Odyssey 2010
The Speaker and Language Recognition Workshop
28 June — 1 July 2010, Brno, Czech Republic

Unsupervised Compensation of I ntra-Session I ntra-Speaker
Variability for Speaker Diarization

Hagai Aronowitz

IBM Research - Haifa

Haifa University Mount Carmel, Haifa 31905, Israel
hagai a@1 .i bm com

Abstract

This paper presents a novel framework for unsupedvi
compensation of intra-session intra-speaker vdifabh the
context of speaker diarization. Audio files aregmaeterized
by sequences of GMM-supervectors representing awging
short segments of speech. Session-dependent etsin
intra-speaker variability is estimated in an unsused
manner, and is compensated using the nuisanceoudgtri
projection (NAP) method. The proposed compensation
method is evaluated in the context of speaker zfitian in
two-speaker conversations. A simple and effectiveo-t
speaker diarization algorithm is introduced in whi&peaker
diarization is performed in the compensated sumtove
space. The proposed diarization algorithm was ewetlion
summed telephone conversations and achieved aespeaiar
rate of 2.8% which is a 54% relative error redutttmompared
to a baseline BIC-based system. Finally, we evaluhte
proposed system on a speaker recognition taskeisimmed-
speech condition where improvement in speaker ratiog
accuracy is observed using the proposed diarizatstem.

1

In recent years, two major approaches have bearepro be
very effective for automatic speaker recognitiorneTfirst
approach is inter-speaker variability modeling [1&nd the
second approach is inter-session intra-speakerahility
modeling [4-8]. Inter-speaker variability modeligmodeling
the speaker-space) is used by eigenvoice baseeimsygi],
anchor-modeling [2-3] and joint factor analysis .[4]his
approach and has led to improvements in both effiy and
accuracy of automatic speaker recognition. Therisggsion
intra-speaker variability modeling approach (ofteferred to
as modeling the channel-space), has been provea tven
more effective for improving the accuracy of speake
recognition systems. This approach is used by jédntor
analysis which jointly models inter-session intpeaker
variability and inter-speaker variability [4], eigehannel
MAP adaptation [5-6], explicit statistical modeliimg GMM-
supervector space [7], and nuisance attribute glioje
(NAP) in the GMM-supervector space [8].

The apparent success of these techniques for gpeake
recognition has drawn attention to these technigonethe
scope of other speech classification tasks suclaraguage
identification [9].

In the context of speaker diarization, prior knoige
about the distribution of speaker population (irgpeaker
variability) has been exploited for speaker diartaa by the
anchor modeling approach where spoken segments are
projected into a space of reference speaker mauhaised
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anchor-space [10-11]. In [12-13], factor analysisasw
successfully used to model the speaker-space and
parameterize the processed speech in the speaker$pace.
Overall, the speaker diarization methods in [10-#18] not
make use of intra-speaker variability modeling.

Modeling the inter-session component of intra-speak
variability seems to actually degrade accuracy péager
diarization systems as channel-related informatioay be
beneficial for discriminating between different agers in a
conversation [13]. On the contrary, modeling thtea-session
component of intra-speaker variability can potdhtianprove
accuracy for speaker diarization. Such variabilitgn be
accounted to the following types: phonetic contesrtiergy
level, speech rate, acoustic (speaker intrinsiog, rEon-speech
rate (due to voice activity detection errors).

Indeed, we have found intra-session intra-speaker
variability modeling to be useful for speaker diation in
[14] where a framework for explicit modeling of tletra-
session component of intra-speaker variability Hseen
introduced. Intra-session intra-speaker variabilias modeled
using a manually speaker-segmented training coapaswas
used to learn an appropriate distance function éetvspeech
segments. The modeling was done by embedding segmen
into a segment-space using kernel-PCA (principal prmment
analysis), followed by explicit statistical modejirof intra-
speaker variability in the segment-space. The freone
described in [14] leaded to a significant improvamén
diarization accuracy in the broadcast domain. Hareusing
such a framework requires the availability of mdrspeaker-
segmentation of a training dataset. A significahtarmel
mismatch between the training data and the test daty
reduce the effectiveness of the framework.

In this paper, we propose to model intra-sessidrain
speaker variability without the need of any traipisatasets.
Instead, intra-speaker variability is modeled oeflly in an
unsupervised manner. Contrary to [14] where inteakpr
variability was estimated globally (speaker-indegesmtly), in
this paper we estimate intra-speaker variabilifyasately for
each audio session. Unsupervised estimation oi-speaker
variability is possible by exploiting the followiressumption:
we assume that the characteristics of a speakeynépic
content, energy level, etc.) change typically fadteat the
typical rate of speaker identity change (speakersju

Finally, we propose a new algorithm for speaker
diarization in two-speaker conversations based MG
supervectors and using the proposed intra-sesgitma- i
speaker compensation technique.

The remainder of this paper is organized as follows
Section 2 describes the proposed technique forpamgised
estimation and compensation of intra-session ispeaker



variability. In section 3 we describe the proposégorithm
for two-speaker diarization. In section 4 we ddszrihe
experimental setup, datasets and results. In se&iove
present speaker recognition results in the sumnpegch
condition using the proposed speaker diarizatioatesy.
Finally, we conclude in section 6.

2. Intra-Session Intra-Speaker Variability
Modeling and Compensation

2.1. Generative Model

We model a speake3 in a particular session with a dynamic
generative process represented by a
probability density function (PDF}. S represents the PDF
(GMM in practice) used to generate the observasibtimet.
We further assume a memory-less process. Therefore,
speaker in a given session is modeled by a sirigke &ver the
GMM space. This is contrary to advanced speakergrtion
approaches which model a speaker in a given sesgstbna
single GMM [1-8]. Recently, a similar model has been
proposed in the context of speaker recognitionhartstest
sessions [15].

2.2. GMM-supervector parameterization asa front-end

We follow the GMM-supervector parameterization feamark
taken in our previous work [16-17, 7] and in SVM GM
supervector-based speaker recognition [8]. Accardm this
framework, both training and test sessions are ewppto a
supervector-space using classical MAP (maximum a
posteriori) adaptation [18] of a universal backgrdumodel
(UBM) and concatenating the adapted GMM-means ixeal f
order. The actual modeling and classification imeddn the
supervector space. The reason we take this appfoantrary
to using factor analysis) is that we do not assiprier
information such as the inter-speaker variabilibvariance
matrix or the channel variability covariance matihich
require a proper development dataset for estimation

In order to adapt the GMM-supervector parametddnat
approach to the speaker diarization framework, we
parameterize the speech signal with a time series o
supervectors. The speech signal is divided intomlgvepaced
overlapping superframes (sequences of frames) rafthels
and with an offset of 100ms (superframe rate is)1ONe
estimate a supervector for each superframe usiagsichl
MAP. The parameterization procedure is outlined as
following:

GMM-supervector parameterization

1. Define evenly spaced overlapping superframetemdth
1s with an offset of 100ms.

2. Estimate a GMM for each superframe by adaptimg
UBM to the frames of the superframe using classical
MAP.

3. Parameterize each superframe with the supenvectated
by concatenating the means of its estimated GMM.

2.3. Estimating intra-session intra-speaker variability

Definitions:
S — Original uncompensated supervector at supegffam
d — Delta supervector between two consecutive

139

time-dependent

supervectorsdi=s.-S

I, — Intra-session intra-speaker variability at strpenei

m —  Mean supervector for speaker

ki—  Speaker at superframe

r— Ratio between superframe length and superframe
offset

p- Probability of speaker identity change (betwésa

consecutive superframes)

We first analyze the simpler setup with no overtsgiween
superframes and assume that there is no speakegechathin
a superframe. We assume that supervegtar a sum of two
independent random supervectors as shown in Equit)o

§=m +1i 1)

SupervectoI‘T‘ki is the mean supervector of the supervectors

corresponding to speaké, and supervectol; is the intra-
session intra-speaker variability component at Stgoaei.

Given a sequence of supervectoss}{d; is the difference
between two consecutive supervectors. Taking indntiratp
is the probability of speaker identity change (kew two
consecutive superframes) we get:

with Pr(p)

with Pr(1- p) &

li—lia
P =
Ii —Ii,1+mki —mki_l

from which we derive the following expression fatimation
of the covariance matrix of the intra-speaker \liiy:

Cov(lj)= % Cov(5;)- pCov(mki ) ®)

whereCov( T} ) is the covariance of the speaker-dependent
hereCi is th i f th ker-d d

mean supervectors (inter-speaker variability). Uioda
Equation (3) to handle overlapping superframes waitloffset
ratio ofr (r=10 in our implementation), we get the following
modification for Equation (3):

Cov(lj)= 5 Cov(s;)- pCov(mki ) (4)

We approximate the covariance matrix of the inpraaker
variability terml; by assuming that the length of speaker turns
is much larger than the superframe rate (p<<1) diedard
the second term in the RHS of Equation 4:

Cov(l; )= £Cov(s; ). (5)
In practice, on our conversational dataset (witterage
speaker turn length equal to $s)1/3. The empirical results in
section 4 indicate that the approximation in Ecurati(5),
though not very accurate, is of value.

24. Intra-session intra-speaker variability compensation

Similarly to the NAP [8] technique, we assume thetst of
the intra-speaker variability is confined to a ldinensional
affine subspace of the supervector space. We ddyat the



dimension of the low-dimensional subspace. PCA ieg
to the estimated intra-speaker variability covaz@matrix.
The eigenvectors corresponding to théargest eigenvalues
are stacked to form matrid. ProjectionT defined byT=(l-

UUY can be now used to compensate the estimated- intra

speaker supervector affine subspace.
Furthermore, the original

compensation (fNAP) [19]. For a given superframethe
nuisance supervectgr for supervectos can be calculated as
following:

7 =UU's . ©6)

Nuisance supervectagr may be effectively removed from the
frames corresponding to superfrainby splitting 7; back to
its individual Gaussian components; {,....i g} (G denotes
the order of the GMM), and subtracting a weighégdrage
of these components from each of the original featectors.
The weights are set according to the Gaussian aticup
probabilities. For a given feature vectpiin superframe, the
compensated feature vector is:

& =0 - Priglo)n g @)
g

where Prflo) is the Gaussian occupation probability of
Gaussiarg in framet.

3. Supervector-Based Speaker Diarization in
Two-Speaker Conversations

In this section we propose a new algorithm for speaker
diarization. Two-speaker diarization is a specibec of the
general speaker diarization task in which it iswnaa-priori
that the number of speakers in each session iglgxam.
Two-speaker diarization may be applicable for sumhme
telephone calls in which the availability of onlysammed
channel is usually due to operational constraistglf as in
some eavesdropping scenarios). Another importantso is
when a conversation between two speakers is retdarsiag
a far-field microphone. A comprehensive review wdilble
two-speaker diarization algorithms can be founflR+13].

3.1. Maotivation

Let x and y denote two multivariate normally distributed
random variables. Given a non-labeled mixed sarfmolm
both x andy, the goal is to classify each single sample to
either populatiorx or populationy. A 2-dimensional example
of this setup is illustrated in Figure 1. In thisample, the

samples drawn fromx~N(u,=(-1,1), ¥) are marked by

asterisks and the samples drawn frpri(x,= (1,-1),Y) are
marked by circles. The shared covariance matrix diagonal
with 21,1:9 and22’2=1.

It is clear from Figure 1 that without prior knowlge
about the distributions of the two classes, itasdhto separate
them. For instance, trying to classify using PCApbgjecting
all samples on the eigenvector corresponding toladhgest
eigenvalue of the sample covariance matrix is netyv
successful (Figure 2) due to large intra-classatslity along
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feature space may be
compensated using the feature-domain version of NAP

the x-axis. However, if a model of intra-class variaili
(covariance matri®’) is given, it may be used to compensate
part of the intra-class variability with the hopgfenot removing
most of the inter-class variability. This may bendoby
removing only a low-dimensional subspace estimatsitig
PCA applied on the covariance matjx In Figure 3, the
subspace spanned by the eigenvector correspondirthet
largest eigenvalue of is removed. Applying PCA to the
covariance matrix of the compensated samples wil fead

to more accurate classification.
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Figure 1: A random sample of two normally distributed 2-
dimensional random variables.
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Figure 2: Classification is done using the eigenvector
corresponding to the largest eigenvalue of the &mamp
covariance matrix (13 errors).
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Figure 3: Classification is done using the eigenvector
corresponding to the largest eigenvalue of the &mamp
covariance matrix after compensation of the intess
(7 errors).



3.2. Two-speaker diarization using PCA

Given an audio file we apply the framework outlinad
following:

Two-speaker diarization using PCA

1. Compute standard frame-based features without channe
normalization.

2. Detect and remove non-speech frames.

3. Estimate a session-dependent UBM (trained from cltrat
on the current session).

4. Divide the audio session into superframes and astira
GMM-supervector for each superframe (subsectioh 2.2

5. Estimate and compensate intra-session
variability (subsections 2.3 and 2.4).

6. Compute the covariance matrix of the compensated
supervectors.

7. Apply PCA to find the eigenvector corresponding he t
largest eigenvalue of the covariance matrix froep €.

8. Project each compensated supervector onto
eigenvector found in step 7.

9. The outcome of step 8 is converted to a LLR (log-
likelihood ratio) with respect to the two speakésge
subsection 3.3 below) using a linear transformation

10. Viterbi segmentation is used to convert the superé-
based LLRs into a smoothed segmentation (see sidsec
3.4 below).

11. Optionally, perform a few iterations of adaptatiand
Viterbi re-segmentation in the original feature apdsee
subsection 3.5 below).

the

3.3. Converting a projected compensated supervector into

aLLR

Definitions:

¢ — Compensated supervector at superframme T(s)

v — The eigenvector corresponding to the largesrsiglue
of the covariance matrix of the compensated
supervectors (step 7 in subsection 3.2)

1 — Mean of compensated supervectors over entigioses

pi— Compensated supervector at superfraprejected onto
eigenvectow: p; =V/(G- 1)

m — Mean supervector for speaker

ki— Speaker at superfrarne

a— The fraction of speech frames spoken by thet firs
speaker

I'— Residual intra-session intra-speaker variabikifger
compensation. A diagonal forfie 4l is assumed

D - Dimension of supervector space

We claim that the outcome of step 8 in the two-kpea
diarization algorithm ;) is approximately equal to a scaled
and shifted LLR with respect to the two speakerss Thaim

is expressed in Equation (8):

Prg Ispkl)

=~alo
P =808 Pﬂqlspkzi

The correctness of Equation (8) results from amrapsion
that the covariance matrix of the compensated septrs is

dominated by the speaker mean-superveﬂws This is a

®
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intra-speaker

reasonable assumption due to the fact that mast-speaker
variability is already compensated, and that theadance of
the compensated vectors is a sum of the contribuifothe

inter-speaker variability and the residual intraaier
variability:
Covc)=all-afm-mlm-m) +T . (9)

The eigenvector corresponding to the largest ejeevof
Cov(c) is therefore approximately proportional to sugeter
my-m,. Consequently we get:

Lo
|

|I,,[.1 m2|| (Ci _,U) .

(10)

with 2 = omy +(1—a)my,.

The likelihood of a compensated superveatpmiven
speakerj using a multivariate normal distribution with
diagonal covariance matrik=4? is expressed in Equation
(12):

@

b - '—mj)t(q—mi)
Pl ook )= o2 e

2772
The LLR we are trying to approximate can be exmedsy
Equation (12) which follows from Equation (11) ugisimple
mathematical manipulation:

oo PlGlsok) _(m-mp)c  mim- 'y
Plalspke) 2 2°

Combining Equations (10) and (12) leads to the clam

k)

PG |spl
' ~alo b wi
Equation (8), namely thafd; gP Ci|Spk2 +D with

(11)

(12

a:—nz ande(%_aantnl_mZtmz).
my [my—my

Imy—

We conclude that it is possible to estimate the MiEhout
explicitly estimating the mean supervectors and m,. In
order to estimate the LLR we need to estimate faet@ndb

in Equation (8). We assume a balanced speakeibdittm
(0=0.5) which results inb=0. We further assume that
parameten is fixed across audio sessions. These assumptions
may be refined using iterative EM estimation.

3.4. Viterbi segmentation

The LLR described in subsection 3.3 is used by adstal
Viterbi segmentation algorithm that models eachakpeby a
hidden Markov model (HMM). The transition probatids are
derived from a prior estimate of the average spedkm
length, and minimal speaker length is enforced gisam
appropriate HMM topology. The Viterbi algorithm ised to
find a maximum likelihood (ML) segmentation usinbet



HMM topology, the transition probabilities and testimated
LLRs.

3.5. Viterbi re-segmentation

The first Viterbi pass described in the previoulssgction may
be optionally refined by a second pass using Vitegh
segmentation [10]. The first-pass segmentation seduto
MAP-adapt a single GMM for each speaker using ttgral
frame-based feature vectors (using the fNAP congiens
technique described in subsection 2.4 resulted m
insignificant improvement). The adapted GMMs areduso
calculate updated LLRs which are used by the sanerbii
based segmenter described in the previous subsedtioe
adaptation-segmentation scheme is
iterations

4. Experimentsand Results

4.1. Datasetsand protocol

A subset of the NIST-2005 SRE [20] core datasetwsasl as
an evaluation set (630 sessions), and a disjoirtt gfathe

NIST-2005 SRE was used to tune the HMM transition

parameters and the parameter required by the LLR
calibration method. We artificially convert the rete datasets
to mono by summing both channels. The ground tmls
derived from the automatically produced transcriptsvided
by NIST.

Speech/non-speech segmentation is not the mairs fofcu
this work. Therefore, use the standard speaker mate (SER)
measure and do not include speech/non-speech .e8BRs is

computed according to the standard NIST protocal fo

evaluation of a two-speaker segmentation task, twhig
available in [21].

4.2. Basdline BIC-based diarization system

The baseline system is based on the Bayesian Infiama
Criterion (BIC) which is perhaps the most common apph
nowadays [12]. Our implementation is inspired paky the
system described in [22]. The outline of the systsmas
following:

Baseline speaker diarization system

1. Compute standard frame-based features without channe

normalization.
Detect and remove non-speech frames.
Detect speaker change points using BIC [23].
Initialize each cluster with a single detected &pe&urn.
Iterative Viterbi re-segmentation / agglomerativeCBI
clustering:
a) Viterbi re-segmentation:
i. Estimate a 16-component GMM for each cluster.
ii. Compute a ML segmentation using Viterbi.
b) Agglomerative BIC clustering:

arwbd

i. Estimate a single full covariance Gaussian for

each cluster.

ii. Compute pair-wise distances between each

cluster.
iii. Merge closest clusters.

iv. Update distances of remaining clusters to new

cluster.
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iterated for rakve

v. lterate steps ii-iv until a BIC stopping criterion is
met.
c) Iterate step a-b until the number of clusters reach
two.
6. Final Viterbi re-segmentation:
a) Estimate a 64-component GMM for each cluster.
b) Compute a ML segmentation using Viterbi.

4.3. Front-end

The front-end used in all the diarization experitsewe
report is based on of Mel-frequency cepstrum coieffits
(MFCC). An adaptive energy based voice activity deters
used to locate and remove non-speech frames. Ta fi
feature set consists of 13 cepstral coefficientsaeted every
10ms using a 25ms window. The use of feature wgrpiith

a 300 frame window tuned to single speaker sesq@6i3
and delta MFCC features was also investigated.

The output of the front-end is passed to the speake
segmentation systems. Alternatively, the referepesch/non-
speech segmentation from the ground truth was tesadsess
the sensitivity of the diarization algorithm to sph/non-
speech segmentation errors.

4.4, Selected results

Table 1 presents results for three selected systéhss first
system is the baseline BIC-based system. The sexymtem
is the proposed system with intra-speaker compiemsat
disabled. The third system is the full proposedesys For
Viterbi re-segmentation, each speaker is modeled tB0-
state HMM. Transition probabilities are tuned for average
speaker turn of 3 seconds. The GMM order used @seth
experiments is 64.

Table 1. SER for the proposed system compared to the
baseline.

System SER (%)
Baseline BIC-based diarization system 6.1
Proposed system 4.8
Intra-session intra-speaker compensation disabled
Proposed system 2.8

The results in Table 1 show a clear advantagedagtbposed
system compared to the baseline even without cosgiem
of intra-speaker variability (21% relative reduction SER).
The use of intra-speaker variability compensatiesults in an
additional relative reduction of 33% in SER (54%atal).

45. Detailed results

In this subsection we analyze the sensitivity @& groposed
system to various configurations.

45.1. Front-End

Table 2 presents results for varying front-end icumations.
The compensation order is 25 and the GMM orde#isV@e
can conclude from Tables 2 that plain MFCC featuiigs g
best results. The degradation observed when usature
warping is in-line with the results in [13]. Thegiadation
due to imperfect speech/non-speech segmentatiorfouasl
to be modest (0.2% absolute).



Table 2. SER for the proposed system using various front- Table 4. An analysis of the contribution of the Viterbi

end configurations (GMM order is 64, NAP order is 25). re-segmentation step to the overall system.
System SER (%) System SER (%)
MFCC c0-c12 2.8 Proposed system 2.8
MFCC c0-c12 + feature warping 3.9 Proposed system 4.9
MFCC c0-c12 + delta c0-c12 3.0 without Viterbi re-segmentation
MECC c0-c12 2.6 Proposed system 4.8
reference speech/non-speech segmentation Intra-session intra-speaker compensation disabled
Proposed system 9.1
without Viterbi re-segmentation
45.2. GMM order Intra-session intra-speaker compensation disabled

Table 3 presents results for various GMM orderse NAP
compensation order is 25. According to these resul¢
choose to use a GMM order of 64 for the rest of our
experiments.

5. Speaker recognition in summed
conver sations

Table 3. SER for the proposed system using various GMM We compare three speaker diarization sources ircahéext
orders (NAP compensation order is 25). of speaker recognition where either the trainingdition or
the test condition is summed speech. The diarizagmurces

GMMorderl 8 16 32 64 128 are manual segmentation obtained from the available

automatic transcription, an automatic diarizatiobtamed
from our baseline diarization system (SER=6.1%), and
automatic diarization obtained from our proposeatidation
system (SER=2.8%). A detailed overview of our speake
recognition system and setup is presented in [Rdkhort,
our speaker recognition system evaluated in thisepas
° ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ based on GMM-supervectors trained on warped MFCC
1 features compensated with standard NAP and scaied a
linear kernel, followed by standard score norméiira
The experiments reported in this paper were pegdron
the female core set of the NIST-2005 SRE protoc0].[2Ve
] artificially sum the two sides of each original gersation in
order to produce a summed conversation (this egable
comparison of the results to the original sterepeeixnents).
For each trial, the training conversation is segeerand the
target cluster is selected using an automatic cosgrato the
manual segmentation (best matching cluster is tselpcThe
test conversations are handled in a standard mayniesting
on both clusters and selecting the maximal scooge that the
25010 20 30 a0 50 60 70 80 90 100 non-standard framework we use is motivated by the
NAP order characteristics of certain security-related usagaarios.
Table 5 presents the speaker recognition accuracy
Figure 4: SER for the proposed system using various Measured in equal error rate (EER) and in minimaddion
NAP compensation orders (GMM order is 64). cost function (minDCF) which are defined in [25]orFthe
manual diarization training condition, the EER istno
significantly sensitive to the diarization schemaich is in-

SER (%) 5.1 3.6 3.3 2.8 2.8

45.3. NAP compensation order

SER (in %)

Figure 4 presents results for various NAP compémsat line to the findings in [12]. However, for minDCF wdp
orders. According to these results we choose toaus#\P observe a difference between the schemes. Forahaiton
order of 25. Note that SER is almost insensitivéhs NAP where both training and testing is performed usiogpmatic
order in the range 25-45. diarization, we do observe a significant degrachatising the

baseline diarization system (EER goes up from 7 0%.9%,
4.5.4.  Viterbi re-segmentation and minDCF goes up from 28X10to 37x1G). This

degradation is roughly cut by 50% using the progdose

Table 4 presents an analysis of the contributiothefViterbi 2
diarization system.

re-segmentation step to the overall system. Foiptbposed
system, the Viterbi re-segmentation step reduceR Bk
43%. When Intra-speaker variability compensation is
disabled, Viteribi re-segmentation reduces SER 19$.47
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Table 5. Speaker recognition accuracy on the NIST-2005

SRE core dataset (females only).
Train Test ERR (%) | minDCF
diarization | diarization x10°

Manual Manual 7.0 28
Manual Baseline 7.1 33
Manual Proposed 7.0 29
Baseline Baseline 8.9 37
Proposed Proposed 7.7 33

6. Conclusions

In this paper a novel approach for speaker didomats
introduced. The main novelty is on-the-fly unsupsed
estimation and compensation of intra-session ispeaker
variability. Unsupervised estimation is possible éxploiting
the fact that speaker turns, though possibly beimort, are
still long enough to enable modeling intra-speakaiability
which results in a decrease of 42% in SER. In aululitive
propose to carry out segmentation using PCA in tMMG
supervector space followed by Viterbi smoothing.pimg
these techniques with a final standard Viterbiegrsentation

pass we manage to reduce SER by 54% compared to a

conventional approach (BIC-segmentation, bottom-up
clustering). The proposed system requires the tuofronly a
few parameters and seems to be not very sensiivbese
parameters. Finally, we get a significant accuracy
improvement in the summed-speech speaker recognitio
condition using proposed diarization system congbare
using the baseline diarization system.

Possible future work is to generalize and evalubhge
proposed techniques on more general diarizatioksta8
simple approach would be using fNAP (see subse&idhto
compensate intra-session intra-speaker variability the
feature domain, and to use this as a preprocessépgbefore
applying standard diarization systems.
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