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Abstract
Speaker verification systems have shown significant progress
and have reached a level of performance that make their use
in practical applications possible. Nevertheless, large differ-
ences in terms of performance are observed, depending on the
speaker or the speech excerpt used. This context emphasizes
the importance of a deeper analysis of the system’s performance
over average error rate. In this paper, the effect of the training
excerpt is investigated using ALIZE/SpkDet on two different
corpora: NIST-SRE 08 (conversational speech) and BREF 120
(controlled read speech). The results show that the SVS perfor-
mance are highly dependent on the voice samples used to train
the speaker model: the overall Equal Error Rate (EER) ranges
from 4.1% to 29.1% on NIST-SRE 08 and from 1.0% to 33.0%
on BREF 120. The hypothesis that such performance differ-
ences are explained by phonetic contents of voice samples is
studied on BREF 120.

1. Introduction
Over the last decade, automatic speaker verification systems
(SVS) have been assessed regularly by the National Institute of
Standards and Technology (NIST) [1]. The evaluation focuses
on text-independent speaker detection and offers a common ex-
perimental protocol and a stable set of evaluation rules.
Although the task difficulty is changing through years, the NIST
campaigns clearly show a drastic progress in terms of perfor-
mance during the last years. The level of performance reached
by the systems has become suitable for a large set of practical,
commercial applications. Many applications are already avail-
able or planned for the next future, including the forensic ones.
This context underlines the importance of a deep analysis of
the system’s performance, for instance on a per speaker basis,
while the performance is usually assessed only through average
error rate. In addition to the average performance information,
performance variability also needs to be evaluated. Indeed, the
identification of the performance variation factors is necessary
for determining the contexts in which those systems may be
used.
The system performance is commonly measured using two
kinds of errors. A false acceptance (FA) occurs when an impos-
tor is accepted by the system. A false rejection (FR) consists of
rejecting a valid identity. Both error rates depend on the thresh-
old used in the decision making process. Among the measures
used to compare system performances, detection error trade-off
(DET) curve [2], Equal Error Rate (EER) and Decision Cost
Function (DCF) are usually used. The DET curve is obtained
by plotting on a normal deviate curve the FA rate as a function
of the FR rate. The EER corresponds to the operating point
where FA rate = FR rate when the DCF corresponds to a spe-
cific operating point, described by the weight tied to each error

(FA and FR) and the prior probabilities of these errors. In NIST
evaluation, each training excerpt is regarded as produced by a
different speaker, but the same speaker may have been recorded
in several extracts. No comparison between these different ex-
tracts is conducted.
Some studies have investigated the possible causes of perfor-
mance variation. [3] showed that the performance of the system
may be improved by increasing the length of the training and
testing signals. Indeed, the EER raised from 4.48% up to more
than 30% when the duration of the training signals are shortened
from 2.5 minutes to 10 seconds. Moreover, a short excerpt in
training is more disadvantageous than a short excerpt in testing
(more than 14% of EER with short excerpts in testing vs. more
than 17% of EER with short excerpts in training)
Inter-speaker variation has also been studied. Doddington et al.
[4] studied the errors induced by different speakers in 12 auto-
matic speaker verification systems, and showed that the topol-
ogy of the errors depends on speakers, consistently from one
system to another. They distinguished 4 types of speakers, il-
lustrated by a ’menagerie’. Sheeps correspond to the default
speaker type (low FA, low FR). Goats are speakers who gen-
erate a disproportionate false rejection rate. Lambs correspond
to speakers who generate a disproportionate false alarm rate.
Wolves correspond to speakers that are likely to be mistaken for
an other speaker.
Finally, the influence of the phonetic content of test excerpts
was evaluated by [5]. Results suggest that glides and liquids
together, vowels and more particularly nasal vowels and nasal
consonants contain more speaker-specific information than pho-
netically balanced test utterances, even though the training ex-
cerpt were composed of 15 seconds of phonetically balanced
speech.
This paper focuses on the variability due to the signal sample
used to represent the speaker voice. The information about the
speaker may differ among training excerpts. The aim of this pa-
per is to quantify the effect of such a variability on SVS perfor-
mance. The SVS scores for each training excerpt are compared
in order to selected the best and the worst training excerpts.
Global performance is assessed using two different databases.
Section 2 describes the system used. Section 3 and 4 investi-
gate on the effect of training excerpt on NIST-08 and Bref 120
database respectively. A preliminary phonetic analysis on the
BREF 120 database is conducted in section 5 before conclud-
ing in section 6.

2. System
The speaker verification system used in this paper is the open
source toolkit ALIZE/SpkDet [6]. This system is regularly as-
sessed during the NIST speaker recognition evaluation. It is
based on the UBM/GMM approach and it includes a latent fac-
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tor analysis inter-session variability modeling [7]. Since score
normalizations show little effect on the performances, as illus-
trated by figure 1 (3.42%≤EER≤4.55%), no score normaliza-
tion is applied .

Figure 1: DET Curves without normalization and with ZT, Z
and T normalizations (NIST08, male, english only).

3. Effect of the training excerpt on system
performance on NIST-08

The aim of this part is to quantify the system performance range
according to the training signal. A permutation training testing
excerpt is conducted to evaluate the relative effects of training
and testing on system’s performances.

3.1. Experiments

3.1.1. NIST-08

The data collection used for experiments is derived from the
male part of the NIST-SRE08 telephone speech database. Most
of the data are in English, but some conversations are collected
in a number of other languages. The segment duration is ap-
proximately 2.5 minutes (condition short2-short3 in NIST pro-
tocol). This condition of the NIST-SRE08 protocol is referred
as NIST-08 in this paper. A same speaker may have pronounced
several training excerpt. NIST-08 contains 221 speakers mod-
eled from 648 training excerpts. 11,636 non-target trials and
874 target trials are conducted. Each speaker counts 4 target
trials in average.

3.1.2. M-08 : extension of NIST-08

In order to maximize the number of target trials for each
speaker, a leave-one-out scheme was implemented. For each
speaker, a speaker model is trained using a speech sample while
the other available samples of this speaker are used as target
tests. This process is repeated for each speech segment avail-
able. This protocol is referred in this paper as M-08. 50 speak-
ers of NIST-08 pronounced less than two speech segments and

are removed. M-08 therefore includes 171 speakers with 816
excerpts, which means 3 to 15 voice samples per speaker. Each
model computed from a given training excerpt was compared
to 801 to 813 non-target tests, and to 2 to 14 target tests. As a
result, a total of 661,416 non-target and 3,624 target trials are
performed in M-08. Table 1 summarizes the number of speak-
ers, models, target trials and non-target trials in NIST-08 and
M-08 conditions.

Speakers Models Target Non-target
NIST-08 221 648 874 11,636

M-08 171 816 3,624 661,416

Table 1: Description of NIST-08 and M-08.

3.1.3. Best and worst models selection

For each speaker, the best and the worst training files were se-
lected among all the speech excerpts available for this speaker.
For a given training file, FA and FR rates are estimated on M-08,
using a threshold set to the EER point. This threshold is kept
constant in all experiments performed on M-08. The best train-
ing excerpt is the one that minimizes FA+FR while the worst
maximizes this value.
The average performances obtained with both training excerpts
are compared to the average performance obtained using the
training file defined in NIST-08. Speakers with only two speech
excerpts were discarded from the analyzed set. In addition of
that, the samples used as training excerpts for either the best
or the worst speaker model were excluded from the test set, to
avoid using a given file for both training and testing. Therefore,
the test set was composed of the same speech signals for each
training condition. These constraints give an experimental pro-
tocol with 511 target trials and 2,856 non-target trials.
In this protocol, 3 different conditions were applied in the se-
lection of the training excerpt used to model each speaker :

• NIST-3. The training file is the one proposed in the orig-
inal NIST protocol.

• Min. The training excerpt is selected by minimizing the
sum of FA and FR rates computed on M-08.

• Max. The training excerpt is selected in order to maxi-
mize the sum of FA and FR rates computed on M-08.

3.1.4. Training and test excerpts permutation

Performance symmetry between testing signals and training sig-
nals is investigated to assess their relative weights in the perfor-
mance obtained. If performance turns out to be symmetric, then
errors may be explained by joint analyses of the training ex-
cerpt/test excerpt pairs. Conversely, large differences in perfor-
mances obtained with the original pairs and the permuted ones
would imply that training and tests excerpts have to be weighted
when their characteristics are analyzed with regards to the per-
formance induced.
NIST-03-inv, Min-inv et Max-inv are defined as the symmetric
sets of NIST-03, Min and Max respectively. In these 3 permuted
sets, training excerpts of the original sets are used for testing,
and testing excerpts for training.
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3.2. Results

3.2.1. Training excerpt effect

Figure 2 presents the DET curves for the 3 conditions (NIST-3,
Min, Max). The EER are 12.1%, 4.1%, and 21.9% for NIST-3,
Min, and Max conditions respectively. Looking at these results,
it appears clearly that the choice of the training excerpt used to
model each speaker plays an important role in the performance
of the speaker verification system.

Figure 2: DET curves for Min (EER=4.1%) (1), NIST-3
(EER=12.1%) (2), and Max (EER=21.9%) (3).

3.2.2. Permutation

Figure 3 presents DET curves for each set NIST-3-inv, Min-inv
and Max-inv. When compared to corresponding non-inverted
sets, the EER Min-inv raises up to 7,4% (+ 3.1%), while the
EER in Max-inv decreases down to 17,0% (- 4.9%). The EER
for NIST-3 is 13,5% (+ 1.4%). The difference between the orig-
inal set and the permuted one is substantial (more than 3 points)
in the case of worst and best models.

3.3. Discussion

Training signal selection substantially modifies the global per-
formance of the system while the speakers and the test excerpts
remain the same in each set. Indeed, while the performance in
the Min set is better than in the Max set, this pattern is reverted
when training and test signals are permuted to obtain the Min-
inv and Max-inv conditions. It is worth noting that, even if the
ranking is the same, the variation in performance is higher when
the training excerpts vary than when the testing excerpt vary.
The number of frames selected in Min and Max excerpts are sig-
nificantly different, as shown by a paired t-test (t(170)=11.11,
p<0.001). The training excerpts that lead to the best speaker
verification performance contain more frames (7495 in average
in Min vs. 7112 in Max). However, other factors may account
for the performance differences observed between those two
sets of models. Indeed, the NIST database includes different

Figure 3: DET curves for Min-inv (EER=7.4%) (1), NIST-3-inv
(EER=13.5%) (2), and Max-inv (3) (EER=17.0%).

langugages and different recording conditions. In addition of
that, the phonetic content may also vary among files.

4. Effect of the training excerpt on system
performance on BREF 120

The BREF 120 database contains 66,000 single-session phonet-
ically balanced aloud-read French sentences [8]. The available
transcriptions may be used in order to obtain a phonetic label-
ing.

4.1. Experiments

4.1.1. BREF 120

The BREF 120 database is mainly composed of sentences pro-
duced by native French speakers, but also includes non-native
speakers that have been discarded from the present study. The
64 female and 47 male remaining French native speakers were
considered in this experiment. For each speaker, sentences were
concatenated in a random way in order to generate files that con-
tain a number of selected frames bigger than 3000, i.e. more
than 30 seconds of selected speech signal. As an integer num-
ber of sentences are concatenated without being cut, the number
of selected frames varies from 3400 up to 4200 per file. A set
of 39 files is generated for each speaker. 18 files are reserved
for training while the 21 files are used for testing. All combina-
tions are assessed. For each male speaker, 378 target trials and
17,388 non-target trials are conducted. For each female speaker,
378 target trials and 23,814 non-target trials are conducted. Al-
together, more than 2,383,000 trials are conducted
For the sake of comparability with NIST-08, longer files of 2.5
minutes are also used. In this condition, only 3 files are used for
training and 3 other files for testing for each speaker. There are
576 and 423 target trials and 36,288 and 19,458 non-target trials
for female and male speakers respectively. Table 2 summarizes
the numbers of trials for 2.5 minutes-long and 30 seconds-long
files.
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Speakers Models Target Non-target
F 2.5 minutes 64 192 576 36,288
M 2.5 minutes 47 141 423 19,458
F 30 seconds 64 1,152 24,192 1,524,096
M 30 seconds 47 846 17,776 817,236

Table 2: Description of BREF 120 for 2.5 minutes-long and 30
seconds-long files. F: female speakers; M: male speakers.

4.1.2. Best and worst model selection

For each set (30 seconds and 2.5 minutes), the best and the worst
training files of each speaker were selected among the available
speech files for training. For a given training file, FA and FR
rates were estimated on all the testing files for 30 seconds on the
one hand and 2.5 minutes on the other hand. The best excerpt
minimizes FA+FR while the worst one maximizes this value.
The best excerpt for each male speaker was stored in the set of
training files Min-males, and the worst one in Max-males. Simi-
larly, best and worst excerpt for each female speaker were stored
in Min-females and Max-females. As a result, Min-males and
Max-males count 47 files, while Min-females and Max-females
count 64 files. The performance obtained for those 4 sets of files
is compared to the performance of random sets Random-males
and Random-females, obtained by randomly selecting 10 train-
ing files per speaker. All the trials are performed with the same
set of testing files.

4.1.3. ALIZE/SPkDet parametrization

French data from ESTER [9] were used to parameterize the
male and female UBM. Considering the recording condition
(single session, aloud reading), no factor analysis was per-
formed.

4.2. Performance of ALIZE/SPkDet on BREF 120

4.2.1. Global performance

Figure 4 presents the DET curves obtained from all available
training files, separately for male and female speakers. The per-
formance variations observed are bigger in the 30 seconds con-
dition than in the 2.5 minutes condition as shown in table 3. For
2.5 minutes-long files, EER are 2.3% and 2.8% for female and
male speakers respectively. When the files are shorter, the EER
raise up to 9.9% and 8.8% respectively. These rates are similar
to those obtained in others studies for similar lengths [3]. For
both 30 seconds and 2.5 minutes conditions, EER remain lower
than those obtained on 2.5 minutes-long files with the NIST-
08 database. However, it should be noted that the training files
used in the NIST-08 database cannot be directly compared to
the 2.5 minutes condition defined on the BREF database, since
the latter include 2.5 minutes of selected frames vs. 2.5 minutes
of speech (2.0 minutes of selected frames in average on Min and
Max sets) in NIST-08.

4.2.2. Worst and best models

Considering only the best training files in the 2.5 minutes condi-
tion, the EER decreases to 0.4% and 0.9% for female speakers
(Min-female) and male speakers (Min-male) respectively. Con-
sidering only the best training files, it increases to 5.3% for

Figure 4: DET Curves for Male-30 seconds (EER=8.8%)
(1), Male-2.5 minutes (EER=2.8%) (2), Female-30 seconds
(EER=9.9%) (3), Female-2.5 minutes (EER=2.3%) (4).

Max-female and Max-male sets. Figures 7 and 8 presents the
DET curves for Max and Min in the 2.5 minutes condition, re-
spectively for male and female speakers.
In 30 seconds condition, while the EER is about 9% when all the
files are taken into account, this value decreases to 1% when the
best training files are selected. On the contrary, when the worst
models are selected. EER increases up to 28.5% and 33.0% for
Max-females and Max-males respectively. The EER of the 10
random selections ranges from 8,8% to 11,5% (mean=10.3%,
standard deviation=1.1) for female speakers and from 6.3% to
11.6% (mean=9.0%, standard deviation=1.4) for male speakers.
These mean values of EER are close to the global EER obtained
for all the training files. As shown on figures 5 and 6, the varia-
tion of performances among random selections remains far be-
yond the difference observed between Min and Max conditions.
Similarly to the results obtained on the NIST-08 database, large
performance variations due to the choice of the training file are
observed on the BREF database. Indeed, substantial EER dif-
ferences between Min and Max sets are found both in the 2.5
minutes (about 30% difference) and 30 seconds (about 4.5%
difference) conditions.

Global Min Max Random
F 2.5 minutes 2.3% 0.4% 5.3% -
M 2.5 minutes 2.8% 0.9% 5.3% -
F 30 seconds 9.9% 1.1% 28.5% 10.3% (1.1%)
M 30 seconds 8.8% 1.0% 33.0% 9.0% (1.4%)

Table 3: Summary of EER obtained on the BREF 120 database,
for the Min, Max and Random sets in 2.5 minutes and 30 sec-
onds conditions. Values in parentheses for the Random set in-
dicate the EER standard deviation on the 10 selected training
files. F: female speakers; M: male speakers.
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Figure 5: DET curves for Min-male (EER=1.0%) (1), 10 ran-
dom sets for male speakers (6.3%<EER Random<11.6%) (2),
and Max-male (EER=3.0%) (3) in the 30 seconds condition.

Figure 6: DET curves for Min-female (EER=1.0%) (1), 10 ran-
dom sets for female speakers (6.3%<EER Random<11.6%)
(2), and Max-female (EER=3.0%) (3) in the 30 seconds con-
dition.

5. Preliminary phonetic analysis
A possible factor for speaker verification performance variation
may be the phonetic content of the excerpts. Indeed, it has been
shown that some phonetic segments were more efficient than
others for modeling a speaker [5]. This section presents some
preliminary analysis of phonetic content of Min and Max sets.
Since system performances were evaluated separately for male
and female speakers, a distinct phonetic analysis is carried out
for each speaker gender.

5.1. Phonetic transcription

A forced alignment of the speech signals is obtained using the
open-source toolbox Speeral [10]. A manual modification of
the phonetized lexicon was necessary to obtain a correct align-

Figure 7: DET curves for Min-male (EER=0.9%) (1) and Max-
male (EER=5.3%) (2) in the 2.5 minutes condition.

Figure 8: DET curves for Min-female (EER=0.4%) (1) and
Max-female (EER=5.3%) (2) in the 2.5 minutes condition.

ment of the BREF sentences. To ensure a full coverage of the
words produced in BREF, entries corresponding to abbrevia-
tions, acronyms, proper names, etc., were added to this lexi-
con together with allophonic variants. The phonetic alignment
was manually checked on a randomly selected subset. Only the
frames selected by the speaker verification system were taken
into account. An additional class was necessary for the frames
selected during non speech part (NS). The forced-alignment
software of the Speeral toolbox has a single acoustic model for
each of the pairs of vowels /a-A/, /ø-@/ and /Ẽ-œ̃/, which op-
position is neutralized in standard French, except in regional
varieties not represented in the BREF database. Moreover, it
considers nasal consonants /ñ/ and /N/ as realized respectively
as [nj] and [ng]. As a result, the phonetic labeling obtained as-
sociates each frame with one of the 32 remaining phonemes of
the French language or to the NS class.
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5.2. Phonetic distribution

5.2.1. Descriptive statistics

The phonetic distributions of Max, Min and Random are com-
pared in order to evaluate the kind of information provided to
the speaker verification system. The number of selected frames
is calculated for each phoneme and NS. These distributions are
extracted from the 30 seconds files. The first analysis concerns
the possible difference between Min file distributions and Max
file distributions. The mean distribution of the 10 Random files
for each speaker is also analyzed. For comparison, the 21 test
files of each speaker are also analyzed and the mean distribu-
tion is computed. Figure 9 presents the phoneme distributions
for Max, Min and Random and Test sets for female and male
speakers.
Distributions show similar patterns. Indeed, the ten more fre-
quent phonemes are /s K a i e E l t Ã d/ which almost matches
French phoneme frequencies given by [11]. Large variations
are observed among speakers, as illustrated by standard devia-
tion values. Small differences are observed between the distri-
butions of Max, Min and Random and Test.

5.2.2. Statistical comparison of Min, Max and Random sets

Differences between Max, Min and Random are evaluated by
means of statistical hypothesis tests. Hypothesis tests used in
the present study evaluate the probability p that observed differ-
ences between groups defined by a categorical factor occurred
by chance, using Fischer’s F-distribution (see for instance [12]
for details about statistical hypothesis tests and their applica-
tion). The difference is considered as significant if the obtained
p-value is below an arbitrary threshold, classically set to 0.05
in behavioral and speech sciences. The most widely used hy-
pothesis tests are Student’s t-test and univariate or multivariate
analyses of variance (ANOVA). While univariate analyses com-
pare observations described by a single numeric dependent vari-
able, multivariate analyses compare observations described by a
set of numeric dependent variables. Repeated-measures designs
make possible such comparisons while taking into account the
inter-subjects variability, by grouping measures obtained from
the same subject at the same level.
The statistical difference between phonetic distributions in Max,
Min and Random was evaluated using a repeated-measures mul-
tivariate analysis of variance (repeated-measures MANOVA,
see for instance [13]) for each speaker gender. The numbers
of frames of each phoneme were defined as dependent vari-
ables, and the training file group (Max, Min or Random) as
between-subject factor. Results indicate that the phonetic dis-
tribution of Max, Min and Random do not significantly differ,
neither for female (F(33,31)=1.40, p=0.175) nor for male speak-
ers (F(33,14)=2.23, p=0.056).
Differences of total number of selected frames in Max, Min
and Random were evaluated by an univariate ANOVA with the
number of selected frames as dependent variable and the per-
formance group as independent factor. Contrary to the results
obtained with the NIST-08 database, the total number of selected
frames does not significantly differ from one performance group
to another (female speakers: F(2,189)=2.34, p=0.099; male
speakers: F(2,138)=1.12, p=0.331).
Comparison of the number of frames of each phoneme in Max
vs. Min models was performed using an univariate repeated-
measures ANOVAs per phoneme, separately for male and fe-

male speakers. Phonetic distributions in Max vs. Min for fe-
male speakers significantly differ only on the quantity of /t/,
bigger in Min (F(1,63)=4.84, p=0.032). For male speakers,
those distributions differ on the quantity of /k/, bigger in Max
(F(1,46)=7.58, p=0.008) and on the quantity of /K/, bigger in
Min (F(1,46)=5.83, p=0.020).
Repeated-measures MANOVAs comparing distribution in pho-
netic classes of Max, Min and Random were also performed.
Phonetic classes were defined as indicated on figure 9. Those
analyses yield the same global results as the comparison of
distributions in phonemes (female speakers: F(10,54)=1.92,
p=0.062; male speakers: F(10,37)=1.59, p=0.149). Comparison
of the number of frames of each phonetic class in Max vs. Min
indicates that only nasal consonants in female speakers’ mod-
els are significantly more represented in Max (F(1,63)=4.38,
p=0.040), while other phonetic classes are equally represented.
Such limited differences in phonetic distributions between Max
vs. Min can hardly account for the large differences in system
performances observed between those conditions. Those results
therefore suggest that system performance variability might be
better explained by differences in intrinsic acoustic quality of
speech segments.

5.3. Analysis of acoustic features

The coefficients used by the speaker verification system are the
normalized LFCC, Delta and Delta-Delta. In this analysis we
consider LFCC, Delta, Delta-Delta separately. LFCC values
provide information on the spectral characteristics of phonemes
while Delta and Delta-Delta values reflect dynamic information.
For each phoneme, coefficients extracted from all frames in Min
and Max were compared using a MANOVA, separately for male
and females speakers. The 20 coefficients corresponding to
LFCC, Delta or Delta-Delta were set as dependent variables,
and the training file group (Max or Min) as independent factor.
Table 4 summarizes the statistical significance of the compari-
son of Max vs. Min obtained in the 132 MANOVAs performed
(33 phonemes x 3 sets of 20 coefficients x 2 speaker genders).
Except the /v/ produced by female speakers, LFCC signifi-
cantly differ in Max vs. Min for all phonemes. Delta values
significantly differ for 33% of phonemes, with limited match
between female and male speakers except for nasal consonants
and most plosives. This result is in line with studies by [14],
who pointed out formant transitions, supposedly described by
Delta coefficients, as carrying information on the speaker. Val-
ues of Delta-Delta coefficients are not significantly different in
Max vs. Min, except for /j/ produced by both female and male
speakers, as well as /l/ of female speakers, and /a/ and /i/ of
male speakers.

6. Conclusions
Experiments were carried out in order to determine the role
of the training excerpt. The EER sensitivity to the training
material was quantified by evaluating EER on specifically built
subsets of the two corpora analyzed. This quantization was
achieved by selecting the training excerpts of each speaker that
produce the largest and smallest EER, compared to a baseline
condition obtained by randomly selected the excerpts used
to model each speaker. A large EER variation was observed
depending on the choice of the training excerpt used to model
each speaker. Indeed, the EER range from 4.1% to 21.9%
according to the voice sample selected for the speaker model
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Figure 9: Phonetic distribution in Min, Max, Random and Test sets for female (top) and male (bottom) speakers. Error bars represent
standard deviation. Stars indicate phonemes for which the number of frames is significantly different in Min vs. Max: **: p<.01; *:
p<.05. Phonetic classes are indicated below phonemes labels. UO, VO: unvoiced and voiced occlusive consonants. UF, VF: unvoiced
and voiced fricative consonants. AL: approximant and lateral consonants. NC: nasal consonants. NV: nasal vowels. CV: closed vowels.
OMV: opened and median vowels.

in the NIST-SRE08 database, and from about 1% to 30% in
BREF 120 with 30 seconds-long excerpts. For a given speaker,
the characteristics of the training sample therefore turns out
to be an important factor that may explain the performance
variations of a speaker verification system. Moreover, the large
variation observed when permuting training and test signals
indicates that those sets of signals have to be differentiated in
the analysis.
The question of the relevant phonetic information for speaker
verification was addressed, and preliminary analyses were
performed on the BREF 120 corpus. Despite a large variation
among speakers, no significant difference was found between
the phoneme distributions of the training files that generate
few errors and those that generate a lot of errors. Observed
phonetic distributions seem to be more representative of the
French phoneme frequencies than of specific training signals.
Since the utterances of the BREF database were chosen as
phonetically balanced, this result is not surprising. Although
it suggests that differences in phonetic distributions cannot
account alone for all the performance variability observed, it
does not imply that the phonetic distribution of the training
excerpt has no effect on the speaker verification performance.
In order to further investigate properties of training signals that
may explain performance differences, the acoustic qualities
of phonemes whithin a given phonetic label were compared
in the best vs. worst training files in terms of EER. As a first
step, cepstral coefficients used by the system were compared.
Significant differences were found between the two sets of
training files for LFCC coefficients (supposed to describe
the segmental information) extracted from the majority of

phonemes. Delta coefficients supposed to carry information on
transitions also differ significantly in the two sets for part of
the phonemes represented, especially for occlusive consonants,
including nasals. Conversely, acceleration information of
Delta-Delta coefficients very seldom differ between best and
worst training files.
Further work is needed to determine what kind of acoustic in-
formation induces high speaker verification performances, and
what kind of information damages SVS performances. Indeed,
for voiced segments, within-phoneme differences in cepstral
information may reflect either variation in supralaryngeal
settings or in voice quality. Since formant transitions have been
shown to carry information on the speaker [14], the analysis of
the link between this information and cepstral coefficients is of
particular interest.
Determining the link between acoustic information and speaker
verification performances would make possible the develop-
ment of a confidence measure on models. Such a confidence
measure would enable the prediction of the SVS performance
on a given model.
Finally, a per speaker analysis may be also conducted. Indeed,
although the phonetic distributions in best vs. worst training
files do not significantly differ, a large inter-speaker variability
was observed. The dispersion of the phonetic inventory of each
speaker may therefore bring interesting information, as well as
the inter-speaker variability in acoustic properties of excerpts.
Such studies are needed to determine phonetico-acoustic
profiles of the different animals that compose Doddington’s
menagerie.
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F M
Phon. LFCC Delta D-D LFCC Delta D-D

p ***** **** n.s. ** ** n.s.
t ****** ** n.s. ****** **** n.s.
k **** n.s. n.s. **** *** n.s.
b ****** **** n.s. ****** * n.s.
d *** ** n.s. *** ***** n.s.
g ****** * n.s. ****** *** n.s.
f ****** ** n.s. *** n.s. n.s.
s **** *** n.s. ***** ** n.s.
S ****** n.s. n.s. ****** n.s. n.s.
v n.s. ** n.s. *** ** n.s.
z *** n.s. n.s. ****** * n.s.
Z ****** n.s. n.s. ****** n.s. n.s.
K *** ** n.s. ****** *** n.s.
l *** n.s. * ****** *** n.s.
j ****** * * ****** n.s. *
4 ****** * n.s. ****** n.s. n.s.
w ****** ** n.s. **** n.s. n.s.
m ****** **** n.s. ****** * n.s.
n ****** ****** n.s. ****** * n.s.
Ẽ ****** * n.s. ****** n.s. n.s.
Õ * ** n.s. ****** ** n.s.
Ã ****** n.s. n.s. ****** *** *
i ***** ** n.s. ****** ***** **
y **** n.s. n.s. ****** n.s. n.s.
u ****** n.s. n.s. ****** * n.s.
ø ****** * n.s. ****** n.s. n.s.
œ ****** **** n.s. * n.s. n.s.
e ****** *** n.s. ****** ** n.s.
E ****** n.s. n.s. ****** **** n.s.
o ****** ** n.s. ****** ** n.s.
O ****** n.s. n.s. *** ****** n.s.
a ****** ***** n.s. ** ** n.s.

NS *** n.s. n.s. *** n.s. n.s.

Table 4: Significance of the comparison of MFCC, Delta and
Delta-Delta (D-D) coefficients in Max vs. Min for each speaker
gender and each phoneme. ******: p<.000001; *****:
p<.00001; ****: p<.0001; ***: p<.001; **: p<.01; *: p<.05;
n.s.: non significant.
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