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Abstract

Nuisance attribute projection (NAP) has become a common
method for compensation of channel effects, session variation,
speaker variation, and general mismatch in speaker recognition.
NAP uses an orthogonal projection to remove a nuisance sub-
space from a larger expansion space that contains the speaker
information. Training the NAP subspace is based on optimizing
pairwise distances to reduce intraspeaker variability andretain
interspeaker variability. In this paper, we introduce a novel form
of NAP called weighted NAP (WNAP) which significantly ex-
tends the current methodology. For WNAP, we propose a train-
ing criterion that incorporates two critical extensions toNAP—
variable metrics and instance-weighted training. Both an eigen-
vector and iterative method are proposed for solving the result-
ing optimization problem. The effectiveness of WNAP is shown
on a NIST speaker recognition evaluation task where error rates
are reduced by over20%.
Index Terms: speaker recognition, channel compensation

1. Introduction
A problem of primary importance in speaker recognition is
compensation for intraspeaker recording variation. Sources of
variation can be—microphone types, communication channels,
source encoding, noise type and levels, intrinsic speaker vari-
ability, etc. Many of the common methods for speaker variation
compensation have targeted a particular type of variability. For
instance, cepstral mean subtraction (CMS) attempts to eliminate
variability from linear time invariant filters with low group de-
lay. CMS is quite effective at reducing variation due to spectral
tilt and shaping that is common with varying microphone types.

Rather than try to model thephysics of all different types
of intraspeaker variation, it is possible to take a data-driven ap-
proach. In this case, with the wide availability of different large
multisession corpora such as the LDC Switchboard and Mixer
corpora, we can observe large amounts of intraspeaker varia-
tion through multisession recording. Although not explicit con-
trolled, the collection protocols of the various corpora ensure
variation due to many of the factors stated above.

The basic approach with NAP is to take advantage of large
corpora intraspeaker variation to train a model that discrimina-
tively reduces the nuisance component. In SVM speaker recog-
nition [1], directions in expansion space correspond to classi-
fiers, so it is straightforward to view channel effects as nuisance
directions that should be removed. In early NAP experiments,
both channel information (cell, carbon button, and electret) and
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session information were used to train the NAP projection [2].
Later work showed that session variation was sufficient [3].

A significant amount of work has been performed in data-
driven methods since NAP and factor analysis methods [4]
for speaker recognition were first proposed. Most of these
techniques have focused on new methods for compensation or
model construction including WCCN [5], joint factor analy-
sis [6], etc. Less work has been performed on alternate criteria
for optimizing the hyperparameters for these methods [7].

In this paper, we propose an alternate criterion and ex-
tension to NAP—Weighted NAP (WNAP). The main motiva-
tion for this extension is to address new aspects of metrics
induced by inner product discriminant functions (IPDFs) [8].
First, WNAP addresses variable metrics where the metric is not
fixed across all utterances. Second, WNAP incorporates a vari-
able weighting across utterances. This feature allows WNAP
to be trained to address issues such priors in the data set (e.g.,
male/female distribution), confidence in the SVM expansion
due to speech duration, etc.

The outline of the paper is as follows. In Section 2, we re-
view the IPDF framework. In Section 3, we review NAP and the
associated training criterion. Sections 4, 5, 6 provide themain
discussion of WNAP and various solutions. Section 7 provides
pseudo-code for the various methods. Section 8 provides exper-
iments demonstrating the new WNAP method and correspond-
ing improvements in performance.

2. Inner Product Discriminant Functions
Inner product discriminant functions (IPDFs) [8] are a unified
description of early work in inner-product based speaker recog-
nition [1, 3, 9], data-driven subspace compensation methods
such as NAP [3, 2] and factor analysis [6], and recent work
in linear GMM scoring [10]. Although these methods have
very distinct motivations and derivations, the resulting opera-
tions have very similar mathematical structure for both thecom-
parison function (or inner product) and the compensation.

Before describing IPDFs, we introduce some notation. For
a sequence of feature vectors from a speakeri, we adapt a GMM
UBM by using standard relevance MAP [11] on the means and
an ML estimate of the mixture weights. The adaptation yields
new parameters which we stack into a parameter vector,ai,
where

ai =
ˆ

λi,1 · · · λi,Nm m
t
i,1 · · · m

t
1,Nm

˜t
(1)

whereλi,j are the mixture weights,mi,j are the means, and
Nm is the number of mixtures.

To compare two speakersi andj, we use an inner product,
but do not require the Mercer condition used in standard SVM
speaker recognition. The IPDF in equation form is

C(ai,aj) = (Liai)
t
D

2

i,j(Ljaj) (2)
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whereLi, Lj are linear transforms and are potentially depen-
dent on mixture weights. The matrixDi,j is positive defi-
nite, usually diagonal, and potentially dependent on the mixture
weights. Most of the standard linear scoring methods in speaker
recognition plus several new ones can be expressed in the IPDF
framework (2) by various forms ofDi,j and taking subsets ofai

andaj . Most compensation methods can be expressed as linear
projections or regularizations of projections. For more details,
see [8].

We use a comparison function from the IPDF framework
based on approximations to the KL divergence between two
GMMs [3, 8],CGM , given by

CGM (ai,aj) =

(mi − m)t(λ
1/2

i ⊗ In)Σ−1(λ
1/2

j ⊗ In)(mj − m).
(3)

In equation (3),m is the vector of stacked UBM means,Σ is the
block diagonal matrix of UBM covariances,⊗ is the Kronecker
product,In is the identity matrix of sizen, andλi andλj are
diagonal matrices of mixture weights from (1).

In cases where a comparison function corresponds to a met-
ric on the space, a unique corresponding distance can be defined
as

d(ai,aj)
2 = C(ai, ai) − 2C(ai,aj) + C(aj ,aj). (4)

In general, we would like to be able to optimize compensa-
tion method for an arbitrary distance measure—we examine this
process in the next few sections.

3. Nuisance Attribute Projection
As mentioned in the introduction, nuisance attribute projection
(NAP) can be motivated as a method of removing nuisance di-
rections from the SVM expansion space. If these directions are
not removed, then utterances can be similar just based on the
fact that they have similar nuisance content—for example, they
were recorded from the same channel. To remove the nuisance,
we use an orthogonal projection.

Before defining the NAP projection, we introduce some no-
tation. We define an orthogonal projection with respect to a
metric,PU,D, whereD andU are full rank matrices as

PU,D = U(U t
D

2
U)−1

U
t
D

2 (5)

whereDU is a linearly independent set, and the metric is‖x −
y‖D = ‖Dx − Dy‖2. The process of projection, e.g.y =
PU,Db, is equivalent to solving the least-squares problem,x̂ =
argminx ‖Ux − b‖D and lettingy = Ux̂. For convenience,
we also define the projection onto the orthogonal complement
of U , U⊥, asQU,D = PU⊥,D = I − PU,D.

If U is the nuisance subspace, NAP can be concisely repre-
sented asQU,D. For a set of training vectors,{zi}, the criterion
for training NAP is

min
U

X

i,j

Wi,j‖QU,Dzi − QU,Dzj‖2

D. (6)

Typical weights,Wi,j , used areWi,j = 1 if zi andzj are from
the same speaker andWi,j = 0, otherwise. The NAP train-
ing criterion can be shown to be equivalent to an eigenvector
problem [2].

4. Weighted Nuisance Attribute Projection
Although NAP is a powerful framework for compensation,
there are potential drawbacks when it is applied in the IPDF
framework. First, since NAP relies on pairwise comparison (6),
it is not possible to apply metrics that are dependent on the ut-
terance; e.g., to use a norm dependent on the mixture weights
which arises naturally from theCGM function. A second rea-
son to consider extensions to NAP is to incorporate novel utter-
ance dependent weightings into the optimization process. In the
original framework in (6), sinceWi,j is dependent on a pair of
instances, it is difficult to assign weights that are not0 or 1.

To address these issues, we introduce Weighted NAP
(WNAP). For WNAP, we assume a general projection ontoU⊥

of the formQU,Di
. We also introduce a training criterion based

upon observations from earlier work [3]. Instead of consider-
ing pairwise comparison of instances, we assume that for every
speaker (in general, every class) we can estimate a “nuisance
free” vector z̄ from which deltas can be calculated. We will
then base our criterion on approximating these deltas.

More specifically, suppose we have a training set,{zs,i}
labeled by speaker,s, and instance,i. For eachs, we have a
nuisance-free vector,̄zs. For WNAP training, we propose the
following optimization problem,

min
U

X

s

X

i

Ws,i‖PU,Ds,i
δs,i − δs,i‖2

Ds,i
(7)

whereδs,i = zs,i − z̄s. The WNAP training criterion (7) incor-
porates both our goals of using a variable metric and an utter-
ance dependent weighting. Also, the training criterion attempts
to find a subspaceU that best approximates the nuisanceδs,i as
in prior work [3].

5. Optimizing the WNAP Criterion
As a first step in optimizing the WNAP criterion, we consider a
slightly more general version of the problem in (7) which will
be useful in later sections. We relabel the data with one index
i in (7). Also, rather than working with the projection,PU,Di

,
we work with coordinates,xi, in theU subspace. The problem
we now consider is

min
U,x1,··· ,xN

N
X

i=1

Wi‖Uxi − δi‖2

Di
. (8)

We split the variables into two parts, the subspace and the
coordinate optimization, and minimize over these separately,

min
U,x1,··· ,xN

N
X

i=1

Wi‖Uxi − δi‖2

Di

= min
U

min
x1,··· ,xN

N
X

i=1

Wi‖Uxi − δi‖2

Di

= min
U

N
X

i=1

Wi min
xi

‖Uxi − δi‖2

Di
.

(9)

Note that in (9), the cascade of twomin terms means holdU
constant and then minimize over thex1, · · · ,xN . It is straight-
forward to prove that the cascade minimization has the same
value as the simultaneous minimization. In (9), we also use
the fact that the sum becomes a separable optimization problem
when U is fixed. That is, we can minimize each term in the sum
separately overxi.
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For a fixedU , the solution to the least-squares problem,

x
∗

i = argmin
xi

‖Uxi − δi‖2

Di
(10)

is just the projection onto the subspace using theDi metric. I.e.,
assuming that U is full rank, we have

Ux
∗

i = PU,Di
δi

= U(U t
D

2

i U)−1
U

t
D

2

i δi.
(11)

We can now substitute (11) back into the original minimiza-
tion problem to obtain,

min
U,x1,··· ,xN

N
X

i=1

Wi‖Uxi − δi‖2

Di

= min
U

N
X

i=1

Wi‖PU,Di
δi − δi‖2

Di

= min
U

N
X

i=1

Wi‖QU,Di
δi‖2

Di

= min
U

N
X

i=1

‖QU,Di
δ̂i‖2

Di
.

(12)

In (12), we incorporated theWi into theδi by letting,

δ̂i =
√

Wiδi. (13)

Note that in (12), we have shown equivalence with our original
NAP criterion (7).

Since the least squares problem produced an orthonormal
projection onto the subspace, we can rewrite (12) as

min
U,x1,··· ,xN

N
X

i=1

Wi‖Uxi − δi‖2

Di

= min
U

N
X

i=1

‖δ̂i‖2

Di
− ‖PU,Di

δ̂i‖2

Di

= max
U

N
X

i=1

‖PU,Di
δ̂i‖2

Di

(14)

The resulting optimization problem in (14) has a satisfying
qualitative goal—find the subspaceU that has the most “nui-
sance” energy (norm squared) when we project the weighted
deltas onto it.

The solution to (14) is difficult because of the variable met-
ric induced by theDi; we’ll address this later in Section 6.
Therefore, for the remainder of this section, we assumeDi is
a fixed matrixD. Note that our optimization problem still in-
corporates the variable weightingWi, so we have, at least, a
restricted solution to our original WNAP problem.

We rewrite the norm in (14) in terms of the trace,tr(·), and

then use the assumption thatDi = D is constant to obtain

max
U

N
X

i=1

‖PU,Di
δ̂i‖2

Di

= max
U

N
X

i=1

tr

»

“

DiPU,Di
δ̂i

”“

DiPU,Di
δ̂i

”t
–

= max
U

N
X

i=1

tr
h

DPU,D δ̂iδ̂
t
iP

t
U,DD

i

= max
U

tr

"

DPU,D

 

N
X

i=1

δ̂iδ̂
t
i

!

P
t
U,DD

#

= max
U

tr
ˆ

DPU,DRP
t
U,DD

˜

(15)

whereR is the correlation matrix,R =
PN

i=1
δ̂iδ̂

t
i .

Since we are interested only in the subspace, we want to
limit the solutions to (15). An obvious assumption is that
we have an orthonormal basis for the subspace—i.e.,U is or-
thonormal wrt toD, U tD2U = I . Combining this assumption
with (11) and (15) yields

max
U,UtD2U=I

tr
ˆ

DPU,DRP
t
U,DD

˜

= max
U,UtD2U=I

tr
ˆ

DUU
t
D

2
RD

2
UU

t
D
˜

= max
Û,ÛtÛ=I

tr
h

ÛÛ
t
R̂ÛÛ

t
i

= max
Û,ÛtÛ=I

tr
h

Û
t
ÛÛ

t
R̂Û
i

= max
Û,ÛtÛ=I

tr
h

Û
t
R̂Û
i

(16)

where we have substituted̂U = DU , R̂ = DRD, and we have
used the fact thattr(ABC) = tr(CAB).

Assuming unique eigenvalues, a solution to (16) is thek

eigenvectors belonging to thek largest eigenvalues of the ma-
trix R̂ wherek is the rank (number of columns) ofU ; call this
solutionUk. Note that the solution has a nice structure for vary-
ing k. If we want the solutions for any projection,k0 < k,
we just subset to the firstk0 columns ofUk (assuming that the
columns are ordered by eigenvalue largest to smallest).

6. An Iterative Solution to WNAP
In the prior Section 5, we showed that for a fixed metric,Di =
D, and a variable weighting,Wi, that the WNAP solution can
be solved via an eigenvalue problem. In the general case (for
IPDFs), bothWi andDi vary with the utterance.

Examining (15), we see that ifDi is variable, then the pro-
jection can not be factored out of the sum to obtain an eigenvec-
tor solution. Instead, we must go back to the alternate WNAP
problem (9). We use the split variable version of the problem,

min
U,x1,··· ,xN

N
X

i=1

Wi‖Uxi − δi‖2

Di

= min
U

min
x1,··· ,xN

N
X

i=1

Wi‖Uxi − δi‖2

Di

= min
x1,··· ,xN

min
U

N
X

i=1

Wi‖Uxi − δi‖2

Di
.

(17)
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The split variable expression (17) can be used to create an al-
ternating minimization optimization where we alternatelyopti-
mize U and thenx1, · · · ,xN . The alternating minimization
problem is similar to the type of solution method we would
see in an EM type algorithm [12, 6, 13]. The solution of
the alternating optimization has the same properties as EM—
convergence to a local minimum (no guarantee of global opti-
mality) [14].

For the alternating optimization problem (17), we know
how to solve the case for fixedU and varyingx1, · · · ,xN from
Section 5. The case for fixed{xi} is distinct, and we consider
it next.

For fixed x1, · · · ,xN , we break out the sum in equa-
tion (17) in terms of the rows ofU which we will denote as
the row vectors,U t

1, U t
2, etc., can be written as

min
U

N
X

i=1

Wi‖Uxi − δi‖2

Di

= min
U

N
X

i=1

X

j

WiD
2

i,j

`

U
t
jxi − δi,j

´2

= min
U

X

j

N
X

i=1

WiD
2

i,j

`

U
t
jxi − δi,j

´2

=
X

j

min
U

"

N
X

i=1

WiD
2

i,j

`

U
t
jxi − δi,j

´2

#

(18)

whereδi,j is thejth entry ofδi. Di,j in this case is thejth di-
agonal entry of the matrixDi. The problem in (18) is separable
in that for each fixedj, we can optimize separately the sums,

min
Uj

N
X

i=1

WiD
2

i,j

`

U
t
jxi − δi,j

´2

= min
Uj

N
X

i=1

“

W
1/2

i Di,jx
t
iUj − W

1/2

i Di,jδi,j

”2

.

(19)

In many cases, the matrixDi has a fixed part,̄D and a variable
part, D̃i, so thatDi = D̄D̃i. For the least squares problem
in (19), we only need consider the variable part and the resulting
normal equations are

 

N
X

i=1

WiD̃
2

i,jxix
t
i

!

Uj =

N
X

i=1

WiD̃
2

i,jδi,jxi (20)

The normal equations (20) can be solved, for example, using a
Cholesky decomposition and back substitution [15].

7. Implementing WNAP Training
To simplify easy of implementation, we provide pseudo-

code that describes the implementation of WNAP. In Algo-
rithm 1, the WNAP solution for a fixed metric is given from
Section 5. Note that this process could also be implemented via
kernel methods as in prior work [3, 16].

Our algorithm for iterative training is given in Algorithm 2.
Note that, as in Section 6,̃Dk,j refers to thejth diagonal entry
of the matrixD̃k. Also, we have introduced a regularization
constantǫ which can be set to a small number, e.g.,ǫ = 0.001,
to eliminate ill-conditioning issues. Finally, we mentionthat
Algorithm 2 is not optimized for computation; in many cases,
D̃k will contain redundant entries and so manyRj will be the

Algorithm 1 WNAP subspace training algorithm for a fixed
metric,D, with the eigenvector method

Input: Data set{zi} of N training vectors, weights{Wi},
with speaker labels{li}, and the desired corank
Output: Nuisance subspace,U

for all s in unique speakers in{li} do
Find z̄s

for all j in {j|lj == s} do
Let δj = zj − z̄s

end for
end for
R = 0
for i = 1 to N do

R = R + Wiδjδ
t
j

end for
R̂ = DRD
Û = eigs(R̂, corank) % eigs produces the eigenvectors of
the largest magnitude eigenvalues
U = D−1Û

Algorithm 2 Iterative WNAP subspace training algorithm for a
metric,Di, with variable component̃Di

Input: Data set{zi} with N training vectors of dimension
Ne, weights{Wi}, with speaker labels{li}, and an initialU
of the desired corank
Output: Nuisance subspace,U

for all s in unique speakers in{li} do
Find z̄s

for all j in {j|lj == s} do
Let δ̂j =

p

Wj (zj − z̄s)
end for

end for
for i=1 to max iterationsdo

for j = 1 to N do
xj = (DjU)\(Dj δ̂j)

end for
for j = 1 to Ne do

Rj = 0, vj = 0
for k = 1 to N do

Rj = Rj + WkD̃2

k,jxjx
t
j

vj = vj + D̃2

k,j δ̂k,jxj

end for
end for
for j = 1 to Ne do

Uj = (Rj + ǫI)\vj

end for
end for
U =

ˆ

U1 U2 · · · UNe

˜t

same. For example, forCGM (·), the appropriatẽDk is λ
1/2

k ⊗
In which has onlyNm unique entries (Nm equals the number
of mixture components).

8. Experiments
Experiments were performed on the NIST 2006 speaker recog-
nition evaluation (SRE) data set. Enrollment/verification
methodology and the evaluation criterion, equal error rate
(EER) and minDCF, were based on the NIST SRE evaluation
plan [17]. The main focus of our efforts was the one conver-
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Table 1: A comparison of compensation methods on the NIST SRE2006 one conversation telephone train and test condition;Wi is the
number of speech frames in the utterance

Compensation Training WNAP EER minDCF EER minDCF
Method Method/Metric Projection All ( %) All (×100) Eng (%) Eng (×100)

NAP Eig, D QU,D 3.87 2.05 2.49 1.34
NAP Eig, D QU,Di

3.78 2.04 2.38 1.32
WNAP Iter, D QU,D 3.05 1.67 1.84 1.05
WNAP Eig, D QU,D 3.12 1.65 1.81 1.01
WNAP Iter, D QU,Di

2.96 1.63 1.78 1.00
WNAP Eig, D QU,Di

3.01 1.62 1.78 0.98
WNAP Iter, Di QU,D 3.09 1.66 1.95 1.00
WNAP Iter, Di QU,Di

2.96 1.60 1.78 0.97

sation enroll, one conversation verification task for telephone
recorded speech. T-Norm models and Z-Norm [18] speech ut-
terances were drawn from the NIST 2004 SRE corpus. Results
were obtained for both the English only task (Eng) and for all
trials (All) which includes speakers that enroll/verify indiffer-
ent languages.

Feature extraction was performed using HTK [19] with
20 MFCC coefficients, deltas, and acceleration coefficients for
a total of60 features. A GMM UBM with 512 mixture com-
ponents was trained using data from NIST SRE 2004 and from
Switchboard corpora. The dimension of the nuisance subspace,
U , was fixed at128. A relevance factor of0.01 was used for
MAP adaptation.

For our experiments, we used weighting based upon our
confidence in the parameter vector expansion—the number of
speech frames in the utterance. The IPDF comparison function
used wasCGM (3). Iterative methods were initialized with an
equal weight NAP eigenvector solution, and10 iterations were
performed. Results are shown in Table 1. In the table, we use
the following notation,

D =
“

λ
1/2 ⊗ In

”

Σ−1/2
, Di =

“

λ
1/2

i ⊗ In

”

Σ−1/2 (21)

whereλ are the UBM mixture weights,λ1 are the mixture
weights estimated from the enrollment utterance, andλ2 are the
mixture weights estimated from the verification utterance.For
the “nuisance free” estimate per speaker,z̄s, we used the rel-
evance MAP adapted vector obtained by combining sufficient
statistics across all speaker sessions. An alternate strategy, used
in [3], of taking the mean of the per session relevance MAP
adapted mean vectors was not as accurate. Finally, we mention
that we used the subspace of Algorithm 1 as a starting point for
Algorithm 2.

An analysis of the results in Table 1 shows several trends.
First, there is a substantial improvement in performance for
CGM , greater than20% reduction in error rate, when going
from NAP to WNAP. Second, the use of a variable metric,Di,
versus a fixed metric,D, appears to only provide minor (non-
statistically significant) improvements in performance. Third,
the eigenvector and iterative methods are essentially equivalent
for a fixed metric,D. This property is extremely useful since
we can leverage prior work [3] that uses iterative eigenvector
methods such as Lanczos and KPCA to solve the WNAP op-
timization problem. Eigenvector methods in our experiments
were about an order of magnitude faster than iterative meth-
ods. Fourth, we mention that the WNAP/IPDF combination has
performance comparable to other systems such as JFA with lin-
ear scoring. In a system with a similar experimental setup to

ours, see [8, 10] for more details, JFA has an EER/minDCF of
1.73/0.95 for the English condition.

9. Conclusions and Future Work
We have described a new method, WNAP, for reducing in-
traspeaker variability. WNAP incorporates several features in-
cluding per utterance metrics and weighting of utterances.We
demonstrated a fast eigenvector method for training the WNAP
nuisance subspace. Significant performance improvements on
a NIST SRE 2006 speaker recognition task were demonstrated.
Future work includes exploring other weighting functions and
application to other comparison functions and kernels (GLDS,
high-level speaker recognition).
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