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Abstract
Based on the conventional score calibration techniques with
gaussian backend and logistic regression of the relative likeli-
hood scores, this paper proposes a method of score calibration
specific to a subset of related languages. Detection scores to
two related languages are considered as two sources with simi-
lar and complementary information. In the proposed score cal-
ibration, an optimal linear combination of these two sources is
derived. Experiments to NIST LRE 2009 with the proposed
method give an equal error rate of 3.33%, which is a 25.2%
relative reduction compared with the results from globally cal-
ibrated scores. Errors in differentiating two related languages
can also be reduced by some modifications in parameter opti-
mization.

1. Introduction
Spoken language detection is the process of automatically de-
tecting the presence of target language(s) in a speech segment.
In NIST Language Recognition Evaluation (LRE), the task is
single target detection repeated with many target languages.
One has to determine whether a given speech segment is spoken
in a hypothesized language.

In a language detection system, the scores from the detec-
tors of different languages may have different score distribu-
tions. Score adjustment would be desirable. Although it may be
ideal to adjust the detection scores of different target languages
separately, in the general approaches a global score transforma-
tion is performed [1]. For instance, if every language pair is
treated as a separate case, in a detection problem with N lan-
guages there will be

(
N
2

)
objectives to be fulfilled. It is difficult

for this kind of score adjustment to bring an overall reduction
of detection errors.

A global score adjustment and calibration method often as-
sumes the least prior knowledge. Gaussian backend scores and
likelihood ratios are commonly adopted measures by LRE sys-
tems [2][3]. In those measures, target class scores are mixed
with the non-target class scores to give a relative score in-
dicating target likelihood. Score calibration has been stud-
ied in the problem of speaker recognition, and recently also
in language recognition [1][4][5]. An effective information-
preserving score calibration is proposed which uses a scaling
factor and multiple translational factors to maximize the total
posterior probability of the scores [4].

In NIST LRE 2009, detection targets include some pairs
of related languages [6]. Public results reveal higher recog-
nition errors in these related pairs [7]. Detection to these re-
lated languages becomes a bottleneck in a state-of-the-art lan-
guage recognition system. Intuitively, if some error reduction

techniques specific to these related languages are introduced,
there is hope to reduce the global error. In this paper, we start
with a set of language recognition results which is well cali-
brated in the global level. Further calibration specific to those
related language pairs will be proposed. Our goal is to reduce
the global language recognition error, as well as the confusion
among these related languages.

2. Language detection
2.1. Task specification

Suppose there are K speech segments to be tested with N lan-
guage hypotheses, a language recognition system maps every
segment k ∈ [1, 2, . . . ,K] to a score vector ~s of length N .
Score calibration is performed [4], and a relative measure of
detection log likelihood ratio is derived. The nth log likelihood
ratio λn¬n (n ∈ [1, 2, . . . , N ]) is calculated by dividing the nth

score by the sum of all other scores in ~s, then take the loga-
rithm. For every speech segment k, there results a vector of log
detection likelihood ratio:[

λ1
¬1(k) λ2

¬2(k) · · · λn¬n(k) · · · λN¬N (k)
]T (1)

In a closed-set detection problem, the number of target classes
(i.e. possible languages) is known to beN . A set ofN hypothe-
ses is postulated about the language of segment k. To make a
decision on accepting or rejecting speech segment k as in lan-
guage n, λn¬n(k) is evaluated. When the ratio is higher, it is
more likely that speech segment k belongs to target language n.
The N hypothesis tests are repeated for each of the K speech
segments in the test set. N × K trials are processed in total.
A single threshold θ, independent of k and n, is chosen for the
decision-making process:

λn¬n(k)− θ ≥ 0 7→ accept k belongs to class n (2)
λn¬n(k)− θ < 0 7→ reject k belongs to class n (3)

2.2. Evaluation metrics

Cost performance,CAvg, is a common evaluation metric to a lan-
guage recognition system with N target classes. Adopting the
application-dependent parameters in NIST LRE 2009 closed-
set tests [6], CMiss =CFA =1, P Target =0.5. CAvg is given by:

CAvg =
1

N

N∑
nt=1

Cdetect(nt) (4)

Cdetect(nt) =
1

2
PMiss(nt) +

∑
nn 6=nt

1

2

P FA(nt, nn)

N − 1
(5)
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Figure 1: Likelihood ratio λnt
¬nt

for nt detection in a data set
with two classes: nt, nn

Eq.(4) and (5) say that in each single-class detection, there
is one miss term and N − 1 false alarm terms together to con-
tribute to the average cost. Calculation of the two types of errors
can be traced in the decision making function in Eq.(2) and (3).
An acceptance of a speech segment in the non-target language
constitutes a false alarm in Eq.(2). An rejection of a speech
segment in the target language constitutes a detection miss in
Eq.(3). After the N × K trials in a detection experiment, the
probability of false alarm (P FA) and miss (PMiss) can thus be
found:

P FA(nt, nn) = P (λnt
¬nt
− θ ≥ 0|c = nn)

=
P (λnt

¬nt
− θ ≥ 0, c = nn)

P (c = nn)
=
‖ F(nt, nn) ‖
‖ I(nn) ‖

(6)

PMiss(nt) = P (λnt
¬nt
− θ < 0|c = nt)

=
P (λnt

¬nt
− θ < 0, c = nt)

P (c = nt)
=
‖ M(nt) ‖
‖ I(nt) ‖

(7)

In the above equation, c(k) is the true class (language) of
the speech segment indexed k. I(nt) contains the indices of
speech segments whose true class is nt. (i.e. I(nt) : k ∈
[1, 2, . . . ,K]|c(k) = nt). M(nt) is the subset of I(nt) where
the indexed speech segments are falsely rejected from class nt.
F(nt, nn) is the subset of I(nn) where the indexed speech seg-
ments are falsely accepted as class nt. ‖·‖ denotes set cardinal-
ity. Physically, ‖M(nt)‖ and ‖F(nt, nn)‖ count the number
of misses and false alarms in the experimental data set. An ex-
ample of detection likelihood of a two-class data set with target
class nt and non-target class nn is plotted in Figure 1, in which
‖ M(nt) ‖ can be obtained by counting the number of filled
circles, while ‖F(nt, nn)‖ is the number of filled triangles.

The dominance of detection misses or false alarms in a de-
tection experiment is affected by the detection threshold θ. By
fixing different values of θ, a performance curve can be plotted
for each detector. The capability of a detector system with N
targets are summarized by the averaged performance (Eq.(4)).
Two operating points are of our interest.

(1) Cmin = min
θ
CAvg is the minimum global average cost

(2) Ceer = eer
θ
CAvg is the cost of equal error rate at the op-

erating point where the weighted sum of PMiss of all languages
has the smallest difference with the weighted sum of P FA of all
language pairs.

3. Score calibration with related languages
In NIST LRE 2009, there are 23 target languages to detect.
Among them five related language pairs shown below are gen-
erally considered to be mutually intelligible [6].
• Russian-Ukrainian • Hindi-Urdu • Farsi-Dari
• Bosnian-Croatian • English(American)-English(Indian)

3.1. Cost minimization by likelihood ratio adjustment

Let n1 and n2 represent two related languages. They are mutu-
ally intelligible. Detection among n1 and n2 is believed to give
many misses and false alarms. Here we make two hypotheses:
Hypothesis 1: Cost minimization specific to n1 and n2 would
be beneficial to the reduction of the global cost performance
Cmin and Ceer.
Hypothesis 2: The log likelihood ratios for n1 and n2 contain
similar and complementary information.

According to Hypothesis 1, we propose to minimize the
cost terms Cn1,n2 and Cn2,n1 where:

Cn1,n2 = PMiss(n1) +
1

N − 1
P FA(n1, n2)

Cn2,n1 = PMiss(n2) +
1

N − 1
P FA(n2, n1) (8)

Eq.(8) is a rewritten form of Eq.(5), retaining only the cost com-
ponents related to classes n1 and n2. Note the cost for a single
detection miss isN−1 times of the cost for a single false alarm.
This ratio is inherited from the Cdetect definition in Eq.(5).

In the following, the minimization of Cn1,n2 is illustrated
as an example. Let nt = n1 be the target language and nr =
n2 is the related language. Referring to Eq.(6) and (7), we can
choose to adjust the threshold θ and/or the likelihood ratio λnt

¬nt

for a smaller Cnt,nr . Because this cost minimization is specific
to nt and nr only, we fix the global parameter θ and adjust
λnt
¬nt

.
Another issue is that target class specific cost minimization

should be performed to the in-class data in nt or nr only, while
this information is generally unavailable in the testing set. The
workaround is to use a rough estimate of target class. Let Ĩ(n)
be the estimated indices of speech segments in language n (i.e.
estimate of I(n)). Ĩ(n) is derived heuristically. By evaluating
the vector of detection likelihood ratios of speech segment k
(Eq.(1)), k is put in Ĩ(n) if λn¬n(k) is found to be among the
largest three ratios.

In cost minimization, the goal is to have an adjusted λ
′nt
¬nt

such that both setsM(nt) and F(nt, nr) shrink. According to
Hypothesis 2, λnt

¬nt
and λnr

¬nr
contain similar and complemen-

tary information. We propose the following adjustment:

λ
′nt
¬nt

(k, αnt,nr ) = λnt
¬nt

(k) + τ̃nt,nr (k, αnt,nr ), where

τ̃nt,nr (k, αnt,nr ) =

{
αnt,nrλ

nr
¬nr

(k) if k ∈ {Ĩ(nt) ∪ Ĩ(nr)}
0 otherwise

(9)

Literally, Eq.(9) says that in the detection of language nt,
the log likelihood ratio for a subset of speech segments indexed
k ∈ {Ĩ(nt)∪Ĩ(nr)} has to be adjusted as a linear combination
of λnt

¬nt
(k) and λnr

¬nr
(k). λ

′nt
¬nt

is the adjusted likelihood ratio.
αnt,nr is the weight for likelihood ratio combination.

After λn1
¬n1 is adjusted for the minimization of cost Cn1,n2 ,

minimization of Cn2,n1 can be done in the same manner. By
substituting nt = n2, nr = n1, and repeating the operation in
Eq.(9), λ

′n2
¬n2 is found from λn2

¬n2 and τ̃n2,n1 .
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3.2. Detection target dependent score calibration

The likelihood ratio adjustment for two detection targets n1 and
n2 is illustrated in Fig 2. Score calibration for each detection
target is effective to a subset of speech segments indexed by
k ∈ {Ĩ(nt) ∪ Ĩ(nr)}. The weight for likelihood ratio com-
bination, αnt,nr , is unique in the adjustment in each detection
target. The proposed score calibration is referred to as detection
target dependent score calibration.

3.3. Optimal parameters for score calibration

For the likelihood ratio adjustment of each target language nt
with its related language nr , we use the development data set
to find the optimal parameters such that the errors indicated by
Eq.(6) and Eq.(7) are minimized. Instead of minimizing the sets
‖F(nt, nr)‖ and ‖M(nt)‖, we propose to minimize the to-
tal erroneous deviations of likelihood ratios in the development
data set. Erroneous deviations can be easily visualized in Figure
1. For a detection miss, it is the vertical distance from the de-
tection threshold θ to the filled circle. For a false alarm, it is the
vertical distance from the filled triangle to θ. Mathematically,
the minimization of total erroneous deviations is formulated as
follows:

min
υ,αnt,nr

K∑
k=1

max (ynt(k)× f(k, αnt,nr , υ), 0)

subject to (s.t.) |αnt,nr | ≤ 1,

f(k, αnt,nr , υ)=λ
′nt
¬nt

(k, αnt,nr )− (θ + υ),

ynt(k)=

{
1 if c(k) 6= nt

−(N − 1) if c(k) = nt
(10)

λ
′nt
¬nt

is the adjusted likelihood ratio defined in Eq.(9). f(·)
is the deviation of λ

′nt
¬nt

from a reference point (θ + υ). This
point is an υ-shifted detection threshold. ynt×f(·) returns pos-
itive values for erroneously detected segments and negative val-
ues for appropriately detected ones. The max(·) operation re-
moves deviations which are not erroneous. Among the positive-
valued deviations there are two error types: misses and false
alarms. ynt scales the two error types with the defaultN−1 : 1

ratio. Every αnt,nr is bounded such that λ
′nt
¬nt

lies in a suitable
range. The objective function is convex on αnt,nr . Thus, with a
fixed υ, a globally optimal solution of αnt,nr can be found [8].
The objective function in Eq.(10) tries to push the likelihood ra-
tios of detection misses and false alarms towards the reference
point (θ + υ).

The polarity of υ indicates the optimization goal towards
fewer misses or fewer false alarms. Referring to Figure 1, a pos-
itive υ pushes the dashed line (reference point) upwards. Thus
there will be more filled circles (missed targets) included in the
optimization in Eq.(10), and the parameter for likelihood ra-
tio adjustment, αnt,nr , will be optimized towards the goal of
having fewer misses. Oppositely, a negative υ will lead to an
optimal parameter which favours fewer false alarms.

4. Experiments
4.1. Original scores with frontend calibration

We use a phonotactic-prosodic fusion system to run the NIST
LRE 2009 closed-set language detection task with 30-second
test utterances. The phonotactic system adopts a parallel phone
recognition followed by vector-space-model (PPRVSM) ap-
proach and is one of the subsystems in the Institute for In-

focomm Research submission in NIST LRE 2009 [9]. The
prosodic system uses a comprehensive set of prosodic features
with vector-space models for language recognition [10]. Fron-
tend calibration and fusion are not discussed in details in this
paper. These processes are part of the language detector system
in Figure 2. In brief, the phonotactic and prosodic scores are
calibrated separately with the same Gaussian backend [2]. Fol-
lowing the maximum-a-posteriori (MAP) criterion, each system
is calibrated before score fusion is done with FoCaL [4]. Fron-
tend calibration and fusion parameters are trained using a sep-
arate development set. For notation simplicity, scores and error
costs after the frontend calibration and fusion are referred to as
original scores and original costs hereinafter.
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Figure 2: System diagram of score calibration

4.2. Detection target dependent calibrated scores

Detection target dependent calibration is carried out for each of
the five related language pairs listed in Section 3. These lan-
guage pairs are highlighted in the NIST LRE 2009 task speci-
fication [6] and we do not propose any methods in finding out
these pairs.

Figure 2 shows the system diagram of the complete lan-
guage detection system, in which the two shaded blocks are the
modules of “detection target dependent calibration” for one pair
of related target languages n1 and n2. A pair of adjusted like-
lihood ratios, denoted by λ

′n1
¬n1 and λ

′n2
¬n2 , is derived. There

are totally ten target languages (in five pairs) whose likelihood
ratios are adjusted following Eq.(9). In each adjustment, the
optimal αnt,nr is found from a development data set, with the
objective function in Eq.(10). A convex optimization tool, cvx,
is used [11]. The optimal αnt,nr parameters are then substi-
tuted in Eq.(9) with the NIST LRE 2009 evaluation set. Cmin

and Ceer with the evaluation data is reported.
The development set in this experiment includes telephone

speech data from NIST LRE 2007 evaluation data, and tele-
phone bandwidth broadcast radio speech from NIST LRE 2009
training data. The total number of speech segments in the devel-
opment set is 6041. For evaluation, NIST LRE 2009 evaluation
data is used. We select 10635 test segments from a pool of data
with nominal durations of 3, 10 and 30 seconds. Those 10635
selected test segments have actual durations matching the 30-
second nominal test durations.

To test the best reference point (θ + υ) as mentioned in
Section 3.3, the experimental procedures described above are
repeated with different values of υ. Recall that a positive
υ favours fewer misses and a negative υ favours fewer false
alarms.
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5. Results
5.1. Reference point for erroneous deviation minimization

In training the score calibration parameters αnt,nr , a universal
reference point (θ + υ) is first assumed. A sequence of υ from
−6 to 6, spaced 0.5 apart, is tested. Cmin and Ceer with the
evaluation data are plotted in Figure 3.

From Figure 3, a clear trend of increasing errors can be ob-
served if the value of υ is too large or too small. Both Cmin and
Ceer attain the lowest values when υ equals 3.5. This positive
value implies optimization of parameter α in Eq.(10) should
prefer fewer detection misses. It is reasonable since the error
cost for a detection miss is N − 1 times of the cost for a false
alarm, as defined in Eq.(8).

The exact value of υ depends on the erroneous deviations
of likelihood ratios, which are the vertical distances between
detection threshold θ and filled circles/triangles in Figure 1 (also
mentioned in Section 3.3). By inspecting the scores with the
development data set, erroneous deviations of likelihood ratios
are generally found to be smaller than 6. Therefore υ is tried in
the range from −6 to 6. Unique optimal υ can also be trained
in the optimization for different nt, nr pairs. Nevertheless, a
reasonable guess of a universal υ already leads to Cmin and Ceer

reduction, compared with the original error terms as shown in
the horizontal lines in Figure 3.
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5.2. Global detection errors

Figure 4 shows the detection errors for the evaluation data with
original and calibrated scores. Original scores are those glob-
ally calibrated with FoCaL [4]. Calibrated scores are obtained
via the proposed calibration method in this paper. υ is chosen
to be 3.5. Cmin and Ceer for the original scores over 23 target
languages is 4.36% and 4.45% respectively. After the proposed
calibration, Cmin and Ceer over 23 target languages are reduced
to 3.31% and 3.33% respectively. A relative EER reduction of
25.2% is achieved.

Table 1 shows the error statistics at the global Cmin and Ceer

operating points for the five related language pairs (listed in
Section 3) versus the other 13 languages whose detection like-
lihood ratios are untouched in this experiment. As expected,
the major contribution in error reduction comes from the five
related language pairs, as these languages have high detection
error rates initially and the score calibration proposed in this
paper is specific to these languages. On the other hand, for the
other 13 untouched languages, reduction in Cmin and Ceer can
also be observed.

There are opinions that the use of a common scale for mul-

tiple detections of different targets is not desirable [1][12]. If
unique detection thresholds are determined for different targets,
the equal error rate before and after “detection target specific
calibration” is 3.18% and 2.78% respectively.
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Table 1: Error statistics before and after score calibration

With λnt
¬nt

∗ With λ
′nt
¬nt

∗

Cmin Ceer Cmin Ceer

Average(Avg.) on 23 languages 4.36% 4.45% 3.31% 3.33%

Avg. of 5 related language pairs 7.70% 7.69% 5.40% 5.42%
Avg. of other 13 languages 1.79% 1.95% 1.71% 1.72%
∗ λnt¬nt is the original scores, λ

′nt¬nt is the calibrated scores derived in Eq.(9)

5.3. Detection errors in different target languages

Table 2 describes the Cdetect metric (Eq.(5)) in the five related
language pairs at the operating points corresponding to global
Ceer before and after calibration. It is observed that all target
languages except Russian have error reductions after calibra-
tion, indicated by smaller Cdetect.

Referring to Eq.(5), the component terms of Cdetect(nt) are
recorded in Table 2 for analysis. These terms include the miss
rate to a target language (PMiss(nt)), the false alarm rate spe-
cific to a related language pair (P FA(nt, nr)) and the overall
false alarm rate for the calculation of Cdetect(nt) in Eq.(5). It is
reminded at the global Ceer operating point, the corresponding
miss and false alarm probabilities in a single target language
do not have to satisfy the equal error criterion. For instance,
with original scores, PMiss and P FA for Bosnian is 35.49%
and 1.58% at the global Ceer operating point, giving Cdetect of
18.54% (Table 2).

The optimal parameter αnt,nr found by Eq.(10) is also
recorded in Table 2. This parameter specifies the proportion of
the related language likelihood ratio (λnr

¬nr
) to be added to the

target language likelihood ratio (λnt
¬nt

) in calibration (Eq.(9)).
By looking at the parameter αnt,nr , two scenarios can be ob-
served.

In the first scenario, a negative αnt,nr is found to be opti-
mal. Take Russian detection as an example and refer to Eq.(9),
such an adjustment subtracts λnr :Ukrainian

¬nr :Ukrainian from the original
λnt:Russian
¬nt:Russian likelihood ratio. The subtraction operation sup-

presses the high scores in λnt:Russian
¬nt:Russian in case of a false alarm

in Ukrainian, and compensates the low scores in case of a de-
tection miss in Russian. Recall that the error cost for a detection
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Table 2: Errors for different targets at Ceer operating point

nt:Target nr:Related @Ceer with λnt
¬nt

∗ @Ceer with λ
′nt
¬nt

∗

language language PMiss(nt) P FA(nt, nr)
∑ P FA(nt,nn)

N−1
Cdetect(nt) αnt,nr PMiss(nt) P FA(nt, nr)

∑ P FA(nt,nn)
N−1

Cdetect(nt)

Bosnian Croatian 35.49% 23.94% 1.58% 18.54% 0.76 12.68% 71.28% 3.57% 8.12%
Croatian Bosnian 8.78% 74.93% 5.07% 6.92% 0.43 8.78% 79.72% 4.18% 6.48%

Dari Farsi 14.91% 14.32% 3.22% 9.07% 0.34 11.05% 35.29% 3.01% 7.03%
Farsi Dari 0.26% 72.49% 7.08% 3.67% −0.30 0.51% 47.81% 4.79% 2.65%

Eng(Ame) Eng(Ind) 2.08% 55.50% 5.92% 4.00% 0.05 3.40% 45.52% 3.81% 3.61%
Eng(Ind) Eng(Ame) 2.54% 38.93% 6.51% 4.53% 0.13 3.05% 37.50% 4.54% 3.79%

Hindi Urdu 4.20% 80.74% 12.67% 8.43% 0.62 1.80% 97.89% 9.13% 5.46%
Urdu Hindi 2.11% 85.76% 11.12% 6.61% 0.67 2.11% 96.85% 8.58% 5.35%

Russian Ukrainian 0.00% 52.06% 10.43% 5.21% −0.27 0.19% 43.56% 10.52% 5.35%
Ukrainian Russian 19.07% 3.25% 0.73% 9.90% 0.76 10.82% 34.03% 1.98% 6.40%
∗ λnt¬nt is the original scores, λ

′nt¬nt is the calibrated scores in Eq.(9).
All Cdetect and P FA terms are calculated at the operating points for global Ceer

miss is N − 1 times of the cost for a false alarm (Eq.(8)). So
the biggest concerns are those Russian speech segments having
large scores in λnr :Ukrainian

¬nr :Ukrainian, which will incur detection misses
of Russian after the subtraction operation in Eq.(9). As a result,
the prerequisite for a negative α to be optimal is a low false
alarm rate in the detector of the related language. In Table 2,
P FA(nt:Ukrainian, nr:Russian) is only 3.25%. A subtraction
will not incur detection misses of Russian. Similarly, scores of
the Dari detector have relatively low false alarm rate in Farsi
(14.32%), and it is subtracted from the scores of the Farsi de-
tector.

The second scenario occurs for the detector nt where false
alarm rate is high in the detector of the related language. The
optimal αnt,nr parameters found by Eq.(10) are non-negative.
This is because subtraction of scores would incur a significant
number of detection misses, which means a high costCdetect(nt)
contributing to the global error. In the score adjustment of
American and Indian English, the optimal value of αnt,nr are
found to be around zero. For other detectors, optimal val-
ues of αnt,nr are positive. Essentially the adjusted score is a
weighted sum of scores from nt and nr detectors. The two
related languages are less differentiated, in return for fewer de-
tection misses PMiss(nt), and/or fewer false alarms irrelevant to
the related language pairs P FA(nt, nn|nn /∈ 〈nt, nr〉).

Table 3: Confusion costs of specific pairs of related languages
nt:Target nr:Related Original Calibrated:23 lang Calibrated:2 lang
language language eer

θnt

Ccf(nt) αnt,nr
∗ eer

θnt

Ccf(nt)
∗ αnt,nr

] eer
θnt

Ccf(nt)
]

Bosnian Croatian 30.10% 0.76 35.16% −0.17 29.82%
Croatian Bosnian 31.33% 0.43 32.97% −0.01 31.05%

Dari Farsi 14.87% 0.34 16.92% −0.49 12.31%
Farsi Dari 12.05% −0.30 11.79% −0.55 11.54%

Eng(Ame) Eng(Ind) 16.10% 0.05 16.24% −0.52 16.04%
Eng(Ind) Eng(Ame) 16.38% 0.13 17.24% −0.74 15.04%

Hindi Urdu 28.28% 0.62 32.21% −0.59 28.77%
Urdu Hindi 30.31% 0.67 32.98% −0.85 29.05%

Russian Ukrainian 14.71% −0.27 11.31% −0.60 10.32%
Ukrainian Russian 11.54% 0.76 16.47% −0.81 9.77%
∗ αnt,nr and error terms in the middle columns are for 23 languages, identical with those
obtained in previous sections, with υ = 3.5,N = 23 in Eq.(10).
] αnt,nr and error terms in the rightmost columns is for 2 languages, obtained with υ = 0,
N = 2 in Eq.(10).

5.4. Confusion among related language pairs

By looking at P FA(nt, nr) before and after calibration in Ta-
ble 2, it is suggested that detection target dependent calibration
towards a lower global error somehow sacrifices the differenti-
ation between a target language nt and its related language nr .
A follow-up experiment is conducted to show that it is possible
to improve the classification of confusing language pairs. As
we are only interested in the confusion between the target lan-
guage nt and the related language nr , in every detector we look
at speech segments of the two related languages only (i.e. We
look at λnt

¬nt
(k) where k ∈ {I(nt) ∪ I(nr)}, I(n) is the in-

dices of speech segments whose true language is n). The total
number of target classes is two and Eq.(5) is revised to give a
confusion cost, Ccf(nt), between nt and nr in detecting nt.

Ccf(nt) =
1

2
PMiss(nt) +

1

2
P FA(nt, nr) (11)

Instead of using a single detection threshold θ, detection of
language nt will use a target language specific detection thresh-
old θnt . In the following, we will look at the confusion costs
of different target languages at the equal error rate operating
points, where PMiss(nt) and P FA(nt, nr) have the smallest dif-
ference. This cost is denoted as eer

θnt

Ccf(nt).

Table 3 shows the confusion costs Ccf at equal error rates
for the five related language pairs. The leftmost column of fig-
ures is the original confusion costs without “detection target de-
pendent score calibration”. The Bosnian-Croatian pair and the
Hini-Urdu pair show the biggest confusion among five pairs.

In the middle, the revised metric, Ccf, illustrates how clas-
sifications between two related languages suffer with detection
target dependent score calibration towards a lower global error
cost. α parameters are the same as those in Table 2. The con-
fusion cost, Ccf, is increased when α is positive. It is reminded
that Table 3 records an equal error rate specific to only two lan-
guages nt and nr; while in Table 2, a different operating point
with a minimum global equal error rate constraint is picked.

Finally, calibration algorithm with Eq.(10) is modified, sub-
ject to lower error costs specific to only the two related lan-
guages. New α parameters are derived with Eq.(10) substitut-
ing υ = 0 and N = 2. υ is chosen such that optimization in
Eq.(10) does not have bias in reducing misses or false alarms.
N = 2 as only two detection targets nt and nr are of inter-
est. The optimal α parameters and new confusion cost Ccf are
recorded on the rightmost columns in Table 3. The newly found
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α parameters are all negative. It follows our discussion in Sec-
tion 5.3 that a negative α reduces the confusion between related
language pairs. The confusion costs in all target languages ex-
cept Hindi demonstrate different degrees of reduction.

6. Conclusions
In this paper, detection target specific score calibration for some
related languages is proposed for language detection. With an
optimal weight, the linear combination of scores between re-
lated classes effectively reduces the final detection errors in a
global sense. The calibration method can be extended to differ-
ent scenarios such as minimizing the confusion within a subset
of related languages. Given limited information to differentiate
the related languages in language recognition, the results indi-
cate that overall improvement of detection errors is still possi-
ble.
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