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Abstract
This paper investigates the effects of limited speech data in
the context of speaker verification using the Gaussian mix-
ture model (GMM) mean supervector support vector machine
(SVM) classifier. This classifier provides state-of-the-art perfor-
mance when sufficient speech is available, however, its robust-
ness to the effects of limited speech resources has not yet been
ascertained. Verification performance is analysed with regards
to the duration of impostor utterances used for background,
score normalisation and session compensation training cohorts.
Results highlight the importance of matching the speech dura-
tion of utterances in these cohorts to the expected evaluation
conditions. Performance was shown to be particularly sensitive
to the utterance duration of examples in the background dataset.
It was also found that the nuisance attribute projection (NAP)
approach to session compensation often degrades performance
when both training and testing data are limited. An analysis
of the session and speaker variability in the mean supervector
space provides some insight into the cause of this phenomenon.

1. Introduction
Considerable speech resources are typically used in the devel-
opment of speaker verification technology leading to high levels
of classification performance [1]. The practicality of such sys-
tems in the real world becomes questionable, however, when
clients are required to provide lengthy utterances before ac-
cess to a system will be granted. Reducing this requirement
of sufficient speech while obtaining satisfactory performance
has proved difficult as demonstrated in a number of recent stud-
ies [2, 3, 4, 5]. The adverse effects of limited speech intuitively
has a large impact on forensics oriented applications in which
the availability of sufficient and quality speech is not guaran-
teed. In light of this shortcoming in current technology, research
continues to address the robustness of speaker verification tech-
nologies under such conditions.

In recent years, the Gaussian mixture model (GMM) mean
supervector support vector machine (SVM) classifier has re-
ceived considerable focus due to its successful application to the
task of speaker verification [6]. Significant advances in the asso-
ciated technology have resulted in the proposal of SVM kernels
tailored to the speaker verification task and session variability
modeling techniques [7, 8, 9]. As is common in the research
field, these studies have focused on the NIST speaker recog-
nition evaluation (SRE) corpora using training and testing ut-
terances of approximately two and a half minutes of speech,
from which good performance has been obtained. The question
remains, however, as to the robustness of the GMM mean su-
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pervector SVM (GMM-Svec) classifier in the context of limited
training and testing speech.

Motivation for an investigation into SVM-based speaker
verification from short utterances is two-fold. Firstly, recent
participation in the EVALITA 2009 speaker verification identity
evaluations has highlighted the superior classification ability of
the GMM-Svec classifier over joint factor analysis (JFA) GMM-
based classification when ample speech is available, however,
the opposite is true in the case of limited training and testing
data [10]. The secondary motivation comes from recent studies
into the effects of limited training data in the context of GMMs
estimated using JFA [3, 4]. These studies demonstrated that
session-compensation through JFA was more effective when the
duration of speech used to estimate the speaker and session sub-
spaces was matched to the evaluation conditions. Given the dis-
tinct information link between the GMM and SVM modeling
domains in the GMM-Svec classifier [11], it is expected that
similar attention should be placed on the data used in the im-
plementation of session compensation techniques in the SVM
kernel.

This paper analyses the effects of limited speech resources
on the state-of-the-art GMM-Svec classifier in the context of
text-independent speaker verification. The fundamental classi-
fier components that are investigated in this study are briefly
described in Section 2. Experimental results in Section 4 firstly
illustrate the shortcoming of SVM-based verification of short
utterances in comparison to the widely accepted GMM-based
classifier. The effectiveness of each of the fundamental SVM
system components is then analysed through a series of experi-
ments. Focus is given to the duration of speech used in the SVM
background, score normalisation and NAP transform training
datasets. Highlighted in this study is the shortcoming of the
common NAP approach to session compensation when limited
training and testing speech is encountered. Subsequent analysis
of this phenomena is also presented.

2. GMM-Svec Classifier Components
Discriminative modeling techniques are highly applicable to the
task of speaker verification due to their inherent ability to dis-
tinguish a given client speaker from impostor speakers. Re-
cent years have seen the GMM mean supervector SVM classi-
fier [6] become one of the most widely adopted classifiers in
the research community. Consequently, the GMM-Svec classi-
fier regularly comprises part of submissions to the NIST speaker
recognition evaluations (SRE) [1].

Maximising the performance obtained from the GMM-Svec
classifier relies on the correct function of a number of funda-
mental components and techniques. This section outlines these
system components and draws attention to the appropriate se-
lection of utterances during system development.
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2.1. Background Dataset

SVMs are trained to discriminate between positive and negative
classes of training examples [12]. In the context of speaker ver-
ification, these are the client and impostor classes, respectively.
The background dataset refers to the large collection of impos-
tor examples used to discriminate against the client training ex-
amples in the speaker modeling process. Recent studies have
highlighted the importance of selecting appropriate background
examples to represent the evaluation conditions [13, 14]. These
studies have also found impostor utterances of considerable du-
ration to be particularly beneficial to the model training process
and the subsequent performance achieved the system. The du-
ration of speech used to train background mean supervectors is
analysed in this study with regards to the amount of training
and testing speech expected in the evaluation conditions. Mis-
matched training and testing durations are of particular interest
where the impostor examples may be matched to either the short
or long speech segment in a trial.

2.2. Session Compensation

Session variability compensation is an integral part of speaker
verification technology in both GMM and SVM-based config-
urations and has been shown to significantly reduce classifica-
tion errors [15, 16, 17]. Session compensation in SVM-based
speaker verification is commonly employed using nuisance at-
tribute projection (NAP) [7]. NAP attempts to counteract the
adverse effects of session and channels variations by project-
ing the most dominant nuisance directions out of the SVM ker-
nel space, thereby providing improved speaker discrimination.
These directions are assumed to reside in a low-dimensional
space are estimated from a held-out dataset containing multiple
utterances from a large number of speakers. The estimation pro-
cess involves decomposing the within-class scatter of this data
and retaining the eigenvectors corresponding to the N highest
eigenvalues in the matrix Un (in this work N = 40). These
directions can then be projected out of an input supervector, m,
using

mnap =
(
I −UnU

T
n

)
m (1)

where I is the identity matrix and mnap represents the session
compensated supervector.

Recent work regarding session variability modeling in the
context of the JFA framework for GMMs has demonstrated that
the benefits associated with session compensation rapidly de-
crease along with the duration of the test speech segment [3].
This is possibly due to the relatively high degree of within
speaker variation attributed to high phonetic variation between
these shorter utterances which is less dominant in longer speech
segments. It seems apparent, therefore, to determine whether
similar observations can be made in the context of NAP-
compensated SVM-based speaker verification as speech re-
sources become limited. Section 4.3 presents experimental re-
sults and a relevant discussion on the findings of these investi-
gations.

2.3. Score Normalisation

Score normalisation techniques [18] are typically employed in
speaker verification technology with the objective of counter-
acting statistical variations in classification scores. This is ac-
complished by scaling all scores to a global distribution where a
client- and test-independent classification threshold can be ap-
plied. Z- and T-norm are commonly employed in combination

to provide ZT-norm (that is, Z-norm followed by T-norm). Both
techniques attempt to scale the output score distributions to have
zero mean and unit variance based on the observed trends of an
impostor score distribution. In the case of Z-norm, this impostor
distribution is estimated by testing an impostor cohort of utter-
ances against a given speaker model, whereas T-norm compares
a given test utterance against a set of impostor speaker models
trained from the cohort. Recent work has found little bene-
fit from Z-norm in the context of GMM-based verification of
short utterances [10], thus motivating an investigation into the
observable benefits of score normalisation in the case of short
utterance speaker verification using SVMs.

3. Experimental Configuration
The GMM mean supervector SVM system used in this
study was previously described in [13]. GMM supervec-
tors were produced through mean-only MAP adaptation using
24-dimensional, feature-warped MFCC features including ap-
pended delta coefficients. An adaptation relevance factor of
τ = 8 and 512-component models were used throughout. SVM
training and classification was performed using 12288 dimen-
sional GMM mean supervectors and the associated kernel [6].
The NIST 2004 SRE was used to form large gender-dependent
background datasets. Examples from the background dataset
were additionally used as the Z- and T-norm score normalisa-
tion cohorts as this configuration has been shown to perform
well in [13]. Where applicable, NAP [7] was employed to re-
move the 40 dimensions of greatest session variability. Speech
segments from the NIST 2004 SRE and Switchboard 2 copora
were used to learn the nuisance directions.

The GMM-UBM configuration in Section 4.1 matched the
system used to produce mean supervectors, however a relevance
factor of τ = 32 was used. Where applicable, JFA was em-
ployed using a 50-dimensional channel subspace and a speaker
subspace of 200 dimensions. These subspaces were learned
using the same dataset as specified for the NAP transforms.
Where applicable, score normalisation was employed using the
SRE’04 corpus as Z- and T-norm impostor cohorts.

Evaluations in this work focus primarily on two cases of
limited speech — (1) full training and limited testing data, and
(2) limited training and testing data of equal duration. These
conditions will be denoted full-short and short-short, respec-
tively. Telephone-based utterances from the 1-sided, English-
only condition of the NIST 2008 SRE were used for this task.
These utterances were truncated to contain 5, 10, 20, 40 or 80
seconds of active speech (as determined using speech activity
detector) from which GMM mean supervectors were trained.
The first 5 seconds of active speech were removed from all trun-
cated utterances to avoid potential overlap in the introductory
speech.

4. Results
Following is an experimental study regarding the impact of lim-
ited speech on the fundamental components of the GMM-Svec
configuration. These experiments look firstly at aspects of a
baseline classification before progressively building towards a
state-of-the-art configuration.

4.1. Baseline SVM Performance

Initial experiments were performed to determine the effects of
limited speech on the GMM-Svec classifier that had been devel-
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Figure 1: Trends in the GMM-UBM and GMM-Svec configura-
tions for different durations of active speech in the (a) full-short
and (b) short-short evaluation conditions.

oped toward the full-length short2-short3 training and testing
conditions of the SRE’08 and, therefore, does not specifically
attempt to deal with the adverse effects of short speech seg-
ments. Performance statistics from the GMM-Svec SVM sys-
tem were obtained in both baseline and state-of-the-art (SOTA)
configurations, the latter of which incorporated session com-
pensation and ZT-norm. Corresponding GMM-UBM configu-
rations were also trialled to provide a point of reference from
which to analyse SVM performance (see Section 3 for system
specifications). The GMM-UBM configuration was selected
for this purpose due to its stable operating characteristics un-
der challenging evaluation conditions.

Figure 1 depicts the EER performance from baseline and
SOTA SVM and GMM configurations for the full-short and
short-short evaluation conditions on the SRE’08. The full-short
trials in Figure 1(a) demonstrate that SVM performance de-
graded more rapidly than the GMM counterpart when the active
test speech duration was reduced. This was particularly evident
in the baseline systems (depicted in the plot as solid lines) in
which the SVM performance provided significantly worse per-
formance than the GMM configuration for short durations de-
spite being superior when sufficient testing data was available.
These observations can also drawn from the short-short results
in Figure 1(b). Under these conditions, the SOTA SVM was
found to offer worse performance than the baseline configura-
tion when speech duration was restricted to less than 80 seconds
while, in contrast, this was only observed in the SOTA GMM
system when 5 seconds was used. The addition of session com-
pensation and score normalisation to the baseline SVM configu-
ration, in this case, resulted in reduced performance. Therefore,
it would seem apparent that these common techniques must be

tailored to deal with the conditions exhibited by short utterances
in order to improve the robustness of SVM-based classification.
The following sections aim to address this issue from a devel-
opment data point of view.

4.2. Background Dataset

One of the fundamental differences between the GMM-UBM
and GMM-Svec SVM classifiers is the use of an impostor or
background dataset when training SVMs. While the back-
ground dataset may appear analogous to the world model (the
UBM) in GMM classification, SVMs are not adapted from the
background and instead, the SVM objective function actively
seeks to discriminate the client training data from examples in
the background. Previous studies have demonstrated the need
to select appropriate background examples to match the evalu-
ation conditions to provide good model quality [13]. This sec-
tion investigates the amount of speech used in the training of the
background supervectors in the context of limited training and
testing conditions.

Due to the potential mismatch in enrolment and testing
speech durations, several background dataset selection strate-
gies were considered. These strategies included matching the
duration of background utterances to either (1) the training du-
ration, (2) the testing duration or (3) the duration of the shortest
segment constituting a trial. For this task, a short-full condition
was introduced in which the enrolment segment was truncated
and the full-length test utterance was used for verification. Trial
conditions were evaluated using an impostor dataset compiled
from either full or short background utterances. Figure 2 depicts
the EER from these trials over a range of test durations.

Figure 2 indicates that significant improvements tended to
result from the matching of the background example duration
to that of shortest segment in a trial. This, however, was not
as evident in the case of the short-full trials of Figure 2(c), in
which background matching was of no benefit when the training
duration was above 10 seconds.

To provide clearer analysis, results specific to the evalua-
tion conditions when using short segments of 10 seconds are
detailed in Table 1. The full-10sec and 10sec-10sec conditions
in Table 1 exhibited significant performance gains when using
background examples containing only 10 seconds of speech as
opposed to full-length utterances. These relative improvements
were up to 11% in minimum DCF and 25% in EER. The results
from the last condition in the table, 10sec-full, were inconclu-
sive as to whether the background should be matched to the
training, testing or shortest segment. However, when analysing
these results along with the other evaluation conditions, certain
consistencies were observed. Specifically, minimum DCF was
improved when matching the background examples to the du-
ration of the test segment, while the EER was minimised when
matching to the shortest segment.

The observations drawn from the results in Table 1 indicate
that matching the background example duration to that of the
training segment does not always maximise performance. This
finding is of interest when considering that the objective of the
SVM training algorithm is to maximise discrimination between
speaker and impostor classes. It would, therefore, seem intu-
itive to provide similar data for the classes being discriminated;
in this instance, similar speech durations. It was demonstrated,
however, that optimising discrimination against the character-
istics of the data expected during verification or the most chal-
lenging data (i.e., shorter segments) resulted in a superior SVM
client model.
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Figure 2: Comparing full and matched background selection
strategies for the GMM-Svec configuration at different lengths
of active speech for each evaluation condition.

The background strategy adopted for the remainder of this
study is to match the duration of background utterances to that
of the shortest utterance constituting a trial. It should be noted,
however, that remaining experiments focus only on the full-
short and short-short conditions in which the test utterance is
also the shortest segment. This matched background configura-
tion will be referred to as the Reference system for the purpose
of analysing the effectiveness of NAP and score normalisation.

4.3. Session Compensation

Session compensation is an important component of speaker
verification technology that typically improves classification
performance by a considerable factor [17]. This section fo-
cuses on the application of session compensation using NAP
in the context of limited speech. As mentioned in Section 2.2,
NAP compensation relies on the appropriate estimation of a set
of directions that best capture the observable session variabil-

Train-Test Background Min. DCF EER

10sec-10sec Full .0815 23.77%
10sec .0751 19.05%

Full-10sec Full .0587 16.02%
10sec .0520 12.05%

10sec-Full Full .0522 11.96%
10sec .0560 11.38%

Table 1: GMM-Svec performance when using full and matched
(10sec) background examples with 10 seconds of active training
and/or testing speech.

ity in the SVM kernel space from a transform training dataset.
Experiments investigate the duration of utterances used to es-
timate this transform under two specific contexts — full-short
and short-short evaluations.

4.3.1. Full-Short Evaluations

The previous section highlighted the importance of matching
the duration of speech in background utterances to the testing
or the shortest utterance in a trial. It is, therefore, hypothesised
that examples in the NAP training dataset will exhibit a similar
requirement in order the maximise the effectiveness of NAP in
mismatching training and testing conditions.

The full-short trial condition was evaluated using NAP
transforms estimated from full-length utterances and from utter-
ances truncated to match the shorter, test utterance length. Fig-
ure 3 depicts the EER performance from these trials as a func-
tion of testing utterance duration along with the performance
offered from the baseline configuration. For all durations tri-
alled it can be seen that Matched NAP training consistently pro-
vided improved performance over the Reference and Full NAP
training configurations. Comparable performance was, how-
ever, observed from the Matched NAP and Reference config-
urations when very limited data was available. The Full NAP
results were particularly poor when less than 20 seconds of test
speech was available such that the Reference configuration pro-
vided superior performance. In light of these observations, it is
clear that matching the duration of utterances used to estimate
the NAP transform to the shorter, test segment of a trial holds
a distinct advantage over the estimation of the NAP transform
from full length training utterances.

Section 4.2 demonstrated that the quality of SVM client
models was improved when trained to discriminate the client
training data against background examples representative of the
test conditions. This observation is also apparent from the tri-
als in Figure 3 such that compensating for the variations in the
short test segment was found to be of greater importance than
removing the variation observed in the enrolment utterance of
sufficient length. Session compensation should, therefore, be
targeted toward the variations observed in the speech segments
from which the extraction of useful speaker information is more
challenging. It should also be noted that the number of short
background examples typically outweighs those of client train-
ing utterances by a considerable margin. Consequently, most of
the discriminative information for SVM training is provided by
the background dataset. It is apparent that reducing the interfer-
ence of session variations on the informative impostor speaker
characteristics in these examples also aids in the production of
quality client SVMs.
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Figure 3: Comparison of NAP when estimating transforms from
full or truncated utterances and evaluated on the full-short con-
dition of the SRE’08.

NAP Training Min. DCF EER

Baseline (No NAP) .0751 19.05%
Full NAP training .0838 24.59%
Matched NAP training .0788 21.91%

Table 2: The use of NAP compensation in the 10sec-10sec con-
dition when estimating the NAP transforms from full-length or
10 second utterances.

4.3.2. Short-Short Evaluations

The full-short evaluations demonstrated the need to match the
NAP training data to the shorter test segment of a trial, how-
ever, limited gains over the baseline configuration were ob-
served when very limited test speech was available. Of interest
in the following trials is the effectiveness of NAP-based session
compensation when both training and testing utterances are lim-
ited in duration.

Table 2 indicates the performance statistics obtained when
applying session compensation using a NAP transform esti-
mated from full or truncated utterances in the 10sec-10sec con-
dition of the SRE’08 along with baseline system performance.
It is clear from these results that the baseline system provides
significantly better performance than either of the NAP com-
pensated configurations. While the matching of NAP transform
data to the limited speech conditions provided considerable im-
provements over a transform estimated from full-length utter-
ances, its application to the baseline system degraded classi-
fication performance. This aligns with the findings of [4] in
which the improvements expected of JFA-based session com-
pensation were not observed when limited testing speech was
encountered. In light of these observations, it would be benefi-
cial to determine the amount of speech required by NAP in or-
der for its application to benefit classification in the short-short
conditions.

Figure 4 depicts the EER obtained when employing the
full and matched NAP transforms along with the EER offered
through baseline SVM classification. While considerable im-
provements were observed from NAP when 80 seconds of
speech was available, the plot indicates that NAP struggles to
provide any advantage over baseline performance when utter-
ance duration was restricted below 40 seconds — even in the
case of matched transform training utterances.
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Figure 4: Comparison of NAP and Reference system perfor-
mance when estimating NAP transforms from full or truncated
utterances and evaluated on the short-short SRE’08 condition.

4.4. An Analysis of Session & Speaker Variability

The application of NAP to trials involving limited training and
testing conditions degraded verification performance in Sec-
tion 4.3.2. Analysis of the session and speaker variability ob-
served in the SVM kernel space is expected to provide insight
as to why NAP fails to benefit verification performance under
these conditions.

In the context of JFA GMM-UBM speaker verification, pre-
vious studies have shown the observable variance in the session
subspace to increase as utterance length is reduced [19]. It is
believed that this increase in variance may to be due to the in-
creased significance of phonetic variation between shorter utter-
ances [3]. Given the distinct link between the GMM modeling
domain and the SVM kernel space when using GMM mean su-
pervectors, it is expected that the similar trends may be exhib-
ited in the kernel space as available speech is reduced. In order
to test this hypothesis, the magnitude of within and between
scatter variance observed in the SVM kernel space was calcu-
lated to provide a measure of session and speaker variability,
respectively.

These statistics were gathered from supervectors estimated
using a MAP relevance adaptation factor of τ = 8 (correspond-
ing to the system configuration used throughout this study) and
τ ≈ 0. In the case of τ = 8, Table 3 details the magnitude of
session and speaker variation observed in the SVM kernel space
over a number of utterances lengths. It can be observed that the
magnitude of session variation is reduced along with speech du-
ration. This observation conflicts the findings of [19] and do not
support the assumption that relatively high variation exists be-
tween short utterances. To investigate further these conflicting
findings, the effect of relevance MAP adaptation on the SVM
kernel space was was analysed. The statistics detailed in Ta-
ble 3 were evaluated using a MAP relevance factor of τ ≈ 0 to
essentially remove the influence of the UBM during supervector
training. As expected, this allowed component means to move
freely and provide an increase in variance magnitudes as ob-
served in [19]. This draws attention to the significant influence
of the relevance adaptation factor τ on the observable variations
in the SVM kernel space.

Table 3 also indicates the ratio of session variance mag-
nitude to speaker variance magnitude as observed in the SVM
kernel space. It can be observed that the Session

Speaker ratio is signif-
icantly greater for shorter durations of speech than for longer
speech segments. Clearly, session variability is more dominant
in the kernel space when using shorter speech segments causing
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Duration Session Speaker Session
Speaker

80 sec 0.473 0.358 1.32
40 sec 0.428 0.254 1.69
20 sec 0.334 0.154 2.17
10 sec 0.226 0.086 2.64
5 sec 0.137 0.045 3.06

Table 3: Magnitude of speaker and session variation observed
in the SVM kernel space as utterance duration is reduced.
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Figure 5: Session and speaker variability observed in the NAP
transform training dataset comprising of 80 seconds and 10 sec-
onds of active speech.

the verification task to become more challenging.

In order to gain an understanding as to why NAP is not ef-
fective when dealing with limited training and testing speech,
the magnitude of session and speaker variation captured in the
top 100 directions of greatest session variation1 were plotted
in Figure 5 when utterances of 80 and 10 seconds in duration
were used to estimate the nuisance directions. Session variabil-
ity is represented in this plot by the darker lines and speaker
variability by the lighter lines. This plot shows that the slope
of the session variability in the 80 second case is greater than
that observed in training utterances containing only 10 seconds
of speech while the slope of the speaker variability is similar
in both cases. As highlighted in Section 2.2, NAP was devel-
oped based on the assumption that the vast majority of session
variability could be expressed in a low-dimensional subspace.
Figure 5, however, shows the slope of the eigenvalues to ‘flat-
ten’ when reducing from 80 to 10 seconds of speech. This sug-
gests that session variability becomes more isotropic as speech
duration is reduced. Consequently, NAP fails to provide per-
formance gains in these reduced speech scenarios because the
assumption on which it was developed does not hold.

The development of techniques to address the issue of
NAP-based session compensation highlighted in this section
demands considerable attention. One such approach that may
provide some improvement is scatter difference NAP (SD-
NAP) [9]. The idea of SD-NAP is to introduce back into the
NAP-compensated kernel space, a weighted influence of the be-
tween scatter statistics to ensure important speaker information
is retained.

1The top 40 dimensions constitute the NAP transform used in this
work.

Reference NAP (Matched)
Eval. Cohort DCF EER DCF EER

Full-
10sec

None .0520 12.05% .0470 11.15%
Full .0568 14.25% .0496 12.30%

Matched .0447 12.04% .0461 11.07%

10sec-
10sec

None .0751 19.05% .0788 21.91%
Full .0750 19.46% .0793 22.31%

Matched .0749 18.81% .0781 21.74%

Table 4: The effect of matching ZT-norm score normalisation
cohorts to limited speech evaluation conditions in Reference
and NAP-compensated configurations.
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Figure 6: Relative minimum DCF improvements in the Ref-
erence configuration (No NAP) when applying matched score
normalisation to raw scores.

4.5. Score Normalisation

As in the case of the SVM background dataset, suitable score
normalisation cohorts much be selected in order to maximise
the potential performance benefits [13]. This section briefly in-
vestigates how the duration of utterances in these cohorts corre-
sponds to the effectiveness of score normalisation in the context
of SVM-based classification with limited speech. While match-
ing the score normalisation cohorts to the evaluation conditions
is commonplace in systems submitted in the NIST SREs, the
degree that this matching aids performance in the context of
SVM-based speaker verification has not yet been reported in
literature. To aid in discussion, results are presented only for
speech durations of 10 seconds, however, it should be noted
that similar observations were drawn from all other utterance
durations. Table 4 presents the performance obtained when us-
ing Z- and T-norm impostor cohorts consisting of full-length
utterances and utterance lengths matched to the evaluation con-
ditions. The latter case corresponds to matching the T-norm
cohort to the duration of the training utterance and the Z-norm
utterances to the test duration of the evaluation protocol.

Results from the Full-10sec trials in Table 4 indicate a num-
ber of consistencies. Firstly, the full-length score normalisation
cohorts provided the worst performance such that an increase
in verification error was observed relative to the raw scores. In
contrast, the best performance was obtained when matching the
normalisation cohorts to the evaluation conditions. In this case,
the Z-norm utterances consisted of only 10 seconds of speech
while the T-norm segments remained full-length so as to match
the client training conditions. In light of this observation, the se-
lection of an appropriate Z-norm cohort alone had a significant
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effect on performance under these limited speech conditions.
While matched normalisation cohorts provided the best perfor-
mance, the observable gains over the raw scores were limited
with the exception of the 14% relative minimum DCF improve-
ment in the Baseline system.

Similar to the Full-10sec evaluation conditions, Table 4 in-
dicates that performance was maximised in the 10sec-10sec tri-
als when truncating utterances in the score normalisation co-
horts to 10 seconds. When comparing the scores between dif-
ferent normalisation cohorts and the raw scores, minimal varia-
tion can be observed. It should be noted based on the last row
of Table 4 that score normalisation did not help to rectify the
poor performance offered through NAP relative to the Refer-
ence configuration that was highlighted in Section 4.3.2. Fig-
ure 6 illustrates the relative improvements that were brought
about by matched ZT-norm cohorts to raw scores of the Refer-
ence system for a range of speech durations in the short-short
trial condition. Clearly, the benefits of score normalisation be-
come less apparent as speech duration is reduced from 80 sec-
onds down to 5 seconds. In light of these observations, the ap-
plication of ZT-norm to SVM-based speaker verification with
limited training and testing speech appears, to a large degree, to
be unnecessary.

5. Conclusions
This paper presented a study on the effects of limited speech
data on SVM-based speaker verification in the context of the
GMM mean supervector SVM classifier. The fundamental com-
ponents of this classifier were analysed when subject to limited
training and testing data in the NIST 2008 SRE.

Initial experiments compared SVM-based classification
performance to that of the widely accepted GMM-UBM con-
figuration subsequently highlighting the relatively rapid degra-
dation that SVMs exhibited as speech duration was reduced.
The duration of utterances used to train the background dataset
was found to have a considerable effect on classification perfor-
mance. Matching these impostor utterances to either the short-
est or the test utterance length expected in trials was found to
significantly improve SVM-based performance.

NAP-based compensation was found to be most effective
when estimating the nuisance directions from utterances con-
taining an amount of speech matching the short, test speech
segment of a trial. An issue with the common NAP approach
was highlighted when both training and testing speech segments
were limited to below 40 seconds such that degraded perfor-
mance resulted from its application relative to baseline system
performance. Finally, score normalisation was shown to be
most effective when Z- and T-norm cohorts were matched to
the evaluation conditions. However, it was found to provide
few benefits when less than 20 seconds of speech was avail-
able. Based on these findings, it is apparent that future research
should target the need for appropriate session compensation
techniques in the context of SVM-based speaker verification us-
ing limited speech.
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