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Abstract 

This paper presents a reinterpretation of Joint Factor Analysis 

as a signal approximation methodology―based on ridge 

regression―using an overcomplete dictionary learned from 

data. A non-probabilistic perspective of the three fundamental 

steps in the JFA paradigm based on point estimates is 

provided. That is, model training, hyperparameter estimation 

and scoring stages are equated to signal coding, dictionary 

learning and similarity computation respectively. Establishing 

a connection between these two well-researched areas opens 

the doors for cross-pollination between both fields. As an 

example of this, we propose two novel ideas that arise 

naturally form the non-probabilistic perspective and result in 

faster hyperparameter estimation and improved scoring. 

Specifically, the proposed technique for hyperparameter 

estimation avoids the need to use explicit matrix inversions in 

the M-step of the ML estimation. This allows the use of faster 

techniques such as Gauss-Seidel or Cholesky factorizations for 

the computation of the posterior means of the factors 𝐱, 𝐲 and 

𝐳 during the E-step. Regarding the scoring, a similarity 

measure based on a normalized inner product is proposed and 

shown to outperform the state-of-the-art linear scoring 

approach commonly used in JFA. Experimental validation of 

these two novel techniques is presented using closed-set 

identification and speaker verification experiments over the 

Switchboard database.   

 

1. Introduction 

Joint factor analysis has become the state-of-the-art in speaker 

recognition systems [1]. Two major properties of this approach 

are responsible for this. The first one is the ability to obtain a 

fixed-length representation of a variable length object. That is, 

we are able to model a speech recording in terms of a fixed-

length mean supervector. The second, and more important one, 

is that JFA provides a mechanism to explicitly model the 

undesired variability in the speech signal (i.e., intersession 

variability). Based on this, removing undesired components 

from our representation becomes much easier since they are 

explicitly captured. 

It is well known that many problems involving linear 

models can be motivated from a probabilistic perspective as 

well as a deterministic one. For example, a linear curve fitting 

problem can be motivated based on maximum likelihood or a 

simple least squares.  Both approaches have their strengths and 

weaknesses (see [2] for example). The JFA paradigm presents 

a probabilistic perspective around a linear-Gaussian model on 

speaker supervectors. The main goal of this paper is to provide 

a non-probabilistic view of the underlying process followed in 

JFA. The hope is that this alternative perspective will motivate 

new ways of thinking that result in algorithmic improvements.  

 

2. Joint Factor Analysis overview 

Since the introduction of JFA in [1] a great number of 

modifications have been proposed [3]. In order to remove any 

ambiguity about our particular choice of JFA variant, this 

section presents an overview of the three fundamental steps 

involved in the construction of a speaker recognition system: 

model training, hyperparameter estimation and score 

computation.  

2.1. Paradigm 

The Joint Factor Analysis paradigm [4] assumes that a 

sequence of 𝑇 I.I.D. observed vectors, 𝓞 =  𝐨𝑡 𝑡=1
𝑇  with 

𝐨𝑡 ∈ ℝ𝐹 , comes from a two-stage generative model. The first 

stage corresponds to a 𝐾-component Gaussian Mixture Model 

(GMM), 𝛌 =   𝑤𝑘 ,  𝛉𝑘 ,  𝚺𝑘  , that is responsible for 

generating each observed vector 𝐨𝑡  :  

𝑝𝝀 𝐨𝑡 {𝛉𝑘}) =  𝑤𝑘

𝐾

𝑘=1

 
1

 2𝜋 
𝐷
2   𝚺𝑘  

1
2

 exp 
1

2
 𝐨𝑡 − 𝛉𝑘 

𝑇𝚺𝑘
−1 𝐨𝑡 − 𝛉𝑘   

    

with 𝑤𝑘 ∈ ℝ, 𝛉𝑘 ∈ ℝ𝐹and 𝚺𝑘 ∈ ℝ
𝐹×𝐹  for  𝑘 = 1,… , 𝐾 (1) 

The weights and covariance matrices of the GMM are 

considered fixed and known a priori. The means are assumed 

to be random vectors generated by the second stage of the 

generative model. In particular, a mean supervector 𝛉 =
 𝛉1

𝑇 , … , 𝛉𝐾
𝑇  𝑇 ∈ ℝ𝐹𝐾  is constructed by appending together the 

means of each mixture component and is assumed to obey an 

affine linear model (i.e., factor analysis model) of the form 

𝛉 = 𝐦 + 𝐔𝐱 + 𝐕𝐲 + 𝐃𝐳, (2) 

where the vector 𝐦 ∈ ℝ𝐹𝐾  is a fixed offset, the matrices 

𝐕 ∈ ℝ𝐹𝐾×𝑃𝑣  and 𝐔 ∈ ℝ𝐹𝐾×𝑃𝑢   correspond to factor loadings 

and the diagonal matrix 𝐃 ∈ ℝ𝐹𝐾×𝐹𝐾  is a scaling matrix. 

Moreover, the vectors  𝐲 ∈ ℝ𝑃𝑢  and 𝐱 ∈ ℝ𝑃𝑣  are considered as 

the common-factors and 𝒛 ∈ ℝ𝐹𝐾  as the residual-factors. All 

three vectors, 𝐱, 𝐲 and 𝐳 are assumed independent of each 

other and distributed according to a standard Normal 

distribution of appropriate dimension. Consequently, equation 

(2) implies that the prior distribution of the mean supervector 

𝛉 is Gaussian with mean and covariance given by 

𝔼 𝛉 = 𝐦   and   Cov 𝛉 = 𝐔𝐔𝑇 + 𝐕𝐕𝑇 + 𝐃𝐃𝑇 . (3) 

The rationale behind equation (2) is that, aside from the offset 

𝐦, the mean supervector is the superposition of three 

fundamental components with rather distinctive meanings. The 

component that lives in the span(𝐔) is used to denote the 

undesired variability contained in the observed vectors (e.g., 

convolutive or additive noise). Additionally, the span(𝐕) is 

where the basic constituting elements that capture the essence 

of the observed data live. Finally, the diagonal matrix 𝐃 spans 

the entire ambiance space and provides a mechanism to 
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account for the residual variability not captured by the other 

two components.  

In equation (1), the weights {𝑤𝑘} and covariance matrices 

{𝚺𝑘} of the GMM 𝜆 are assumed to be fixed and known a 

priori. In practice, they are obtained from a previously trained 

GMM 𝜆𝑈𝐵𝑀  called Universal Background Model (UBM). This 

UBM must be trained using a large collection of data that is 

representative of the task at hand. Maximum Likelihood 

estimation is the most common approach [5].  

2.2. Model training 

Now that all the elements involved in the JFA model have 

been defined, we are in position to formulate the inference 

problem (i.e., model training). That is, given a sequence of 

observed vectors 𝓞 =  𝐨𝑡 𝑡=1
𝑇 , we want to estimate the free 

parameters of the generating GMM that maximize the 

posterior distribution―which in this case are only the 

component means  𝛉𝑘 . We will also assume that the 

hyperparameters {𝐦,𝐕, 𝐔,𝐃}  of the second stage of the 

generative process are also known (i.e., they have been 

obtained previously from a development data set via the ML 

approach described in next section). Thus, our optimization 

problem takes the form 

max
𝛉

  𝑝(𝛉|𝓞) = max
𝛉

  𝑝𝜆 𝓞 𝛉  𝑝𝜃 𝛉 . (4) 

 In order to keep the formulas as clean as possible, we will 

refer to the entire collection of loading matrices by 𝚽 =
 𝐔 𝐕 𝐃 ∈ ℝ𝐹𝐾×𝑃and all the factors will be collected in 

𝛃 =  𝐱𝑇𝐲𝑇𝐳𝑇 𝑇 ∈ ℝ𝑃 . Using this compact form, the mean 

supervector can also be expressed as 

𝛉 = 𝐦 + 𝚽𝛃. (5) 

Moreover, based on the prior distributions of the factors 𝐱, 𝐲 

and 𝐳 as well as their independence, the vector 𝛃 is distributed 

according to a standard Gaussian distribution. That is 

𝑝𝛽(𝛃) = 𝒩(𝛃; 𝟎, 𝐈). (6) 

Making use of equations (5) and (6) and substituting back into 

(4) an equivalent minimization problem can be obtained in 

terms of 𝛃: 

min
𝛃

{−log 𝑝𝜆 𝓞 𝛉 = 𝐦 + 𝚽𝛃 − log 𝑝𝛽 𝛃 }. (7) 

Once the optimal 𝛃𝑀𝐴𝑃  is obtained, we can compute the 

optimal mean supervector 𝛉𝑀𝐴𝑃  as: 

𝛉𝑀𝐴𝑃 = 𝐦 + 𝚽𝛃𝑀𝐴𝑃 . (8) 

As usual, the analytical solution of this problem is not 

tractable and we use the EM algorithm to obtain a local 

optimizer. In the E-step we compute the occupations of the 

mixture component 𝑘 for the observed vector 𝐨𝑡  as 

𝛾𝑡𝑘 =
𝑤𝑘  𝒩 𝐨𝑡 ; 𝛉 𝑘 , 𝚺𝑘 

 𝑤𝑘
𝐾
𝑘=1  𝒩 𝐨𝑡 ; 𝛉 𝑘 , 𝚺𝑘 

 , (9) 

where 𝛉 =  𝛉 1
𝑇 , … , 𝛉 𝐾

𝑇  
𝑇
∈ ℝ𝐹𝐾 is initialized with 𝐦. Then, in 

the M-step we use the occupations {𝛾𝑡𝑘 } to compute the 

complete-data log likelihood, that along with the prior for 𝛃, 

allow us to obtain the easier to optimize surrogate objective 

Ψ 𝛃 =
1

2
  𝛾𝑡𝑘  

𝑇

𝑡=1

𝐾

𝑘=1

 𝐨𝑡 −𝐦𝑘 −𝚽𝑘𝛃 
𝑇𝚺𝑘

−1 𝐨𝑡 −𝐦𝑘

−𝚽𝑘𝛃 +
1

2
 𝛃𝑇𝛃, 

(10) 

where 𝐦𝑘  is the 𝐹-dimensional sub-vector of 𝐦 indexed by 

the mixture component 𝑘. In order to obtain a complete 

vector-form expression for (10) without the summations, the 

following definitions are useful: 

𝛾𝑘 =  𝛾𝑡𝑘  ,   𝚪𝑘 = 𝛾𝑘 𝐈 ∈ ℝ𝐹×𝐹  

𝑇

𝑡=1

and   
(11) 

𝚪 = diag 𝚪𝑘 ∈  ℝ𝐹𝐾×𝐹𝐾 . 

The scalar 𝛾𝑘  represents how much of the observed data is 

accounted for by mixture 𝑘. The diagonal matrix 𝚪𝑘 is an 

intermediate construct that replicates the scalar 𝛾𝑘  throughout 

𝐹 diagonal entries and the diagonal matrix 𝚪―constructed 

using the diag(∙) operator―contains the 𝐾matrices 𝚪𝑘 in its 

diagonal entries. Additionally, the following objects are also 

useful: 

𝛍𝑘 =
1

𝛾𝑘
 𝛾𝑡𝑘  𝐨𝑡  ,   𝛍 =  𝝁1

𝑇 , … , 𝝁K
𝑇  𝑇 ∈ ℝ𝐹𝐾  

𝑇

𝑡=1

and     
(12) 

𝛈 = 𝛍 −𝐦, 

with 𝛍𝑘  representing the weighted average of the observed 

data that is accounted for by the 𝑘𝑡ℎ  mixture component. 

Taking equation (10), summing over the index 𝑡 and using 𝛍𝑘  

from (12) we obtain 

Ψ 𝛃 =
1

2
 𝛾𝑘  

𝐾

𝑘=1

 𝛍𝑘 −𝐦𝑘 −𝚽𝑘𝛃 
𝑇𝚺𝑘

−1 𝛍𝑘 −𝐦𝑘

−𝚽𝑘𝛃 +
1

2
 𝛃𝑇𝛃. 

(13) 

Finally, the summation over 𝑘 can be taken care of―in an 

implicit way―by using the supervector notation: 

Ψ 𝛃 =
1

2
 𝛈 − 𝚽𝛃 𝑇𝚪𝚺−1 𝛈 − 𝚽𝛃 +

1

2
 𝛃𝑇𝛃, (14) 

where the diagonal matrix 𝚺 = diag 𝚺𝑘 ∈ ℝ𝐹𝐾×𝐹𝐾 . 

Moreover, letting 𝐖 = 𝚪𝚺−1, we can obtain the alternative 

expression: 

Ψ 𝛃 =
1

2
 𝐖

1
2 𝛈 − 𝚽𝛃  

2

2

+
1

2
  𝛃 2

2. (15) 

Noting that by construction 𝐖 is diagonal positive semi-

definite (or positive definite if all Gaussians are responsible 

for some data), it is easy to see that Ψ(𝛃) is strongly convex. 

Hence, computing the gradient and setting it to zero provides a 

necessary and sufficient condition for a unique global 

minimizer.  Performing this operation we obtain a closed-form 

solution to problem (7): 

𝛃𝑀𝐴𝑃 =  𝐈 + 𝚽𝑇𝐖𝚽 −1𝚽𝑇𝐖 𝛈. (16) 

2.3. Hyperparameters estimation 

Since the JFA paradigm is only as good as its hypermeters1, 

the estimation of the set {𝐦, 𝐕,𝐔, 𝐃} has received a lot of 

attention. In particular, some of the variables being explored 

are: amount and type of data, number of dimensions of the 

subspaces, joint or independent estimation, generalization 

capabilities based on utterance duration and recording 

environments [6]. The most widespread criterion for the 

estimation process is the maximization of the likelihood 

function over a development data set [7].The EM algorithm is 

used to maximize the likelihood. The offset supervector 𝐦 

comes from the UBM model. Independent estimation of the 

                                                                 
1 Note that we are not including the covariance matrices  𝚺𝑘  as part 

of the hyperparameters to emphasize the fact that we keep them fixed 

once computed in the UBM training process. 
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matrices 𝐔,𝐕 and 𝐃 reduces the computational complexity 

greatly and provides state-of-the-art results [6]. Hence, that is 

the setup considered throughout this paper. In particular, given 

an initial guess 𝚽0―which depending on the matrix being 

updated is identified with 𝐔0, 𝐕0   or 𝐃0―the E-step, for each 

data file 𝑟,  produces the posterior means 𝛎𝑟 = 𝛃𝑟
𝑀𝐴𝑃  and 

correlation matrices 𝔼 𝛃𝑟𝛃𝑟
𝑇 =  𝐈 + 𝚽0

𝑇𝐖𝑟𝚽0 
−1 + 𝛎𝑟𝛎𝑟

𝑇 . 

The M-step results in the update equation [7]:  

𝚽new
(𝑘)

=   𝛾𝑟𝑘  

𝑅

𝑟=1

𝛈𝑟
(𝑘)
𝛃𝑟   𝛾𝑟𝑘  

𝑅

𝑟=1

𝔼 𝛃𝑟𝛃𝑟
𝑇  

−1

, (17) 

where the super-index (𝑘) indicates the 𝐹-dimensional subset 

of rows corresponding to the mixture 𝑘 and the index 𝑟 runs 

through the elements of the training data set. Thus, if JFA 

comprises a GMM with 𝐾components and 𝚽0 ∈ ℝ
𝐹𝐾×𝑃  , the 

updated 𝚽new  requires the solution of 𝐾 independent systems 

of 𝑃 equations with 𝐹 right-hand side elements. 

2.4.  Scoring 

Once the hyperparameters and model training procedures are 

available, the only remaining component for a complete 

speaker recognition system is a similarity measure between 

models and test utterances. In [8] a comparison of scoring 

techniques ranging from a fully Bayesian approach to simple 

MAP point estimates was presented. The results indicated 

that―given enough data―a linear approximation of the log-

likelihood results in a much faster computation of similarities 

without any significant loss in performance. Adapting their 

formulation to our notation, the speaker model is represented 

by  𝛈 = 𝚽𝛃𝑀𝐴𝑃 − 𝐔𝐱𝑀𝐴𝑃
𝑚𝑜𝑑𝑒𝑙   and the test utterance is 

summarized by its normalized, centered and session 

compensated first order sufficient statistics 𝛈𝑡𝑒𝑠𝑡 − 𝐔𝐱𝑀𝐴𝑃
𝑡𝑒𝑠𝑡 . 

Recalling that 𝐖𝑡𝑒𝑠𝑡 = 𝚪𝑡𝑒𝑠𝑡 𝚺
−1, the final score is nothing 

more than the inner product 

𝑠𝑐𝑜𝑟𝑒 = 𝛈 𝑇  𝐖𝑡𝑒𝑠𝑡 (𝛈𝑡𝑒𝑠𝑡 − 𝐔𝐱𝑀𝐴𝑃
𝑡𝑒𝑠𝑡 ) (18) 

 defined by the diagonal and positive definite matrix1 𝐖𝑡𝑒𝑠𝑡 . 

3. JFA as Signal Coding using Overcomplete 

Dictionaries 

In this section we present a reinterpretation of JFA as a signal 

approximation methodology―based on Ridge regression 

―using an overcomplete dictionary 𝚽 learned from data. With 

a simple change in perspective we will be able to abstract 

some of the unimportant details of JFA and bring to the 

foreground its essential principles. Moreover, establishing a 

connection between JFA and signal coding (SC) opens the 

doors for cross-pollination between fields (see [9] for a review 

of current trends in data-driven overcomplete dictionaries). 

3.1. Signal Coding (SC) 

We propose to deemphasize the two-stage generative model 

and focus on the EM part of the inference process. That is, to 

think of the E-step as a process that given a speech signal 

𝓞 =  𝐨𝑡 𝑡=1
𝑇  with 𝐨𝑡 ∈ ℝ

𝐹 and a 𝐾-mixture UBM 𝜆𝑈𝐵𝑀 =

                                                                 
1 Note that in the case where not all Gaussians are responsible for at 

least one observation, the matrix 𝐖𝑡𝑒𝑠𝑡  is in fact positive semi-definite. 
In that case, equation (18) is still correct if we define the inner product 

in the subspace where the diagonal entries of 𝐖𝑡𝑒𝑠𝑡  are strictly 
positive. 

  𝑤𝑘 ,  𝐦𝑘 ,  𝚺𝑘   produces a fixed-length target vector 

𝛈 ∈ ℝ𝐹𝐾  (see equation (12)) as well as a weighting diagonal 

matrix 𝐖. Then, the M-step can be reinterpreted as a signal 

coding process―of the target vector 𝛈―based on a weighted 

regularized linear regression approach. By looking at equation 

(15), we see that the objective function is comprised of two 

terms.  The first one is a conventional weighted least squares 

loss; whereas the second is a penalty on the energy of the 

regression coefficients (i.e., ridge regularization term). These 

two terms represent a trade-off between the goodness-of-fit 

and the energy used to fit the target. The goal is to 

approximate the target vector 𝛈―as well as possible―with a 

linear combination of the columns of 𝚽 while considering that 

there is a quadratic cost incurred by the amount of usage of 

each column. The diagonal weighting matrix 𝐖 provides a 

mechanism to emphasize/deemphasize the relative importance 

of the coefficients of 𝛈 in the approximation process. 

Fortunately, there is a unique closed-form solution to this 

problem and it was given in (16). Therefore, when using a JFA 

paradigm based on point estimates, the model training process 

is equivalent to a signal approximation. In this case, the signal 

being approximated happens to be the offsets―with respect to 

the UBM supervector 𝐦―of the normalized first order 

statistics 𝛈, contextualized by the soft-partition of the acoustic 

space induced by the UBM. 

3.2. Dictionary Learning 

Following the jargon particular to the sparse coding 

community, we will refer to the matrix 𝚽 as a dictionary 

whose columns are denoted as atoms. For JFA, the dictionary 

is comprised of 𝚽𝐽𝐹𝐴 = [𝐔𝐕𝐃] and is considered 

overcomplete since there are more columns than rows. This 

notation also applies to the eigenchannel configuration 

𝚽𝐸𝐶𝐻 = [𝐔𝐃] as well as the relevance MAP formulation 

𝚽𝑟𝑀𝐴𝑃 = 𝐃𝑟𝑀𝐴𝑃  (although in this last case the dictionary is 

not overcomplete). The atoms of the dictionary should 

represent the basic constituent elements of the signals being 

coded as well as their typical distortions. In order for this to be 

the case, the best alternative is to learn these atomic 

representations from actual data similar to the one being 

coded. Thus, the process of learning a dictionary from data is 

equivalent to the estimation of hyperparameters in JFA. 

Specifically, given a training data set 𝕯 =  𝓞𝑟 𝑟=1
𝑅  with 𝑅 

utterances―after applying the E-step described in the (SC) 

section―the information in each utterance 𝓞𝑟  is represented 

by the pair (𝛈𝑟 ,𝐖𝑟). Hence, the dictionary training problem is 

expressed as: 

min
𝚽,{𝛃𝑟}

  𝐖𝑟

1
2 𝛈𝑟 −𝚽𝛃𝑟  

2

2

+  𝛃𝑟 2
2

𝑅

𝑟=1

. (19) 

Note that unlike equation (15), the objective in (19) also 

involves the dictionary as an optimization variable. Hence, 

even though when considered as a function of either {𝛃𝑟} or 𝚽 

the objective is convex, it is not the case for the joint 

optimization in (19). This situation arises quite frequently and 

the use of alternating optimization [10] is one of the most 

conventional ways to address it. 

3.2.1. Block coordinate descent (BCD) minimization 

A particular configuration of alternating optimization known 

as block coordinate minimization (a.k.a non-linear Gauss-

Seidel) is well suited for the case at hand [10]. Specifically, we 
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consider a two step process. In one step, the block of variables 

𝚽 is fixed and the objective is minimized with respect to {𝛃𝑟}. 

In the other step, the dictionary is updated while keeping the 

coefficients obtained in the previous step  𝛃𝑟 
𝑜𝑝𝑡  fixed. 

Cycling between these two steps is repeated until convergence 

or sufficient decrease of the objective is obtained. Because the 

joint objective in (19) is non-convex this method only finds a 

local minimum and different initial values of the dictionary 𝚽0 

lead to different solutions.  Note that the first step is exactly 

the SC stage described in the previous section. The second 

step is denoted as dictionary update (DU) and is addressed 

next.  

3.2.2. Dictionary Update (DU) 

Keeping the regression coefficients fixed for all utterances, the 

minimization of the objective in (19) with respect to the 

dictionary reduces to 

min
𝚽

  𝐖𝑟

1
2 𝛈𝑟 −𝚽𝛃𝑟  

2

2

.

𝑅

𝑟=1

 (20) 

A simple application of the definition of convexity reveals that 

for any given utterance (𝛈𝑟 ,𝐖𝑟) the corresponding term 

inside the summation is convex. Subsequently, the positive 

sum of 𝑅 convex functions remains convex. Note that unlike 

in the SC step, in general the DU objective in (20) is not 

strongly convex and therefore there is no guarantee for a 

unique minimizer. However, any local minimizer is also 

global. Again, due to convexity, computing the gradient and 

setting it to zero provides a necessary and sufficient condition 

for a local/global minimizer. Using the identity 𝐚𝑇𝐛 = tr{𝐛𝐚𝑇} 

the problem in (20) is equivalent to 

min
𝚽

 tr{𝐖𝑟𝚽𝛃𝑟𝛃𝑟
𝑇𝚽𝑇}

𝑅

𝑟=1

− 2 tr 𝐖𝑟𝛈𝑟𝛃𝑟
𝑇𝚽𝑇 . (21) 

Setting the gradient with respect to the dictionary 𝚽 to zero 

results in   

 𝐖𝑟𝚽𝛃𝑟𝛃𝑟
𝑇 =

𝑅

𝑟=1

 𝐖𝑟𝛈𝑟𝛃𝑟
𝑇

𝑅

𝑟=1

. (22) 

Which, when restricted to the 𝐹 rows corresponding to the 𝑘𝑡ℎ  

mixture simplifies to 

𝚽𝑛𝑒𝑤
 𝑘 

  𝛾𝑟𝑘𝛃𝑟𝛃𝑟
𝑇

𝑅

𝑟=1

 =  𝛾𝑟𝑘𝛈𝑟
(𝑘)
𝛃𝑟
𝑇

𝑅

𝑟=1

. (23) 

Comparing this result with the one obtained in (17) we can see 

that they are the same if we set the posterior covariance 

matrices 𝑐𝑜𝑣(𝛃𝑟𝛃𝑟
𝑇) to zero. This is consistent with our 

formulation since we are ignoring the underlying probabilistic 

assumptions of the JFA model and treating the problem as a 

simple signal approximation. 

3.2.3. Dictionary learning algorithm 

An important algorithmic opportunity arises from this new 

perspective. In particular, we are going to exploit the 

computational advantage derived from the fact that no explicit 

matrix inversions are necessary. That is, we no longer need to 

compute  𝐈 + 𝚽𝑇𝐖𝑟𝚽 
−1 explicitly for each utterance to 

perform the dictionary update. This observation affects the DU 

step slightly but the most important gain comes from the SC 

step of the dictionary learning process. That is, much faster 

and numerically stable methods like Gauss-Seidel [11] or 

Cholesky factorizations can be used in the SC step1 since no 

explicit matrix inversions are needed. Regarding the DU step, 

denoting the sum of 𝑅 rank-one matrices corresponding to the 

𝑘𝑡ℎ  mixture by 

 𝛾𝑟𝑘𝛃𝑟𝛃𝑟
𝑇𝑅

𝑟=1 = 𝐀𝑅
(𝑘)

∈ ℝ𝑃×𝑃  (24) 

and assuming that 𝑅 is large enough so that 𝐀𝑅
(𝑘)

is invertible, 

the updated 𝚽new  requires the solution of 𝐾 independent 

systems of 𝑃 equations with 𝐹 right-hand side elements. A 

hybrid update formula between (23) and (17) can be obtained 

by setting  

𝐀𝑅
 𝑘 

=  𝛾𝑘   𝐈 + 𝚽𝑜
𝑇𝐖𝑎𝑣𝑔

 𝑘 
𝚽𝑜 

−1
+   𝛾𝑟𝑘𝛃𝑟𝛃𝑟

𝑇𝑅
𝑟=1 , (25) 

where 𝚽𝑜  comes from the previous iteration of the DU (or 

from a simple PCA initialization for the first iteration). Also, 

𝐖𝑎𝑣𝑔
(𝑘)

= 𝚪𝑎𝑣𝑔
(𝑘)

𝚺−1 with 𝚪𝑎𝑣𝑔
(𝑘)

=
1

𝑅
  𝚪𝑟

(𝑘)𝑅
𝑟=1  from the training 

set and 𝛾𝑘 =  𝛾𝑟𝑘
𝑅
𝑟=1 . In this way, instead of completely 

neglecting the covariance matrices 𝑐𝑜𝑣 𝛃𝑟𝛃𝑟
𝑇  of the JFA 

model, we approximate all of them with a common one 

obtained by averaging the occupancy matrices 𝚪𝑟
(𝑘)

 over the 

entire training set. Also, using (25) removes any uncertainty 

about 𝐀𝑅
(𝑘)

 being invertible.  

Dictionary learning algorithm 

1: Input:   𝛈𝑟 ,𝐖𝑟  𝑟=1
𝑅  and 𝚽𝑜 

2: 
Initialize: 𝐖𝑎𝑣𝑔 =

1

𝑅
 𝐖𝑟
𝑅
𝑟=1 ,  

𝚽𝑛𝑒𝑤 = 𝚽𝑜𝑙𝑑 = 𝚽𝑜 

3: Until convergence: 

4: 
SC: Solve for each 𝛃𝑟 in (16) using 

Gauss-Seidel or Cholesky with 𝚽𝑛𝑒𝑤 

5: Dictionary update (DU): 

6: For each mixture 𝑘 = 1:𝐾 

7: 
𝐀𝑜 = 𝛾𝑘  𝚽𝑜𝑙𝑑

𝑇 𝐖𝑎𝑣𝑔
 𝑘 

𝚽𝑜𝑙𝑑 +  𝐈  
−1

  or 

𝐀𝑜 = 0 and 𝐂𝑜 = 0 

8: For each utterance 𝑟 = 1: 𝑅 

9: 𝐀𝑟 = 𝐀𝑟−1 + 𝛾𝑟𝑘  𝛃𝑟𝛃𝑟
𝑇  

10: 𝐂𝑟 = 𝐂𝑟−1 + 𝛾𝑟𝑘𝛈𝑟
(𝑘)
𝛃𝑟
𝑇  

11: End for each utterance 

12: Solve 𝚽𝑛𝑒𝑤
(𝑘)

𝐀𝑅 = 𝐂𝑅 using Gauss-
Seidel or Cholesky 

13: End for each mixture 

14: 𝚽𝑛𝑒𝑤 = [𝚽𝑛𝑒𝑤
1 ; … ;𝚽𝑛𝑒𝑤

𝐾 ]  
15: End Dictionary Update  

16: End until convergence 

Figure 1. Dictionary learning algorithm based on alternating 

minimization with two steps. 

Figure 1 summarizes the proposed algorithm for the dictionary 

learning process. Note that throughout the theoretical 

presentation in sections 2 and 3 we have used the dictionary 𝚽 

as a wild-card notation to refer to multiple combinations of the 

loading matrices 𝐔,𝐕 and 𝐃. Hence, the dictionary learning 

algorithm in figure 1 should be applied in a way consistent 

with the configuration at hand. As it was the case for the 

hyperparameter estimation procedure in section 2, the 

                                                                 
1 These techniques are also suitable for the JFA model, but if used 

instead of an explicit inversion, the task of computing the posterior 

covariance matrices still remains. 
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formulation presented in this section is only applicable for the 

decoupled/independent estimation of 𝐔,𝐕 and 𝐃. Therefore, 

the way to present the data to the dictionary learning algorithm 

should be consistent with this approach. An experimental 

analysis regarding the influence of the choice of 𝐀𝑅
(𝑘)

 in the 

resulting dictionary 𝚽 is presented in section 4. Moreover, the 

influence in speaker recognition performance is also analyzed. 

3.3. Scoring 

Given two utterances A and B defined by (𝛈𝐴 ,𝐖𝐴) and 

(𝛈𝐵 ,𝐖𝐵)―after coding them with the dictionary 𝚽𝐽𝐹𝐴 =
 𝐔𝐕𝐃 ―we obtain two approximations  𝛈 𝐴 = 𝚽𝐽𝐹𝐴𝛃𝐴 and 

𝛈 𝐵 = 𝚽𝐽𝐹𝐴𝛃𝐵. Since some of the atoms in the dictionary are 

explicitly representing undesired distortions (i.e., columns of 

𝐔), setting to zero the corresponding entries in 𝛃𝐴 and 𝛃𝐵 

yields a compensated approximation of the signals 𝛈 𝐴|𝑐  and 

𝛈 𝐵|𝑐 . Once these compensated signal approximations are 

obtained, a similarity measure can be defined by means of an 

inner product  

𝑠𝑐𝑜𝑟𝑒 =  𝛈 𝐴|𝑐 , 𝛈 𝐵|𝑐 𝐖#
=  𝛈 𝐴|𝑐

𝑇 𝐖#𝛈 𝐵|𝑐  (26) 

where 𝑊# can be any symmetric positive definite matrix. 

Immediate candidates are 𝐖𝐴 ,𝐖𝐵  and 𝐖𝑈𝐵𝑀 . Note that from 

the perspective of signal coding, the concepts of model and 

test segment are blurred since both utterances are represented 

in the same way. However, if we identify 𝛈 𝐴|𝑐  as a model and 

set 𝐖# = 𝐖𝐵  the only difference between (26) and the linear 

approximation of the log-likelihood ratio in (18) is the way in 

which the test segment is encoded. Specifically, the test 

segment is represented by simply removing its encoding with 

respect to the atoms in 𝐔 from 𝛈𝐵. A comparison of both 

approaches is presented in the next section. Finally, another 

interesting idea that will be explored in the experiments is the 

effect of normalizing the scores (i.e., using the cosine of the 

angle between the compensated approximations as the 

similarity measure). 

𝑛𝑜𝑟𝑚_𝑠𝑐𝑜𝑟𝑒 =  
 𝛈 𝐴|𝑐 , 𝛈 𝐵|𝑐 𝐖#

 𝛈 𝐴|𝑐 , 𝛈 𝐴|𝑐 𝐖#

1/2
  𝛈 𝐵|𝑐 , 𝛈 𝐵|𝑐 𝐖#

1/2
 (27) 

This normalization technique has already produced successful 

results when used as a kernel for SVMs on the speaker factor 

space spanned by the columns of 𝐕 [12].  Moreover, an 

extension of that work into a new subspace―denoted as total 

variability space―has validated the excellent discriminative 

power of this similarity measure [13]. However, to the best of 

our knowledge, no use of this normalization has been directly 

studied in the mean supervector space. 

4. Experimental setup 

4.1. Switchboard-I database (SWB-I) 

The Switchboard-I database is comprised of conversational 

speech between two speakers recorded over landline telephone 

channels with a sampling rate of 8 KHz. The average duration 

of each conversation is 5 minutes (approx. 2.5 min per 

speaker) and each conversation side is recorded in a different 

file. The total number of speakers in the database is 520 with a 

balance in gender and recorded into 4856 speech files. The 

telephone handsets were either electret or carbon button with 

an approximate proportion of 70% and 30% respectively. 

4.2. Recognition system configuration 

Each file in the database was parameterized into a sequence of 

19-dimensional MFCC vectors using a 20ms Hamming 

window with a 10ms shift. The MFCC vectors were computed 

using a simulated triangular filterbank on the FFT spectrum. 

Prior to projecting the Mel-frequency band (MFB) energies 

into a DCT basis, bandlimiting was performed by discarding 

the filterbank outputs outside of the frequency range 300Hz-

3138Hz. Finally, after projecting the MFB energies into a 

DCT basis and discarding C0, the 19-MFCC vectors were 

augmented with delta features resulting in 𝐹 = 39 coefficients 

per frame. 

SWB-I was partitioned into two sets, P1 and P2, of 260 

speakers each with a balance in gender and handset type. A 

2048-mixture gender-independent UBM with diagonal 

covariance matrices was trained on P2. The data in P2 was 

also used for hyperparameter/dictionary learning. In particular, 

we used an eigenchannel setup 𝚽𝐸𝐶𝐻 =  𝐔𝐃  with 𝐾𝐹 = 

77824, 𝑈 ∈ ℝ𝐾𝐹×𝑃 and the standard relevance-MAP diagonal 

matrix 𝐃 was fixed to  𝐃2 = Σ/𝜏 with 𝜏 = 16. This 

configuration is general enough to validate our theoretical 

developments while avoiding unnecessary complexity in 

illustrating the underlying principles of the proposed 

techniques. 

4.3. Experiments 

In order to evaluate the theoretical exposition of the previous 

section we present three different sets of experiments. The first 

one is concerned with the effects of different DU steps in the 

learned dictionaries as well as the effect in speaker recognition 

accuracy. The second set of experiments is designed to 

evaluate the influence of different signal coding strategies 

along with various types of inner products for scoring. Finally, 

the third batch of experiments analyzes the influence of the 

normalization of the scores according to (27) in a verification 

task and compares our proposed similarity measure with the 

linear approximation of the log-likelihood introduced in [8]. 

4.3.1. Analysis of dictionary learning procedure 

Equation (17) from the JFA model as well as equations (24) 

and (25) from the SC model provide three different DU 

mechanisms. We will refer to the updates in (17), (24) and 

(25) as Full, Zero and Average updates respectively. This 

notation stems from the fact that (17) takes a full account of 

the posterior covariance matrices; (24) can be understood as 

setting them to zero; and (25) considers a common and 

averaged covariance matrix for all utterances in the dictionary 

training set. The computational advantages of (24) and (25) 

over (17) were briefly discussed in section 3.2. However, the 

effects of this computational saving in the learned dictionaries 

are not evident and thus require some experimental analysis. 

We would like to know how the dynamics of the sequence of 

dictionaries generated by multiple iterations of the dictionary 

learning algorithm in figure 1 are affected. To study this, we 

apply the dictionary learning algorithm with the full, average 

and zero updates to obtain a sequence of eigenchannel 

subspaces 𝐔𝐹(𝑖), 𝐔𝐴(𝑖) and 𝐔𝑧(𝑖) with 𝑖 = 0,… ,10. The 2411 

utterances coming from the 260 speakers of P2 where used for 

each iteration. To quantify the similarity between two 

subspaces, we used a metric between the subspaces spanned 

by the columns of the matrices 𝐀 ∈ ℝ𝐹𝐾×𝑃𝐴  and 𝐁 ∈ ℝ𝐾𝐹×𝑃𝐵  

known as the projection distance [14]  
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𝑝𝑑𝑖𝑠𝑡 𝐀, 𝐁 =   𝐀𝐀𝑇 − 𝐁𝐁𝑇 𝐹
2 . (28) 

Since the projection distance is at most the min(𝑃𝐴 , 𝑃𝐵), we 

normalized (28) to produce results between [0,1]. Figure 2 

shows the projection distance of the average and zero updates 

with respect to the full update. The curves with the triangle 

markers refer to the distance between the full and average 

updates. The curves with the asterisk indicate the distance 

between the full and the zero update. Moreover, the color 

codes refer to the dimension of the subspaces computed (i.e., 

blue=128, green=64 and red=32 dimensions). A simple look at 

the y-axis shows that the normalized projection distances are 

very low for all configurations (since the maximum possible 

value is 1). Furthermore, the larger the dimensionality of the 

subspaces the larger the projection distances. As expected, the 

distance of the subspaces produced by the average update is 

smaller than those produced by the zero update. These results 

confirm that the three DU techniques produce very similar 

dictionaries. 

 
Figure 2. Normalized projection distance between subspaces of 

dimensions 128, 64 and 32 learned using different DU formulas. 

 

Even though the distance between subspaces might not be too 

large, the effects in the recognition accuracy may not behave 

in the same way. To check this, a closed-set identification 

experiment was used. We coded each of the 2408 utterances 

from partition P1 using the dictionaries obtained after the 6th 

iteration. The normalized score in equation (27) was used with 

the inner product defined by the weights and covariance 

matrices of the UBM. We obtained 33866 identification trials 

based on the 2408 utterances. The details about how we 

constructed these trials are provided in next section. Table 1 

shows that the effect in identification accuracy is negligible. 

Hence, we can claim that for a scenario where enough 

utterances are available for dictionary training, the average and 

zero update rules provide computational advantages without 

any significant loss in performance. The robustness of these 

two techniques to amount of data is still an open issue for 

future research. 

𝐏𝑼 Full 𝐀𝑹
(𝒌)

 Avg. 𝐀𝑹
(𝒌)

 Zero 𝐀𝑹
(𝒌)

 

128 95.0% 94.9% 94.9% 

64 94.5% 94.5% 94.5% 

32 93.3% 93.3% 93.3% 
Table 1. Closed-set identification accuracy for dictionaries learned 

with three DU formulas (full, average and zero). Three dimensios of 

the eigenchannel space 𝐔 are presented. 

4.3.2. Closed-set speaker identification 

This section explores the influence of different signal coding 

strategies along with various types of inner products in the 

context of speaker identification. We intentionally selected an 

identification setup in order to remove the influence of a 

verification threshold from the analysis. We obtained 33866 

identification trials based on the 2408 utterances from 260 

speakers in P1. The protocol followed was as follows, for each 

speaker we picked one of its utterances and encode it to 

represent a model. Then, another utterance form that same 

speaker was selected as the test segment; and the remaining 

utterances from the rest of the speakers were used as models. 

This procedure was repeated exhaustively for all the utterances 

of each speaker and for all the speakers. The dimensionality of 

the eigenchannel space was explored and 128 dimensions 

produced the best results. Also, the average update rule was 

used in the learning process. 

Figure 3 shows the influence of three different inner 

products in our SC formulation with normalized scoring 

(bottom left panel). The three inner products are defined by the 

matrices 𝐖𝐼 = 𝐈, 𝐖𝒖𝒃𝒎 and 𝐖𝑡𝑒𝑠𝑡 . The last two have already 

been discussed and the first one indicates the standard inner 

product. For comparison, we also analyze the influence of 

these inner products in other techniques such as: ML model 

training (top left), relevance MAP (top center), and the 

standard eigenchannel configuration with linear scoring 

(bottom center). A general trend is observed regardless of the 

modeling technique used; the use of the standard inner product 

performs much worse in all cases. This makes sense since not 

all the information is evenly distributed across the acoustic 

space. Therefore, penalizing by the amount of data (i.e., small 

value of the first order statistics) as well as the variability 

within the soft regions associated with each Gaussian (i.e., 

covariance of the UBM) is very effective. This concept is not 

new and has been exploited in the formulation of the KL-

kernel (i.e., inner product defined by 𝐖𝒖𝒃𝒎) in [15]. The 

results obtained with 𝐖𝒖𝒃𝒎 and 𝐖𝑡𝑒𝑠𝑡  change depending on 

the modeling strategy followed. For our SC approach, the use 

of both inner products produces comparable results. However, 

for the standard eigenchannel model with linear scoring, 𝐖𝑡𝑒𝑠𝑡  

produces significantly better results (and in the same range as 

the SC approach). The sensitivity with respect to the inner 

product is understandable since the linear scoring is an 

approximation of the log-likelihood ratio and by changing the 

inner product the approximation is less accurate. 

After the first two iterations not much difference is 

obtained in the identification performance. This extremely fast 

convergence might be explained by the fact that the dictionary 

training data and the test set are very similar. Also, 

identification results based on the factors (bottom right) and 

the information in the eigenchannel subspace (top right) are 

included for diagnostic purposes. In particular we can observe 

that the eigenchannel subspace also contains speaker 

information since an accuracy of almost 70% is obtained. The 

factors 𝐱 and 𝐳 behave as expected. Finally, even though not 

explicitly shown in the paper, the performance of the 

normalized and un-normalized scoring techniques was 

assessed. No significant difference was observed for neither 

the SC approach nor the standard eigenchannel formulation. 

This makes sense since for identification purposes what 

matters is the relative positioning of scores and not their 

scaling. In the next section we explore this issue in the context 
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of speaker verification where the scaling of the scores is 

critical. 

4.3.3. Speaker verification 

Based on the 2408 utterances from the 260 speakers in P1 a 

verification experiment was designed. Specifically, a leave- 

one-out strategy was used. That is, each file was used as a 

model and the remaining 2407 utterances were used as test 

segments. This protocol produced a great number of trials 

(33,866 target and 5,764,598 non-target). However, since our 

proposed scoring as well as the linear scoring methods are 

simple inner products between high dimensional vectors, the 

entire set of trials was computed in a less than 5 minutes. The 

main purpose of this setup was to assess the influence of the 

score normalization proposed in (27).  

Figure 4. Verification results for different scoring methods. 

Figure 4 shows the verification results. Three 

observations are in place. First, using the cosine of the angle 

between the vectors results in more than a 25% relative 

improvement in EER for both linear scoring in (17) and our 

proposed un-normalized inner product of (26). Second, the 

effects of the normalization are slightly better for the our 

approach. Finally, while the performance of the un-normalized 

scores is better for the linear scoring, the normalized SC scores 

produce slightly better performance under normalization. 

5. Conclusions 

We have established a connection between the Joint Factor 

Analysis paradigm for speaker recognition and signal coding 

using an overcomplete dictionary learned from data. The 

probabilistic concepts of model training, hyperparameter 

estimation and likelihood ratio computation were equated to 

the non-probabilistic notions of signal coding, dictionary 

learning and similarity computation respectively. Two novel 

ideas were proposed that resulted in faster hyperparameter 

estimation and improved scoring. Specifically, the proposed 

technique for hyperparameter estimation was able to avoid the 

need for explicit matrix inversions in the M-step of the ML 

estimation. This allowed the use of faster techniques such as 

Gauss-Seidel or Cholesky factorizations for the computation 

of the posterior means of the factors 𝐱, 𝐲 and 𝐳 during the E-

step. Regarding the scoring, different similarity measures 

based on inner products―defined by symmetric positive 

definite matrices derived from data―were studied. A simple 

normalization technique of these inner products was shown to 

improve the verification performance of our recognition 

system using a dictionary comprised of eigenchannels and a 

fixed relevance-MAP matrix 𝐃. Based on this experimental 

setup, slightly better results than those produced by the state-

of-the-art linear scoring approach were reported.  The 

experimental validation of these two novel techniques was 

presented using closed-set identification and speaker 

verification experiments over the Switchboard database.   

  

 
Figure 3. Closed-set identification results for six different  modeling approaches (see main text for description) along with three different scoring 

techniques based on the inner products defined by the symmetric positive definite matrices W𝐼 ,𝑊𝑢𝑏𝑚 ,𝑊𝑡𝑒𝑠𝑡 . 
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