’s
posteriors calculated for the T trials of a supervised evaluation
database, where Ki is the set of trial indices where hypothesis
θi is really true; and where we have chosen π̄ to be uniform, so
that P (θ|π̄) = 1

K
. Then R can be evaluated on this database

as:

C(R) =
1

K

KX
i=1

1

|Ki|
X
t∈Ki

c∗i (rt) (25)

This criterion is unsatisfactory in the sense that it is dependent
on fixed values of the prior and cost coefficients. Yet, we would
like it to evaluate the solution R, which is in principle appli-
cable to making Bayes decisions with any cost coefficients and
any prior. We remedy this by making the cost coefficients vari-
able and then taking the expected value of C(R). We do not
also have to vary the prior, since C(R) is dependent only on
products of cost and prior coefficients, so that varying cost is
equivalent (for the purpose of evaluation) to varying cost-prior
products [2, 15].

We vary cost coefficients by making them dependent on a
parameter γ = (γ1, . . . , γK) ∈ PK , so that cij = 1

γi
, j 6= i.

This causes all coefficients (except cii = 0) to vary between 1
and infinity. Now representing (25) as C(R,γ), and assuming
a flat distribution over γ, we define the new evaluation criterion
to be proportional to: Z

PK

C(R,γ) dγ (26)

This integral can be solved2 analytically [15] to give (up to an
unimportant constant of proportionality) our evaluation crite-
rion, Cxe:

Cxe(R) =
1

K

KX
i=1

1

|Ki|
X
t∈Ki

− log2 rit (27)

where rit is the recognizer’s posterior probability for the hy-
pothesis that is true for trial t.

This criterion can be interpreted as cross-entropy between
the evaluator’s and the recognizer’s posteriors and has units in
bits of Shannon’s entropy [2, 15]. It takes values between 0 and
∞ as follows (θi is the true hypothesis for trial t):

Cxe = 0, for the oracle recognizer that outputs rit = 1 for
every trial.

Cxe =∞, for a badly calibrated recognizer that outputs rit =
0 for at least one trial.

Cxe = log2 K, for the reference recognizer that outputs rit =
π̄i = 1

K
, for every trial.

We consider a recognizer to be good if Cxe < log2 K.

6.1. Calibration

Our generative i-vector recognizer is trained with maximum
likelihood as explained above. In our experiments below, we
report performance of this system as is, on the counting task,
but we also try a simple discriminative adaptation of the sys-
tem.

We use Cxe as criterion to train an affine re-calibration
transform of the log-likelihoods given by the two-covariance
model. This training procedure is in fact just a form of logistic
regression [16, 12].

Following our work in [16], we calibrate the counting
log-likelihoods as follows. Let `t be a vector of three log-
likelihoods components, namely the logarithms of (13), com-
puted for a trial with input Φt. Then, the re-calibrated log-
likelihood vector is:

˜̀
t = α`t + β (28)

where the calibration parameters are α, a positive scaling con-
stant and β, a 3-dimensional translation. When we train or
apply calibration we use the exponentiated components of ˜̀

in (15), in place of (13). The calibration parameters are trained
discriminatively by using (15) in (27) and minimizing. Since
Cxe is a convex function of (α,β), it has a global minimum,
which can be found numerically3 with standard convex opti-
mization techniques [12, 17].

In order to compute Cxe while training calibration, one
needs a supervised evaluation database. In our experiments, we
report which databases were used for calibration.

6.2. Minimum cross-entropy

We define an auxiliary evaluation criterion, Cmin
xe as:

Cmin
xe (R) = min

α,β
Cxe(R)|˜̀=α`+β (29)

2This is easy to show for the case K = 2, see [2]. Do not try this at
home for K > 2.

3Our MATLAB toolkit for performing this minimization is available
at http://focaltoolkit.googlepages.com.
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This is Cxe for a recognizer that has undergone a ‘cheating’,
train-on-test calibration, where the calibration has been trained
on the evaluation database.

This criterion can be used to judge whether calibration that
was trained on an independent database still works well on the
evaluation database. Or it can be used as an indication of how
well an uncalibrated system could have performed if calibration
had been done.

Notice that Cmin
xe ≤ log2 K, because the reference recog-

nizer is obtained at α = 0.

7. Experimental Method
We demonstrate experimentally the performance of our two-
covariance i-vector solution on a three-input problem. For con-
venience of exposition, we give results for the counting prob-
lem, rather than the partitioning problem. Keep in mind how-
ever, that by exercising the counting problem, we are also in
effect exercising the partitioning problem, because the count-
ing likelihoods are computed from the partitioning likelihoods
via (13).

We trained the i-vector extractor and the parameters of
the two-covariance model as explained in section 5.0.1, by us-
ing 27841 telephone conversation-sides, involving 1943 speak-
ers from the following databases: NIST SRE 2004 evaluation
data [18], NIST SRE 2005 evaluation data [19], Switchboard 2
phase 2 [20], Switchboard 2 phase 3 [21], Switchboard cellular
part 1 [22], Switchboard cellular part 2 [23].

We ran the following experiments:

1. A canonical two-input detection test, the core task of
NIST SRE’08.

2. A three-input counting test on NIST SRE’06 data.

3. A three-input counting test on NIST SRE’08 data, with
optional calibration trained on SRE’06.

7.1. The two-input test

To demonstrate state-of-the-art performance of the two-
covariance i-vector solution on a familiar task, we ran it on the
telephone part of the core task of NIST SRE 2008 [6].

The detection scores were computed by using (23) in (11),
followed by a symmetrized version of ZT-norm [24] for score
normalization.

The system achieved EER (equal-error-rate) of 4.69% on
male data and 6.71% on female data. This can be compared
to the official SRE 2008 results available online [25], see the
DET-curve labelled ‘SHORT2-SHORT3: Telephone Speech in
Training and Test’.

7.2. Three-input counting tests

The SRE’06 and ’08 evaluation databases were used respec-
tively for calibrating and testing our system on the counting
problem.

Three-input trials were created by randomly selecting
groups of three files from each test database in a way that pro-
duced a reasonable balance between the number of speakers
per trial. Table 2 gives the number of speakers and segments
available for selection during trial creation. The calls in the
2008 database were made from 2506 distinct phone numbers, so
channel variability was large. Table 3 gives the resultant num-
ber of trials of each type. The fourth column gives the number
of trials in which all the segments are from the same speaker

and the sixth column gives the number of trials in which all the
segments are from different speakers.

The raw recognizer scores were the count hypothesis likeli-
hoods (13), computed by using (23). The scores were optionally
calibrated as explained in section 6.1. These scores (raw or cal-
ibrated) were used to make either soft or hard decisions:

soft decisions: The scores are used in (15) to compute the rec-
ognizer’s posteriors (at a flat prior of 1

3
). The posteriors

are then evaluated by the cross-entropy criterion, Cxe,
using (27).

hard decisions: The recognizer’s estimate of the speaker count
was chosen as the one with maximum posterior probabil-
ity (or equivalently maximum likelihood, because of the
flat prior). Hard decisions were evaluated using confu-
sion matrix and percentage error-rate.

That is, our evaluation measures were:

percentage error rate The number of failed trials expressed
as a percentage of the number of trials. In each trial,
the system makes a maximum likelihood estimate of the
number of speakers and this estimate is compared with
the true number of speakers to determine whether the
trail was successful.

cross-entropy See section 6. This is compared with log2 K to
determine whether we have built a good recognizer.

minimum cross-entropy See section 6.2.

calibration loss The difference between the cross-entropy and
the minimum cross-entropy. This gives the performance
loss for a system that has not been properly calibrated, or
equivalently, the performance to be gained from properly
calibrating the system.

Table 2: Information about the testing and calibration
databases.

year sex # speakers # segments
2006 m 345 1884
2006 f 340 2362
2008 m 492 1543
2008 f 844 2818

Table 3: Trial counts for the testing and calibration databases.

year sex # trials # 1 spk # 2 spk # 3 spk
2006 m 900 295 290 315
2006 f 900 295 296 309
2008 m 1024 299 382 343
2008 f 2048 569 723 756

Table 4: Results for tests on male databases.

test cal Cxe Cmin
xe cal-loss % err

2006 - 0.92 0.24 0.68 6.67
2006 2006 0.24 0.24 0.00 5.44
2008 - 0.78 0.21 0.57 8.20
2008 2006 0.23 0.21 0.01 6.54
2008 2008 0.21 0.21 0.00 6.05
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Table 5: Confusion matrix for male 2006 data on the uncali-
brated system.

true\estm 1 2 3
1 283 11 1
2 12 270 8
3 0 28 287

Table 6: Confusion matrix for male 2008 data on the uncali-
brated system.

true\estm 1 2 3
1 290 9 0
2 21 352 9
3 6 39 298

8. Results
Tables 4 and 8 give the results respectively for male and female
three-input experiments. The columns of these tables have the
following meanings:

test The database on which the test was performed.

cal The database on which the system was calibrated.

Cxe The cross-entropy for the test.

Cmin
xe The minimum cross-entropy.

cal-loss The calibration loss.

% err The percentage error rate.

The rows refer to the following test conditions:

1. Test on 2006 (uncalibrated).

2. Test on 2006 (‘cheating’ calibration on 2006).

3. Test on 2008 (uncalibrated).

4. Test on 2008 (calibrated on 2006).

5. Test on 2008 (‘cheating’ calibration on 2008).

We denote the calibrate-on-test calibrations as ‘cheating’, be-
cause here the true hypothesis labels are available for the sys-
tem under evaluation to use for calibration. The cheating cal-
ibrations were done to see what effect ideal calibration might
have.

In these tables (4 and 8), we see that calibration reduces
the error rate for the 2008 male test from 8.20% to 6.54% and
reduces the calibration loss from 0.57 to 0.01. The female er-
ror rate increases slightly (from 6.05% to 6.10%), but Cxe de-
creases from 0.84 to 0.24 and the calibration loss practically
vanishes.

The discrepancy between error-rate and cross-entropy can
be explained by noting that log-likelihood scaling has no effect
on the maximum-likelihood estimates and hence no influence
on the error-rate. In contrast, since Cxe effectively considers a
wide range of operating points, it is sensitive to calibration of
the log-likelihoods and is affected by both scaling and shifts.
Indeed, we noticed that the main effect of the recalibration was
to reduce log-likelihood magnitudes by a factor of about 10.
This is to be expected, because the unrealistic and oversimpli-
fied modelling assumptions of the two-covariance model are ex-
pected to lead to overconfident likelihoods.

The reference value ofCxe for decisions made with the prior
is log2 K = log2 3 = 1.585. The Cxe values for both the

Table 7: Confusion matrix for male 2008 data on the system
calibrated using male 2006 data.

true\estm 1 2 3
1 290 9 0
2 21 344 17
3 4 16 323

Table 8: Results for tests on female databases.

test cal Cxe Cmin
xe cal-loss % err

2006 - 0.85 0.24 0.61 7.0
2006 2006 0.24 0.24 0.00 6.33
2008 - 0.84 0.24 0.60 6.05
2008 2006 0.24 0.24 2.80e-3 6.10
2008 2008 0.24 0.24 0.00 5.86

male (0.23) and female (0.24) tests on 2008 (with calibration
on 2006) are well below this value, so we are justified in call-
ing our recognizer good. In fact all results for the uncalibrated
recognizer are also below 1.585.

Tables 5, 6 and 7 are confusion matrices for the male tests
and tables 9, 10 and 11 are confusion matrices for the female
tests. The row numbers give the true number of speakers, the
column numbers give the maximum likelihood estimate of the
number of speakers that the system made for the trial and the
matrix elements give the error counts for each combination of
true count and estimated count. Entries in diagonal elements
correspond to correct estimates and off-diagonal entries corre-
spond to errors.

9. Conclusion
We propose the general speaker partitioning problem as a uni-
fication of several well-known speaker recognition tasks. We
show that solving this problem in general, with a simple gen-
erative i-vector model leads to solutions of several of the more
specific problems.

Our solutions are tractable for problems involving a small
number of inputs, but are vulnerable to combinatorial explosion
in complexity for a large number of inputs.

We show that on NIST evaluation data our generative model
already works as is, but it does benefit from further discrimina-
tive calibration.
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and Pierre Dumouchel, “The role of speaker factors in the
NIST extended data task,” in Proceedings of the IEEE
Odyssey Speaker and Language Recognition Workshop
2008, Stellenbosch, South Africa, Jan. 2008.

[25] The National Institute of Standards and Technology,
“The 2008 NIST speaker recognition evaluation results,”
http://www.itl.nist.gov/iad/mig/tests/
sre/2008/official_results/index.html,
Aug. 2008.

201


