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Abstract
In this paper, we investigate the use of the mean shift algorithm
with respect to speaker clustering. The algorithm is an elegant
nonparametric technique that has become very popular in image
segmentation, video tracking and other image processing and
computer vision tasks. Its primary aim is to detect the modes of
the underlying density and consequently merge those observa-
tions being attracted by each mode. Since the number of modes
is not needed to be known beforehand, the algorithm seems to
fit well to the problem of speaker clustering. However, the al-
gorithm needs to be adapted; the original algorithm acts on the
space of observations, while speaker clustering algorithms act
on the space of probabilistic parametric models. We attempt
to adapt the algorithm, based on some basic concepts of infor-
mation geometry, that are related to the exponential family of
distributions.

1. Introduction
The problem of speaker clustering plays a fundamental role in
speech technologies, since is related to a variety of tasks, such
as speech and speaker recognition, rich-transcription of dia-
logues and others, [1]. Given a collection of speech segments
and assuming that for each of them one and only one speaker is
active, the goal is to merge those segments being uttered by the
same speaker. No target-speaker model should be used while
the number of speakers should be estimated from the data.
When dealing with a unique audio file, such as a broadcast or a
meeting, many implementations divide the task into two distinct
subproblems. The first problem is called speaker segmentation
and aims to chop the file into speaker turns, while the second
one is the problem of speaker clustering. The overall procedure
is entitled speaker diarization and the branch of algorithms that
follow this paradigm are usually called step-by-step or disjoint,
as opposed to the integrated ones, [2]. The latter branch does
not apply any explicit segmentation into speaker turns, uses an
HMM framework to avoid fast transitions between speakers and
relies either on the frequentist framework (Evolving-HMMs) or
to more concrete Bayesian models (Dirichlet processes) and in-
ferential procedures (MCMC [3], Variational Bayes [4], a.o.).
Hence, when dealing with audio files instead of collections of
separate audio segments, the proposed method requires a seg-
mentation stage to operate, and therefore should be regarded as
an alternative to the dominant approach of agglomerative hier-
archical clustering (AHC), [5].
The mean shift (MS) algorithm has gained a lot of attention
amongst image and video processing communities. The appli-
cations that make use of it range from color and motion seg-
mentation to discontinuity - preserving smoothing and track-
ing, [6]. Its elegancy arises from the way it bypasses the well-
known problem of nonparametric density estimation of multi-

variate data, namely the sparsity of the data due to the curse
of dimensionality, [7]. It starts by observing that a robust es-
timation of the underlying density is out of the scope of many
machine learning tasks; for many such tasks, what suffices is
the extraction of certain characteristics of the density. Consid-
ering the clustering task, estimating the modes of the unknown
density and deriving a rule to assign each observation to the ap-
propriate mode is what ultimately needed, at least for obtaining
a point-estimate of the assignments. By restricting ourselves to
hard clustering, it turns out that the mean shift algorithm offers
both. The observations are assigned to a cluster via the basin
of attraction that each mode creates round it. Moreover, the
clusters may exhibit smooth yet arbitrary shapes in the feature
space, due to the nonparametric setting. Finally, the number of
modes is not required beforehand.
At a first glance, the algorithm seems to meet the demands of
being applicable to speaker clustering. However, a main dif-
ference between speaker clustering and image segmentation is
that in the former task, each segment is described by a para-
metric model (say a Gaussian Mixture Model, GMM, or a sin-
gle Gaussian) i.e. the entities lie on the space of parameters of
probabilistic models instead of the space of observations. It is
clear the Euclidean geometry is no long useful and one needs
to reform the algorithm accordingly. Nevertheless, thanks to
the works of Amari ([8]) and many other researchers ([9], [10],
[11], [12]), the geometry of parametric models has been exam-
ined in depth, under the term Information Geometry. One needs
to assume that the parameter space is a Riemannian manifold
and that the metric is defined by the Fisher Information Met-
ric Tensor. Furthermore, the squared distance has its natural
analogue to the Kullback-Leibler Divergence. Moreover, if we
restrict our analysis to models that belong to the exponential
family, the mathematical analysis becomes much easier; we can
make use of the duality between the natural parameter vector
and the expectation parameter vector.
The rest of the paper is organized as follows. In Sect. 2, the
baseline mean shift algorithm is explained, while the basic the-
ory of the exponential family is presented in Sect. 3. In Sect.
4, some of the main properties of the Kullback-Leibler Diver-
gence are discussed, along with the proposed kernel. The pro-
posed method is analyzed in Sect. 5, while the experiments are
presented in Sect. 6. Finally, some technicalities of the imple-
mentation are discussed in Sect. 7, where possible extension are
being considered, too.

2. The mean shift algorithm on the space of
observations

In this section, we present the derivation of the mean shift al-
gorithm into its original formulation. The derivation is more or
less based on the seminal paper of Comaniciu & Meer, [13]. For
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completeness we revise some or their main results.

2.1. Nonparametric density estimation basics

Suppose we are given a collection of observations X =
{x(i)}ni=1, x(i) ∈ <d. Let us assume that the unknown density
f(x) that generates the data can be estimated by the following
density

f̂(x) =
1

n

nX
i=1

KH(x− x(i)), (1)

where
KH(x) = cd|H|−1/2K(H−1/2x) (2)

is the kernel of the method and H is a positive definite matrix.
This is a typical nonparametric setting, where we smooth the
empirical density

femp(x) =
1

n

nX
i=1

δ(x,x(i)) (3)

by convolving it with a kernel KH(x) centered at the origin
(δ(·, ·) is the Kronecker delta function). Moreover, let us sim-
plify the analysis and assume that H = h2Id, where Id is the
d-dimensional identity matrix, and consider only radically sym-
metric kernels,

K(x) = ck,dk(||x||2). (4)

The function k(·) is known as the profile of the kernel, that takes
as argument the scalar squared distance. A common choice is
the Gaussian kernel, having profile the following function

kN (x) = exp

„
−1

2
x

«
, (5)

that corresponds to the d-variate Gaussian kernel

KN (x) = (2π)d/2 exp

„
−1

2
||x||2

«
. (6)

By using the profile notation with a fixed bandwidth h, the den-
sity estimation function in (1) yields

f̂h,K(x) =
ck,d
nhd

nX
i=1

k

„‚‚‚x− x(i)

h

‚‚‚2
«
. (7)

Recall that the term nonparametric can be misleading; it
corresponds to an estimation setting where the number of
parameters is let to grow linearly with n. The parameters
are the centers of the kernels (i.e. the observations) and the
bandwidth h. Moreover, the use of a unique h is not linked to
the nonparametric setting; variable bandwidth alternatives may
also be examined, and usually enhance the robustness, with the
cost of being more computationally demanding, [14]. If the
variable bandwidth approach is deployed, the bandwidth should
decrease as n grows, to obtain an asymptotically unbiased
estimator f̂(·) of f(·), and minimize the sum of variance and
squared bias, [13].

2.2. Mode seeking via the gradient

The mean shift algorithm estimates the modes of the unknown
density by setting the gradient of (7) with respect to x equal to
zero. The gradient is as follows

∇f̂h,K(x) =
2ck,d
nhd+2

nX
i=1

(x− x(i))k′
„‚‚‚x− x(i)

h

‚‚‚2
«
. (8)

By setting g(x) = −k′(x) we introduce a second kernel profile,
which equals to the negative derivative of k(x) with respect to
x. The corresponding kernel is denoted by G(x) and has the
following form

G(x) = cg,dg(‖x‖2). (9)
Note that if the Gaussian kernel is used, the two profiles coin-
cide. By placing the differential kernel g(x) in (8) and rearrang-
ing some terms, we end-up with the following expression

∇̂fh,K(x) =
2ck,d
h2cg,d

f̂h,G(x)mh,G(x), (10)

where the two terms are as follows,

f̂h,G(x) =
2ck,d
nhd+2

nX
i=1

g

„‚‚‚x(i) − x

h

‚‚‚2
«

(11)

and

mh,G(x) =

Pn
i=1 x(i)g

„‚‚‚x(i)−x
h

‚‚‚2
«

Pn
i=1 g

„‚‚‚x(i)−x
h

‚‚‚2
« − x (12)

The term mh,G(x) is the mean shift vector i.e. the main result
of the analysis. It points to the direction of maximum increase
of f̂h,K(x), given its current position x. As (12) shows, the
next position is a simple weighted average of the observations
{x(i)}ni=1, with the ith weight being equal to the proximity
between x(i) the current position x, measured with the kernel
profile g(x).

2.3. The mean shift algorithm

Having fixed much of the theoretical background, we now
present the algorithm that implements the above idea.
For each observation i = 1, 2 . . . , n set t = 0, xt ← x(i)

1. calculate mh,G(xt)

2. set xt+1 ← xt + mh,G(xt)

3. if ‖xt+1 − xt‖ < ε goto 4; else t← t+ 1 and goto 1.

4. store x̃(i) = xt+1.
The matrix X̃ = [x̃(1), x̃(2), . . . , x̃(n)] contains the points in
<d that each observation converged. We only need to group
those points having identical values, or more realistically those
that the one-by-one distances do not exceed a small threshold
(say ε).
Its worth referring to the self-normalizing property of the result-
ing iterative procedure. Using (10), the mean shift vector can be
expressed as follows

mh,G(x) =
1

2
h2c
∇̂fh,K(x)

f̂h,G(x)
(13)

The denominator of the above expression demonstrates that in
areas of low (high) densities (as estimated with kernel profile
g(x)) the step will be large (small). This property is very
appealing; the algorithm normalizes the magnitude of each
step according to the density estimate f̂h,G(xt) and hence
it eliminates the need of user-defined parameters in order to
stabilize or accelerate the process.
Finally, considering that for the Gaussian kernel as well as for
its truncated versions, the two profiles are identical, (13) shows
that the mean shift vector is proportional to the derivative of the
estimated log-density at x with respect to x, [7].
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3. Exponential family fundamentals
In this section, we review some of the basic elements needed
in order to make the mean shift algorithm compatible to our
goal. We explain certain properties of the exponential family, a
member of which is the d-variate Gaussian distribution.

3.1. Main properties of the exponential family

The exponential family consists of a broad class of distribu-
tions with certain appealing properties. Its corresponding den-
sity function has the following form

p(x;θ) = h(x) exp(θ · t(x)− ψ(θ)) (14)

where
ψ(θ) = log

Z
X

exp(θ · t(x))h(x)dx (15)

is the log-partition function (i.e. the logarithm of the normal-
izing constant) and h(x)dx, h : X 7→ R+ the reference mea-
sure. Since h(x) is constant for the case of Gaussians (when
both mean and variance are unknown), it can be absorbed by
ψ(θ) and we may simply set h(x) = 1 in (14). Furthermore,
θ = {θi}Pi=1 denotes the P -dimensional vector of the natural
parameters, and t(x) the vector of the sufficient statistics of x,
i.e. a map X 7→ <P . For the univariate Gaussian distribution,
the above functions have the following form

θ =

„
µ

σ2
,− 1

2σ2

«
, t(x) =

`
x, x2´ (16)

and

ψ(θ) =
µ2

2σ2
+

1

2
log(2πσ2) (17)

where (µ, σ2) denote the mean and the variance, respectively.
The log-partition function has a fundamental role; by differen-
tiating ψ(θ) we obtain the expectation parameters η(θ), i.e.

η(θ) = ∇θψ(θ) =
`
µ, σ2 + µ2´ (18)

for the univariate case. Moreover, the second order derivative
yields the Fisher Information with respect to the natural param-
eters

G(θ) = ∇θ∇θψ(θ) = ∇θη (19)

which equals to

G(θ) =

„
σ2 2µσ2

2µσ2 4µ2σ2 + 2σ4

«
(20)

for the univariate case. It gives the lower bound of the covari-
ance matrix of any unbiased estimator η̂ of η based on a unitary
sample size. Furthermore, (19) shows that G(θ) equals to the
Jacobian of the transform, since {G(θ)}ij = ∂ηi

∂θj
. In terms of

Riemannian Geometry, G(θ) is the metric tensor on a parame-
ter manifold, [8]
We may consider η as the dual coordinate system of θ. This
property arises from the convexity of ψ(θ) with respect to θ
that establishes a one-to-one mapping between them and en-
sures that G(θ) is positive definite. This duality becomes more
apparent by introducing the dual potential function

φ(η) = −1

2
log(2πeσ2) (21)

that generates the natural parameters as follows

θ(η) = ∇ηφ(η) (22)

Note that the dual potential is equal to the (negative) Shannon
entropy of the distribution. Likewise (19), we further obtain

G(η) = G(θ)−1 = ∇η∇ηφ(η) = ∇ηθ (23)

the Fisher Information Matrix with respect to the expectation
parameters. The one-to-one correspondence between the two
coordinate systems is a consequence of the convexity of ψ(θ)
in θ and is called the Legendre Transform, defined by

φ(η) = max
θ
{θ · η − ψ(θ)} (24)

and its dual expression

ψ(θ) = max
η
{θ · η − φ(η)} (25)

where the potentials satisfy the identity

ψ(θ) + φ(η) = θ · η. (26)

Based on the above statistical entities, one can derive the corre-
sponding ones for the multivariate case. The natural and expec-
tation parameters have as follows

θ =

„
Σ−1µ, −1

2
Σ−1

«
,η =

“
µ, Σ + µµT

”
(27)

while the potentials are equal to

ψ(θ) =
1

2
µTΣ−1µ+

1

2
log((2π)d|Σ|) (28)

and
φ(η) = −1

2
log((2πe)d|Σ|). (29)

Note that their second entries are square matrices, i.e. θ =
(θ1,Θ2) and η = (η1,H2), where Θ2,H2 ∈ <P×P and P
equals to the dimension of (µ,Σ), i.e. P = d + d(d + 1)/2.
The dot-product between θ and η is carried out as follows

θ · η = Tr{θ1η
T
1 + Θ2H

T
2 } = θT1 η1 + Tr{Θ2H

T
2 } (30)

where |A|, AT and Tr{A} denote determinant, transpose and
trace of A, respectively.

4. The Kullback-Leibler Divergence and a
probabilistic kernel

4.1. The Kullback-Leibler Divergence

Having covered much of the required theoretical background,
we now define the Kullback-Leibler Divergence (KLD). Let θk

and θl be the natural parameters of two distributions with den-
sities Qk = p(x;θk) and Ql = p(x;θl) of the same class and
dimensionality. We denote byD(Qk||Ql) the KLD between θk

and θl as

D(Qk||Ql) = EQk{l(x;θk)− l(x;θl)} (31)

where l(x;θ) = log p(x;θ) and EQ{f(·)} is a shorthand toR
X f(·)p(x;θ)dx.

From the preceding analysis, the KLD with respect to the natu-
ral parameters can be written as follows

D(Qk||Ql) = (θk − θl) · ηk − (ψ(θk)− ψ(θl)) (32)

For a small discrepancy δθ, the following approximation holds,

D(p(x;θ)||p(x;θ + δθ)) ≈ 1

2
δθTG(θ)δθ (33)
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which shows that the KLD admits an local interpretation as a
quadratic form, with G(θ) being the Hessian. This justifies its
frequent use as the natural metric on the manifold of parametric
probability models; it is induced directly by the KLD, which is
a reasonable distance to rely on.
The corresponding expression for the dual coordinates is given
by

D̃(Qk||Ql) = (ηk − ηl) · θk − (φ(ηk)− φ(ηl)) (34)

and it is straightforward to verify that D̃(Qk||Ql) =
D(Ql||Qk).
The derivatives of the expressions in (32) and (34) with respect
to θk can be easily seen to have as follows

∇θkD(Qk||Ql) = G(θk)(θk − θl) (35)

and
∇θkD(Ql||Qk) = ηk − ηl. (36)

Using (19) and assuming that the two distributions are close
enough, we may approximate (35) by ηk − ηl, like

G(θk)(θk−θl) = (∇θη(θ))
˛̨
θ=θk (θk−θl) ≈ ηk−ηl (37)

i.e. to assume linearity for a small area around θk. At a first
glance, such an approximation seems to be crude. However, is
justified by the locality of the mean shift iteration. By consid-
ering (12), one may notice that the contribution of each point to
the mean shift vector fades out exponentially with their squared
distance from the current position. The mean shift vector is
dominated by the neighborhood of the current position, making
such an approximation possible.
We will investigate the use of symmetrized KLDs, in order to
obtain a symmetric kernel. The summation of the two expres-
sions behaves locally (i.e. for θk sufficiently close to θl) as the
squared distance over the manifold of distributions, [9]. Hence,
it seems natural to utilize it in order to define our kernel. The
summation approach will be denoted byDs(Qk||Ql) and as we
showed, its derivative with respect to θk is approximated by

∇θkDs(Q
k||Ql) = 2(ηk − ηl) (38)

A second symmetric form of the KLD is twice the harmonic
mean of (32) and (34), i.e.

Dh(Qk||Ql) = 4(D(Qk||Ql)−1 +D(Ql||Qk)−1)−1 (39)

The derivative of the above expression has as follows

∇θkDh(Qk||Ql) = 4C(ηk − ηl) (40)

where

C =
D(Qk||Ql)−2 +D(Ql||Qk)−2

(D(Qk||Ql)−1 +D(Ql||Qk)−1)2
(41)

A rationale for the harmonic mean can be found in [15], along
with many other interesting approaches and distances.
To summarize the section, what we have shown is that the in-
terplay between the natural and the expectation parameters can
be very beneficial in order to define the derivatives of the KLD-
derived distances.

4.2. An kernel based on the entropic prior

Based on the above analysis, a probabilistic kernel can be de-
rived. Our kernel has the following form

K(Q∗;Qk) ∝ qPk exp
“
−qkD(Q∗||Qk)

”p
|G(θ∗)| (42)

The above kernel is a conjugate prior for θ∗ centered at θk, (see
[16] for a delicate derivation) and qk a function of the sample
size mk. To be more precise, it corresponds to the Normal-
Wishart prior, i.e. a common prior used for the multivariate
normal distribution, when mean and covariance are both un-
known. Furthermore, qi is a parameter to encode the balance
between the degree of confidence in θi against the uninforma-
tive Jeffreys prior ∝

p
|G(θ∗)|. This trade-off corresponds to

the smoothing parameter of the original mean shift and we may
place qk = mk

σ2 . However, a straightforward use of the sam-
ple size based on the Cramer-Rao bound is not effective when
dealing with models that are highly misspecified, i.e. when the
speaker-model that generates the data does not belong to the
family of distributions we deploy. Despite the fact that the use
of single Gaussians leads to very fast algorithms, is remains a
highly misspecified model to describe the multimodal data gen-
erating process of the utterances of a speaker. Therefore, in
this paper we will adopt a more simple and heuristic approach
and use unnormalized kernels (as in [17]) without involving the
sample sizes. Hence, we will ignore both

p
|G(θ∗)| and qk in

(42), knowing that any approach that does not involve the sam-
ple size (i.e. the variance when estimating {θk}nk=1) is clearly
suboptimal for the speaker clustering task.
Note also that the formula in (42) may be used for mixtures of
Gaussians, too. However, this holds only if the complete-data
likelihood p(x, z|θ) is considered, where z are the component
indicators of the observations x, [16]. The reason is that while
the marginal density p(x|θ) does not belong to the exponen-
tial family, the density of the complete data p(x, z|θ) does, and
therefore it meets the demands for having a conjugate prior. Al-
though z are unknown, their MAP-estimate can easily be ob-
tained by the final E-step of the EM algorithm.
We further note that its dual kernel (i.e. with its dual KLD
D(Qk||Q∗) into the exponent) may also be considered, since
it corresponds to the Normal-Inverse Wishart prior, [12]. More-
over, we also try to place in our kernel the two symmetrized
versions of the KLD, discussed above. The analysis remains
the same if the approximation discussed in (37) is adopted. For
a discussion regarding the priors that are obtained by symmetric
versions of the KLD we refer to [18].
Finally, we choose to differentiate the kernels with respect to the
natural parameters, so that the new position of the distribution
is calculated by averaging the expectation parameters. Recall
that averaging in the η-coordinates is closer to our task, in the
following sense

η̂ =
mk

mk +ml
ηk +

ml

mk +ml
ηl, (43)

i.e. is compatible to the closed-form expression we use to
obtain the ML estimate when merging two (or more) clusters
in the hierarchical clustering algorithm. We finally note that
the approach of averaging in the θ-coordinates has also be
examined, but the performance of the algorithm showed a slight
degradation.
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5. The proposed algorithm
Having covered much of the theoretical background of the
mean shift algorithm as well as some of the main properties
of the exponential family, we now describe the method we
propose. Suppose we are given a collection of K speech
segments, and let Θ = (θ1,θ2, . . . ,θK) be an estimate of
their natural parameters. We consider here only maximum
likelihood (ML) estimates, however other types of estimators
can be applied as well (MAP, M-estimators, etc.). We also de-
note by H = (η1,η2, . . . ,ηK) and m = (m1,m2, . . . ,mK)
the corresponding expectation parameters and sample sizes,
respectively.

5.1. Derivation of the mean shift iteration

In order to derive the iteration of the mean shift, we should first
consider the density parametrized by θ, as the posterior den-
sity, given the observations X = (x(1), . . . ,x(n)) and an initial
labeling Z = (z(1), . . . , z(n)) that corresponds to the initial
segmentation. The proposed expression is as follows

π(θ∗|Θ) ∝ 1

K

KX
k=1

exp
“
−h−2

s D·(Q
∗||Qk)

”
(44)

where Qk denotes the density parametrized by θk or equiva-
lently ηk. The above expression may be regarded as the poste-
rior of θ, given (X,Z). We use hs > 0 as the tuning parame-
ter, common to all segments, which as explained in Sect. 4.2 is
clearly a suboptimal approach, since it should be encoding in-
formation about the sample sizes m. From the analysis in Sect.
4, by differentiating (44) with respect to θ, the mean shift vector
vanishes when

η∗ =

PK
k=1 η

kpk exp
`
−h−2

s D·(Q
∗||Qk)

´PK
k=1 pk exp

`
−h−2

s D·(Q∗||Qk)
´ . (45)

In the above expression, the dot subscript is placed to denote
which KLD will be used. The terms {pk}Kk=1 are placed in
order to attach information about the proximity of the segments
in the time domain. Time domain (or temporal information)
has no meaning unless the segments are parts of a unique audio
file, i.e. when the algorithm operates in the speaker diarization
domain. The use of temporal information is discussed in Sect.
5.2.
To express the result in (45) in terms of the mean shift vector,
we obtain

mhs,ht(ηt) =

PK
k=1 η

kpk exp
`
−h−2

s D·(Qt||Qk)
´PK

k=1 pk exp
`
−h−2

s D·(Qt||Qk)
´ − ηt.

(46)
Similarly to the original algorithm described in Sect. 2.3, the
proposed algorithm has the following form.
For each segment k = 1, 2 . . . ,K set t = 0, ηt ← ηk

1. calculate mhs,ht(ηt)

2. set ηt+1 ← ηt + mhs,ht(ηt)

3. if D·(Qt||Qt+1) < ε goto 4; else t← t+ 1 and goto 1.
4. store η̃k = ηt+1.

where (hs, ht) denote the bandwidths on the spectral and tem-
poral domain, respectively. The matrix H̃ = (η̃1, η̃2, . . . , η̃K)
now holds the convergent points of H. Note that the conversion
from η to θ and vice versa is unnecessary; all the calculations
lie on the η-parametrization.

Figure 1: Illustration of the convergence with real data. xy-
axes: mean value of 4-th and 5-th mfcc coefficient. Blue dots
correspond to the initial position of the segments. Trajectories
that were attracted by the same mode are depicted with the same
color. 191 segments merged into 16 clusters. 6 clusters are
singletons.

5.2. Making use of the temporal information

As mentioned above, one can make use of the temporal infor-
mation in order to enhance the results and avoid having abrupt
changes into the derived clustering. The proximity of the en-
tities is used in the original mean shift as well. The kernel is
multiplied by a spatial kernel that is a function of the distance
between the pixel in question of the others. Color segmentation
algorithms result to more smoothed images when they operate
on the joint spatial-color range domain. In speaker diarization,
many algorithms are based on an HMM framework, where the
self-transition probability is set to be orders of magnitude higher
that the probability of moving to other states.
In the proposed method, we have derived a simple yet effec-
tive way to make use of this information. Let us denote by
t = (t1, t2, . . . , tn) the central value of their time index, i.e

ti =
tis+tie

2
, where tis and tie denote the first and last time index

of the ith speech segment. Let also introduce a temporal kernel
kt(·) using the Cauchy density

kt(t
k, tl) =

1

π

ht
(tk − tl)2 + h2

t

. (47)

We choose the Cauchy density since it has much heavier tails
when compared to the Gaussian one. A Gaussian temporal ker-
nel would make the contribution of segments lying far from the
target one in the temporal domain exponentially small, which
is an undesired property. Note also that as (45) shows, we do
not differentiate this kernel, since we do not attempt to obtain
modes in the joint speaker-temporal domain but rather to incor-
porate into the model our prior knowledge of temporal continu-
ity of the speaker labels. To conclude, we suggest the use of
the above temporal kernel, especially when dealing with short
speech segments in the speaker diarization domain. To do so,
we set pk = 1

π
ht

(tk−t∗)2+h2
t

, where t∗ is the central time in-
dex of the target segment and ht denotes the bandwidth in the
temporal domain.

190



Figure 2: Cauchy density (red dashed line) vs. Gaussian density
(blue solid line). Note the heavy tails of the Cauchy density

6. Experiments
6.1. Set-up and datasets

We tested our algorithm using the ESTER Speaker Diariza-
tion benchmark, [19]. ESTER is a very rich Broadcast News
(BN) corpus, consisting of 32 shows from various France Ra-
dio Channels. The shows are divided into the development (14
shows, about 8 hours total duration, denoted by ESTER-DEV)
and the test set (18 shows, about 10 hours total duration, de-
noted by ESTER-TEST). To compare our algorithm with the
hierarchical clustering approach, we used the open source soft-
ware provided by the LIUM Laboratory, [20], where the local-
∆BIC is deployed as the dissimilarity measure.
As explained above, both algorithms are based on the step-by-
step approach to speaker diarization, i.e. they operate on the
speaker clustering stage. To do so, the standard segmentation
technique (i.e. a sliding window) is first applied to the mfcc
stream, using the LIUM software. As front-end features, we
used 18-dimensional static mfcc, augmented by the log-energy,
while no Viterbi re-alignment is applied.
Furthermore, the co-called linear clustering stage, i.e. the merg-
ing of the consecutive segments prior to the main clustering
stage, in order to obtain longer segments has been applied only
to the hierarchical clustering. We did so, since we wanted to
test our approach without resorting to methods that merge seg-
ments in an explicit way. The mean shift algorithm merges the
segments only when the modes of the underlying pdf have been
detected. Hence, methods such as the linear clustering are out
of the scope of the mean shift algorithm. As an alternative to
the linear clustering step, the approach of utilizing the temporal
information via the Cauchy density is examined, since is much
closer to the spirit of the mean shift algorithm.

6.2. Experimental results

The first experiment was carried out using the ESTER-DEV set.
The best performance attained by the competing methods is il-
lustrated in Fig. 4. Based on the optimal parameter values of
the development set, we ran the same algorithm for the ESTER-
TEST set, and the results are depicted in Fig. 5.

The results - summarized in Table 1 - show that the perfor-
mance attained by the proposed method is comparable to the
standard paradigm of the BIC-based HC. We should emphasize
though that the strength of the mean shift algorithm compared
to the HC can be estimated by considering the fact that when
the KLD-harmonic mean is deployed instead of the ∆BIC, the
performance of the HC degrades to DER > 30%. We should
further notice that many aspects remain open, such as the use

Figure 3: Typical histogram of the duration of the segments,
without applying the linear clustering algorithm. Note that
about half of the segment having duration < 5 correspond to
non-speech segments.

Figure 4: Best performance in terms of diarization error rates
for the ESTER-DEV set. From left to right: HC with local
∆BIC, MS with summed KLD, MS with harmonic-mean sym-
metrized KLD, MS with asymmetric KLD.

of the sample size into the KLD, that may lead to much better
results. Moreover, several other techniques, such as the vari-
able bandwidth should also be considered, [14]. The literature
of non-parametric estimation is rich-enough to provide us with
many such techniques. Finally, different divergences should
also be examined, such as the Hellinger and other members of
the family of f -divergence, which may be more appropriate for
the specific task.

7. Discussion and technicalities
7.1. Speeding-up the algorithm

The complexity of the algorithm is O(t̄K2), i.e. of the same
order with the hierarchical clustering multiplied by the average
number of iterations, t̄. However, the algorithm can be acceler-
ated by exploiting its locality with respect to the target segment.
Using the fact that the convergent point of the target segment
cannot be far away from its initial position, one may prune the
algorithm by setting a lower bound to the KLDs. This can be ap-
plied right after the first iteration of each target segment. After
some experiments with broadcast news datasets, we concluded
that nearly 80% of the segments can be discarded without af-
fecting the performance of the algorithm. This pruning tech-
nique is highly suggested, especially when dealing with audio
files of 30 min duration and above. Note also that it corresponds
approximately to the use of a truncated version of the Gaussian
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Figure 5: Diarization error rates for the ESTER-TEST set. From
left to right: HC with Local–∆BIC, MS with summed KLD,
MS with harmonic-mean symmetrized KLD, MS with asymmet-
ric KLD. The parameters have been optimized based on the
ESTER-DEV set.

Table 1: Overall Speaker Diarization Error Rate (%) on ESTER

ESTER-DEV ESTER-TEST
HC Local-BIC 15.76 16.28

MS summed KLD 18.78 17.77
MS Harmonic mean KLD 14.88 15.49

MS asymmetric KLD 16.55 16.83
False Alarm Rate 0.3 0.6

Missed Speech Rate 0.9 1.2

kernel, which retains the main properties of the non-truncated
version, [7]. Other pruning approaches can be found in [21].
Finally, note that the algorithm admits parallel processing so-
lutions; the convergent point of each segment is independent of
the convergent points of the other segments. Hence, the compu-
tation of the convergent points can be distributed to many pro-
cessors without affecting the final results. This is in contrast to
the hierarchical clustering and EM-based algorithms, where the
outcome of the k-th iteration is required as input to the (k+ 1)-
th iteration.

7.2. Merging the convergent points into clusters

As mentioned in Sec. 2, the convergence of two or more distinct
entities to exactly the same point (i.e. mode) is an unrealistic de-
mand, especially when a temporal kernel is deployed. A certain
amount of tolerance ε of the discrepancy between the conver-
gent point should be introduced. Hence, a further algorithmic
step should also be appended, in order to form the final clusters
based on the convergent points. One may use the standard hier-
archical clustering, however faster approaches can be applied.
Consider the following procedure.
Let Y be the desired vector of the cluster labels. We use C
denote the current number of clusters. Set Y (1) = 1 and
C = 1 and let η̄1 = η̃1 denote the expectation parame-
ters of the first cluster. For the remaining convergent points
η̃k, k = 2, 3 . . . ,K do

1. for c = 1 : C

• d(k, c) = Ds(Q̃
k||Q̄c)

• if minc d(k, c) ≤ ε, c∗ = argminc d(k, c),
η̄c∗ ← merge(η̄c∗, η̃k), Y (k) = c∗

• else
C ← C + 1, η̄C ← η̃i, Y (k) = C

where the merging is carried out like

η̄c∗ ← mc∗

mc∗ +mk
η̄c∗ +

mk

mc∗ +mk
η̃k, (48)

i.e. the usual weighted average. With the above ”linearized”
clustering algorithm, we end-up having the number of clusters
C, along with the assignments Y . After several experiments,
we concluded that the above fast clustering procedure yields al-
most identical results to the hierarchical clustering.
In order to avoid the use of a new threshold and adjustable pa-
rameters, we use the (local) ∆BIC as the distance, with no tun-
ing parameter (i.e. λ = 1, its theoretically correct value). Note
that if λ = 1 were used to performed clustering directly with
the initial values of {ηk}Kk=1 (instead of their convergent points
{η̃k}Kk=1) very few segments would merge. As such, it should
be considered as a reference parameter-free test of similarity,
ensuring us that the backbone of the overall proposed method is
indeed the mean shift algorithm and not this final step.

8. Conclusion and future work
In this paper, we introduced the mean shift algorithm to the
problem of speaker clustering. The proposed algorithm should
be consider as an alternative to the hierarchical clustering ap-
proach, which remains the baseline technique, at least when a
point estimate of the partition is required. By restricting our-
selves to the exponential family, we derived some necessary
maths, in order to make the algorithm capable of operating on
the family of parametric models. Several technical aspect, con-
cerning the appropriate distance measures, as well as the use of
the temporal information have also been discussed.
The algorithm is a new framework to the problem of speaker
clustering. Hence, alternative formulations can be derived,
such as novel front-end features, as well as models derived by
the combination of the GMM/UBM model with dimensionality
reduction techniques (UBM-supervectors, eigenvoices, fisher-
voices, etc., [22], [23]). Furthermore, a deeper analysis of the
parameter space as a Riemannian manifold via Information Ge-
ometry may lead to more appropriate distances than the simple
KLD that we utilized, and enhance the performance of the al-
gorithm.
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