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Abstract

Factor Analysis (FA) based techniques have become

the state of the art in automatic speaker verification

thanks to their great ability to model session variability.

This ability, in turn, relies on accurately estimating a ses-

sion variability subspace for the operating conditions of

interest. In cases such as forensic speaker recognition,

however, this requirement cannot always be satisfied due

to the very limited quantity of appropriate development

data. As a first step toward understanding the applica-

tion of FA in these restricted data scenarios, this work

analyzes the performance of FA with very limited de-

velopment data and then explores several FA estimation

methods that augment the target domain data with exam-

ples from a data-rich domain. Experiments on NIST SRE

2006 microphone data conditions demonstrate that tele-

phone data can be effectively exploited to improve per-

formance over a baseline system.

Index Terms: Session Variability, Factor Analysis,

Forensic Speaker Recognition.

1. Introduction

The most successful text-independent Automatic Speaker

Verification (ASV) systems in recent years have utilised

some form of Factor Analysis (FA) as a technique for

modelling both session and speaker variability. Systems

using FA have gained prevalance due to their enhanced

ability to deal with complex sources of intersession vari-

ation.

Factor Analysis, applied in the context of text-

independent speaker verification, was first proposed by

Kenny, et al. [1] integrated in a classical Gaussian Mix-

ture Model (GMM). This initial work laid the foundations

for later works which have successfully applied FA in

both generative GMM [2] and discriminative SVM mod-

els [3], as well as at different levels of a ASV system

[4, 1].

Although a number of variations in the configuration

and implementation of the Factor Analysis model have

been proposed, all of these techniques share the same

basic principles: addressing the variability in a contin-

uous manner, and making the assumption that the ma-

jority of speaker and session variation can be modelled

with a small number of variables. Mathematically, these

two concepts are embedded in the FA model, where the

variability (speaker and session variability) is described

through subspaces that encapsulate the corresponding

main directions of variation. These subspaces are esti-

mated from a background dataset and take in practice the

form of low-rank transformation matrices.

From a statistical point of view, the variability sub-

spaces act as a strong priors since target data (the data

used in operational conditions) is constrained by the di-

rections of variability described by these subspaces. As a

consequence, an important issue in the successful appli-

cation of the FA model is appropriate training of the sub-

space transform matrices. Ideally, these matrices should

accurately represent the types of inter- and intra-speaker

variations expected within and between recording ses-

sions. In order to estimate the subspaces, appropriate

training data (background data) which represents as much

as possible the target conditions is required.

This paper considers the problem of data availability

for training the FA subspaces, and the appropriate esti-

mation of these subspaces. A particular focus is given to

problems of data availability that may arise in the context

of forensic applications.

In some forensic caseworks, the target conditions are

well understood and significant amounts of data recorded

under similiar conditions is available. Unfortunately, this

is not always the case. In many forensic situations, the

target conditions are highly variable, and the amount of

example data available for “learning” the session condi-

tions is extremely limited.

This work deals with the problem of applying FA

techniques in these unfavourable cases where only a scant

amount of data from the targetted operating conditions

is available for estimation of the session variability sub-

space. The study explores the possibility of exploiting

other available datasets (outside the target conditions) to

improve the performance of the system in such situations.

The remainder of this paper is organised as follows.

In Section 2, a summary of the FA framework is outlined.

The problem of training the session variability subspace

is addressed in Section 3, where different strategies are

presented. In Section 4, experiments are presented that

analyse the verification performance under simulated re-
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stricted training data scenarios. A comparison is made

between the various alternatives for subspace estimation,

showing the benefits that can be achieved through adjust-

ments to the standard training approaches. Finally, con-

clusions and future work are presented in Section 5.

2. Factor Analysis for Speaker Verification

2.1. The JFA Model

The factor analysis model used for this study is a joint

model of both speaker and session variability. As in

traditional GMM-UBM approaches to speaker verifica-

tion [5], factor analysis techniques are based around the

use of mean-adapted GMM’s to model a speaker. In

the GMM-UBM paradigm, only the GMM means are

adapted from the UBM during speaker enrollment. This

GMM can therefore be conveniently expressed as µ =
[

µT
1

. . .µT
C

]T
, which is a CF × 1 mean supervector,

where F is the dimension of the acoustic feature vectors

and C is the number of GMM components.

The factor analysis technique outlined by Kenny, et

al. [1] is based on the decomposition of the GMM mean

supervectors into speaker- and session-dependent parts.

The motivation behind factor analysis techniques is to ex-

plicitly model and separate the speaker and session con-

tributions.

For the model of speaker variation considered, the

speaker-dependent GMM mean supervector can be rep-

resented by

µ(s) = m + V y(s) + Dz(s), (1)

that is, as a linear offset from the UBM mean supervector

m. In this model, V is a low-rank transformation matrix,

and D is a CF ×CF diagonal matrix. It is assumed that

the majority of speaker variation is contained within the

low-rank subspace defined by V V ∗. The role of Dz(s)
is to model the residual variability that is not captured

by the speaker subspace. The vector y(s) is referred to

as the speaker factors, and represent the parameters of the

speaker in the specified subspace. The speaker variability

model is trained such that y(s) follows a standard normal

distribution.

A similar decomposition is used to describe a model

of inter-session variation. The GMM supervector repre-

sentation of an utterance may be considered as the combi-

nation of a session-independent model with an additional

offset of the model means representing the recording con-

ditions of the session h. This can be expressed as

µh(s) = µ(s) + Uxh(s). (2)

In this representation, U is a low-rank transformation

matrix. The range of UU∗ can be thought of as defin-

ing a session effects space. We refrain from using the

term channel space as the model also encaptures other

forms of intra-speaker and session variation. The vector

xh(s) is an estimate of the session conditions (or latent

session factors) within the session subspace, and follows

a standard normal distribution.

A joint factor representation can be obtained by com-

bining the formulations in (1) and (2). The process of

speaker model training therefore involves the simultane-

ous estimation of the latent session, speaker and rele-

vance factors, x,y and z, with the session factors subse-

quently discarded. This work employs an efficient, itera-

tive algorithm based on the Gauss-Seidel approximation

method for this task [6].

2.2. Subspaces Training Procedure

The full joint factor model is then characterised by the set

of speaker-independent hyperparameters m,V ,U ,D.

These hyperparameters are estimated through an off-line

training process as described in [7].

The UBM is used as a source of estimates for the

speaker-independent mean m. Also, to estimate the di-

agonal relevance MAP loading matrix D, the empirical

method outlined by Reynolds in [5] is be used: D is con-

strained to satisfy I = τDT
Σ

−1D where τ is the rele-

vance factor and Σ is a diagonal matrix consisting of the

UBM component covariance matrices Σc.

The remaining hyperparameters V and U describe

the speaker and session variability subspaces, respec-

tively. For the factor analysis model described in this

paper to be effective, these transformation matrices V

and U must be appropriately estimated. These matrices

should represent the types of inter- and intra-speaker vari-

ations expected within and between recording sessions.

To this end, the subspaces are trained on a database con-

taining a large number of speakers each with several in-

dependently recorded sessions. This training database

should include a variety of channels, handset types and

environmental conditions that closely resembles the con-

ditions on which the eventual system is to be used.

In this work, U and V were optimised independently

in an attempt to explicitly capture the variability each

subspace was intended to model. This method is de-

scribed as the disjoint estimation approach in [7].

Under the disjoint approach, U is trained using the

optimisation equations presented in [8] but with µ(s) es-

timated by a very loosely constrained relevance MAP,

that is, by setting τ to be very small. As the relevance

MAP adaptation will be preferred to model any common

speaker characteristics found across sessions for a given

speaker s in the training dataset, U will be preferred only

to capture the differences between sessions of the same

speaker, that is, the inter-session variability.

Similarly, V is trained by excluding U from the

model, that is using the model in (1), and with no rele-

vance MAP (D = 0). This approach forces V to repre-

sent as much of the variability in the training dataset as
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possible with the constraint that all utterances from the

same speaker have equivalent speaker factors, y.

Both U and V were refined using an Expectation-

Maximisation (EM) algorithm [8] after a principal com-

ponents initialisation [7].

3. Training Session Variability Subspaces

with Restricted Target data

As it was noted previously, the success of FA modelling is

highly dependent on the proper estimation of the session

variability subspace represented by U. For this purpose, a

suitable dataset that accurately represents the conditions

of the target domain is essential.

Unfortunately, this requirement for suitable data can-

not be satisfied in all situations. Forensic Speaker Recog-

nition is an area that gives us a wide range of examples

of this situation, mainly due to two factors. Firstly, de-

spite the efforts made to collect new databases [9], the

available data is still very limited. Secondly, real world

forensic recordings tend to be extremely variable, making

a case-by-case treatment necessary in most situations. In

those cases where only a limited amount of data is avail-

able, the estimation procedure described above leads to

poorly estimated variability subspaces since the real vari-

ability in target domain is not sufficiently represented.

The underlying idea of this work is to deal with this

limited data problem by exploiting data from a data-rich

domain in the session subspace estimation procedure in

order to achieve a dual goal. First, to obtain a more

robust estimation procedure by adding large amounts of

data. Secondly, to incorporate certain session variability

characteristics not present in the limited available target

domain data but that could appear in the target domain.

Three techniques for combining information from a data-

rich domain and limited target domain data are presented

in the remainder of this section.

3.1. Joining Matrices

A simple way to combine different session variability

subspaces is to join session variability subspaces esti-

mated on different datasets. This process is carried out

by simply stacking the session variability directions esti-

mated in each one of them in a bigger subspace.

This approach has the major advantage that subspaces

can be treated and trained independently. From a practi-

cal point of view, this property is highly desirable because

it allows us to keep a well-trained reference subspace

trained on accumulated data that can be refined by simply

appending new session variability information from new

domains.

On the other hand, it has several shortcomings.

Firstly, it is necessary to restrict the size of each con-

tributing subspace, loosing potentially useful directions

of variability, in order to keep the overall size of the

joined subspace relatively small as stipulated by the prin-

ciples of FA. Second no particular emphasis is placed on

the target domain data because all the directions play an

equal role in the new subspace. Finally, even the main

directions of session variability will tend to be poorly es-

timated for the target domain if there is severely limited

data as the subspaces are estimated indepedendently.

3.2. Pooled Statistics

As an alternative to stacking two independently trained

subspaces, the subspace estimation can also be supple-

mented with the data-rich telephone set simply by esti-

mating a completely new session subspace. This time, es-

timation is performed by pooling all data. An obvious ad-

vantage of this method is that the estimation is performed

using a substantial amount of data, making it potentially

more robust. Unfortunately, there is no means of prevent-

ing the supplementary set dominating the estimation and

having the biggest effect on the directions of variability.

3.3. Scaling Statistics

Based on the fact that we are usually most interested in

the session variability present in a specific domain (the

closest to the target domain conditions), it is reasonable

to think that somehow these data should become more

important in the subspace estimation procedure. More-

over, we should be able to get some advantage by using

all the data available together rather than separately.

The approach presented here is based on giving a spe-

cific weight to each dataset in the training session vari-

ability subspace with a dual purpose. First, allow the esti-

mation procedure to learn from a broader set of data lead-

ing us to more robust subspace estimation, and second to

highlight the type of data which is considered most im-

portant. This second point is especially necessary when

not enough data of this type is available and the variabil-

ity presented could be overshadowed by the other types.

Specifically, first order statistics supervector ex-

tracted from each utterance is scaled by a previously fixed

weight depending on the dataset to which it belongs.

Thus, the matrix of first order statistics S, input in the

EM procedure for training the variability subspace, takes

the following form:

S = αStgt + (1 − α)Sbckg (3)

where Sbkg and Stgt are the matrices whose columns are

the first order statistics of utterances belonging to target

data and other background data available respectively.

More generally, this could be extend to:

S = α1S1 + α2S2... + αnSn (4)

with
∑n

i=0
αi = 1 and n different background sets.

In this way it is possible to balance the weight of each

subset in the EM procedure such that the available data
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can be combined in an optimal way for the task at hand.

A difficulty with this approach is the problem of finding

the optimal selection of weights for each problem. Al-

though this can be solved empirically, a reasonable option

is choose the weights in a proportional way to the quan-

tity of data in target domain, keeping at least a minimum

weight for the rest of the sets.

4. Experiments

Evaluations are concentrated on examining scenarios in

which the available background data similar to the acous-

tic conditions of the target domain is scarce. Compar-

isons are made with the FA baseline system described in

Section 2.

4.1. Database and protocol

Data from the 2005 and 2006 NIST Speaker Recogni-

tion Evaluations (NIST SRE) was used to develop an ex-

perimental framework. These datasets were chosen for

two main reasons. First, the datasets cover a wide range

of acoustic (telephone and microphone) and environmen-

tal scenarios, allowing for vigourous testing under mis-

matched conditions. Secondly, following the well estab-

lished NIST SRE protocols allows for future compari-

sions with other research groups.

Two development datasets, namely dTel and dMic,

were differentiated. The dTel consists of SRE’04 and

SRE’05 telephone data suplemented with data belonging

to SWBII phase I and phase II databases. This collection

was chosen to provide a broad coverage of telephone con-

ditions, whilst also providing a high number of different

speakers. The dMic dataset was obtained from the mi-

crophone subset of the MIXER corpus and SRE’05 data.

In order to simulate the data scarcity problem, the

dMic set was divided into sets with differing amounts of

data, obtaining different degrees of data scarcity. Specif-

ically, three restricted sets were built: dMic10, dMic5

and dMic3. These were formed with only 10, 5 and 3

utterances per speaker present in dMic. Table 1 shows a

breakdown development dataset compositions 1.

The SRE’06 data was utilised as the test dataset.

Testing was performed using the test conditions spec-

ified in the NIST SRE’06 protocol, and using addi-

tional conditions specified and distributed by participat-

ing sites during the SRE’08 2. The test conditions exam-

ined were as follows: 1conv4w-1conv4w, 1conv4w-1mic,

1mic-1conv4w and 1mic-1mic. In order to get normalized

1Utterances are of nominal length 5 minutes (approximately 2.5

minutes of speech).
2Additional conditions for auxiliary microphone training and test-

ing were distributed on the SRE’08 Google Group list. Thanks to

Doug Reynolds, David van Leeuwen, Albert Strasheim and Nicholas

Scheffer for preparing and scrutinising these lists. Further de-

tails on these conditions can be obtained from the author or at

http://groups.google.com/group/sre2008

Databases # Speakers # Utterances

SWB-II 325 1300

dTel MIXER(SRE’04) 150 994

MIXER(SRE’05-tel) 40 297

dMic MIXER(SRE’05-mic) 45 1260

dMic10 MIXER(SRE’05-mic) 45 450

dMic5 MIXER(SRE’05-mic) 45 225

dMic3 MIXER(SRE’05-mic) 45 135

Table 1: Composition of development datasets.

scores, a common ZT-norm stage was applied to all test

conditions by using reduced cohorts of telephone data (∼

150 utterances) extracted from SRE’05.

4.2. Results

As a starting point of this study, the effect of using re-

stricted datasets in order to estimate a session variability

subspace was analysed. For this purpose, the baseline

JFA system presented in 2 was evaluated using the dif-

fering restricted microphone datasets described in Sec-

tion 4.1 as training data for the low-rank session matrix

U . The results in Table 2 summarise the performance

statistics of these restricted subspace training data exper-

iments. Studying these results, it can be seen that when

microphone data scarcity is simulated in the development

stage (i.e. the amount of training data for U is reduced),

system performace is degraded significantly. It is clear

from these results alone that data availability for training

the channel subspace has a large impact on overall per-

formance.

For comparison purposes, results for a baseline sys-

tem that does not include session compensation (U = 0)

were also included in Table 2. It is obvious from the

results that incorporating session compensation leads

to significant improvements in performance across all

train/test conditions. Interestingly, even when the data

used to estimate the session subspace is mismatched to

the conditions (channel type) of the evaluation trials, the

inclusion of session compensation always results in an

improvement. A session matrix estimated using purely

telephone data reduces the error rates in the 1mic-1mic

condition. Similarly, a session matrix estimated using

microphone data for telephone based trials provides some

benefits over no session compensation at all. Expectedly,

the best performance is achieved when the session sub-

space is trained using appropriate data (eg. dMic used

for 1mic-1mic).

Experiments were then performed to examine

whether the data rich sources - in this case the telephone

data - could be used alongside the restricted data in the

estimation of the session variability subspace U , in order

to improve the estimation and in turn, the overall perfor-

mance. The first approach considered for this task was

the joint subspace approach as outlined in Section 3.1.

A new session variability subspace was generated simply

by stacking two independently trained session subspaces,
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one estimated using the dTel set and the other using the

target domain data dMic. For this combination strategy,

the top 50 and 20 eigenchannels from UdT el and UdMic,

respectively, were used to create a 70 eigenchannel joint

subspace 3. The performance using both the full and re-

stricted datasets are presented in Table 3.

Comparing the results in Table 3 with those in Table

2, it can be seen that supplementing the subspace train-

ing data with telephone data has a positive effect across

nearly all evaluated tasks. While this effect seems obvi-

ous in those conditions where telephone data is involved,

it is worth noting that even in the case condition 1mic-

1mic, including telephone data alongside the available

microphone data in the subspace development stage is

clearly beneficial. This suggests that it is possible to ac-

count for some session variability even in very apparently

different acoustic subspaces. The biggest gains from sup-

plementing the target domain microphone data with tele-

phone data were observed when the target domain (mi-

crophone) data was restricted. For the most restricted

training scenario dMic3, a relative improvement of 28%

resulted for the 1mic-1mic condition when dMic3 was

supplemented using dTel.

As outlined in Section 3.2, a new subspace can also

be estimated by pooling the statistics from both the data-

rich set and target domain set. Results using this pooling

method are presented in Table 4. An interesting point

to highlight here is the case where the full microphone

datset dMic is available for subspace estimation. In this

case, an improvement in performance over the joint ma-

trix technique is observed for the case condition 1mic-

1mic. When less target domain (microphone) data is

available for the subspace estimation, we see that the ef-

fectiveness of the session compensation is reduced when

pooled statistics rather than stacked matrices are used.

This suggests that for the pooled approach, the subspace

estimation is being overwhelmed by the larger quantity of

telephone data, and is not able to best utilise the available

(but restricted) target domain data.

Finally, the method proposed in Section 3.3, where

more emphasis can be placed on data from the target do-

main by performing a scaling of the statistics during sub-

space estimation, was evaluated. Results in Table 4 show

the performance using various scaling weights, α. For

these experiments, the closest simulation of real foren-

sic applications, where only 3 utterances per speaker in

dMic was made available for subspace estimation was

studied (dMic3). It can be seen from these results,

that in general, placing a larger weighting on the dMic3

statistics results in an improvement in performance over

straight pooling (unweighted). For the case condition

1mic-1mic, a scaled statistics estimation results in a 6%

3An analysis of the eigenvalues for the microphone data showed a

very rapid decline in values in comparison to the telephone data. For

this reason, a reduced number (20) of dimensions were retained.

Equal Error Rate (EER in %)

1conv4w/ 1conv4w/ 1mic/ 1mic/

U Training 1conv4w 1mic 1conv4w 1mic

U = 0 5.97 8.20 7.81 11.03

dTel 3.49 4.31 3.95 6.79

dMic 5.80 5.19 5.30 6.64

dMic10 5.99 5.69 5.50 7.51

dMic5 5.93 6.06 5.72 8.07

dMic3 5.99 6.13 5.72 8.33

Table 2: Performance under restricted MIC data conditions in U

training.

Equal Error Rate (EER in %)

1conv4w/ 1conv4w/ 1mic/ 1mic/

U Training 1conv4w 1mic 1conv4w 1mic

dMic|dTel 3.41 3.63 3.12 5.14

dMic10|dTel 3.55 3.72 3.32 5.43

dMic5|dTel 3.55 4.15 3.63 5.74

dMic3|dTel 3.55 4.31 3.54 6.03

Table 3: Performance using the joint matrices subspaces estimation

approach.

Equal Error Rate (EER in %)

1conv4w/ 1conv4w/ 1mic/ 1mic/

U Training 1conv4w 1mic 1conv4w 1mic

dMic + dTel 3.73 3.54 3.43 4.97

dMic10 + dTel 3.61 3.72 3.43 5.47

dMic5 + dTel 3.42 3.88 3.66 5.78

dMic3 + dTel 3.49 4.12 3.76 6.19

Table 4: Performance under restricted microphone data conditions

when statistics are pooled with devTel.

relative improvement in EER over the straight pooling.

Figure 1 shows a final comparison of the consid-

ered estimation strategies for the session subspace, eval-

uated on the 1mic-1mic condition with only a limited

amount of target domain data available (dMic3). This

chart clearly demonstrates the benefit of session compen-

sation, but also the problems associated with a direct es-

timation of the subspace on a small dataset. Better re-

sults are achieved when subspace estimation is performed

using the data-rich dTel rather than dMic3 alone. Im-

portantly though, benefits result from supplementing the

dMic3 with other data. Each of the strategies for com-

bining the two sets in estimation give improvements over

either alone. The joint estimation approach using stacked

subspaces achieves a better result than a straight pooling

of the data, however, this trend can be reversed by intro-

ducing a simple scaling of the statistics during estimation.

By weighting the target domain data more heavily during

estimation, the best performance out of the considered

approaches is achieved.

5. Conclusions and Future Work

The successful application of FA techniques is highly de-

pendent on the proper estimation of session variability

as represented by the subspace transformation matrices.

This work has analysed the problem of applying FA in
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Equal Error Rate (EER in %)

1conv4w/ 1conv4w/ 1mic/ 1mic/

Scaling (α) 1conv4w 1mic 1conv4w 1mic

Unweighted 3.49 4.12 3.76 6.19

0.6 3.46 4.15 3.74 5.95

0.7 3.55 4.15 3.67 5.82

0.8 3.80 4.49 3.32 5.82

0.9 4.30 4.64 3.78 6.50

Table 5: Performance using scaled statistics during ML estimation.

Results using 3 mic utterances per speaker dMic3.

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

U=0 dTel dMic3 Joint Pooled Scaled

E
E
R
(%

)

Figure 1: Comparison of performance for 1mic-1mic

condition using different U training strategies

situations where a scant amount of data similar to the ex-

pected operating conditions is available — a common sit-

uation in forensic speaker recognition work.

A range of experiments using the microphone con-

dition of the well-known NIST SRE 2006 database and

protocol were initially conducted exploring the effect

of reducing the quantity of available development data.

These experiments clearly demonstrated the importance

of a well-estimated session variability subspace as us-

ing poorly matched telephone data or heavily restrict-

ing the available microphone development data resulted

in significantly increased error rates. In these situations,

current estimation procedures lead to poorly estimated

subspaces and consequently far from optimal FA perfor-

mance.

To deal with this problem, several methods were ex-

plored to combine different variability information ob-

tained from different sources of data, including join-

ing subspace matrices, and pooling estimation statistics.

These techniques are based on the idea that variability

present in different databases can be exploited in or-

der to provide more robust subspace estimates. Exper-

iments with these methods show that a suitable method

of combining information from both the target domain

and a data-rich development domain can be very useful

in the restricted data scenarios, particularly if emphasis

can be placed on the limited available target domain data.

Specifically, introducing a scaling or weighting on the

statistics in the EM algorithm used for training the ses-

sion variability subspace has demonstrated good gains.

These results open the door to the possibility of ap-

plying FA in unfavourable scenarios such as those en-

countered in most of forensic cases and significant fu-

ture work is planned to further develop an understand-

ing of this important issue as well as develop new tech-

niques. This work will include investigations with au-

thentic forensic case data obtained through the AHU-

MADA III data collection [9]. Further work will also

investigate a maximum a posteriori criterion for estimat-

ing session variability subspaces to further enhance the

robustness of the techniques presented in this paper.
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