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Abstract
In recent work [1], a simplified and highly effective approach to
speaker recognition based on the cosine similarity between low-
dimensional vectors, termed ivectors, defined in a total variabil-
ity space was introduced. The total variability space represen-
tation is motivated by the popular Joint Factor Analysis (JFA)
approach, but does not require the complication of estimating
separate speaker and channel spaces and has been shown to be
less dependent on score normalization procedures, such as z-
norm and t-norm. In this paper, we introduce a modification to
the cosine similarity that does not require explicit score normal-
ization, relying instead on simple mean and covariance statistics
from a collection of impostor speaker ivectors. By avoiding
the complication of z- and t-norm, the new approach further
allows for application of a new unsupervised speaker adapta-
tion technique to models defined in the ivector space. Exper-
iments are conducted on the core condition of the NIST 2008
corpora, where, with adaptation, the new approach produces an
equal error rate (EER) of 4.8% and min decision cost function
(MinDCF) of 2.3% on all female speaker trials.

1. Introduction
Over recent years, Joint Factor Analysis (JFA) has demonstrated
state of the art performance for text-independent speaker detec-
tion tasks in the NIST speaker recognition evaluations (SREs).
JFA proposes powerful tools to enhance classic Gaussian Mix-
ture Model (GMM) speaker models to represent speaker vari-
ability and to compensate for channel/session variability. How-
ever, JFA produces highly variable scores that require applica-
tion of score normalization techniques, such as zt-norm, to show
performance gains [2]. Recently, motivated by JFA techniques,
a simplified and highly effective approach to speaker recogni-
tion based on the cosine similarity between low-dimensional
vectors, termed ivectors, defined in a total variability space was
introduced [1]. This total variability approach, avoids joint esti-
mation of separate speaker and session spaces and factors, and
is less reliant on application of score normalizations [3, 1].

In this paper we introduce a modification to the cosine simi-
larity that does not require explicit score normalization, relying
instead on simple mean and covariance statistics from a col-
lection of impostor speaker ivectors. We derive a new scoring

1This work was sponsored by the Department of Defense under Air
Force Contract FA8721-05-C-0002. Opinions, interpretations, conclu-
sions, and recommendations are those of the authors and are not neces-
sarily endorsed by the United States Government.

function that approximates the application of zt-norm. We fur-
ther apply the new scoring to an unsupervised speaker adapta-
tion algorithm proposed in [4], where the new scoring greatly
simplifies the adaptation since there is no need to update score
normalization parameters.

This paper is organized as follows. In Section 1.1, we de-
scribe the total variability space and the original cosine similar-
ity scoring. Intersession compensation techniques used in the
total variability space are described in Section 2. In Section 3
we analyze z- and t-norm score normalization in the context of
the cosine similarity and, in Section 4, propose a modification to
the cosine similarity scoring that approximates these score nor-
malizations. Results using the new scoring on the 2008 NIST
SRE corpus for both un-adapted and adapted approaches are
presented in Section 5. Discussion and conclusions are given in
Section 6.

1.1. Total variability

In JFA [2], a speaker utterance is represented by a supervector2

(M ) that consists of additive components from a speaker and a
channel/session subspace. Specifically, the speaker-dependent
supervector is defined as

M = m + V y + Ux + Dz (1)

where m is a speaker- and session-independent supervector
(generally from a Universal Background Model (UBM)), V
and D define a speaker subspace (eigenvoice matrix and diag-
onal residual, respectively), and U defines a session subspace
(eigenchannel matrix). The vectors y, z and x are the speaker
and session dependent factors in the respective subspaces and
each is assumed to be a random variable with a Normal distri-
bution N (0, I). To apply JFA to speaker recognition consists
of first estimating the subspaces (i.e., V , D, U ) from appro-
priately labelled development corpora and then estimating the
speaker-dependent factors (i.e., x, y, z) for each speaker and
session. Scoring is done by computing the likelihood of the test
utterance feature vectors against a session compensated speaker
model (M − Ux). A comparison between several JFA scoring
is given in [5].

In a more recent approach motivated by JFA [1], a speaker
supervector is represented by factors in a single total variabil-
ity space with no distinction made between speaker and session

2A supervecvtor is composed by stacking the mean vectors from a
GMM.
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subspaces. The new speaker- and session- dependent supervec-
tor M is defined as

M = m + Tw (2)

where m is the speaker- and session-independent supervector,
the matrix T defines the total variability space, and the vec-
tor w is the speaker- and session-dependent factors in the total
variability space (a random vector having a Normal distribution
N (0, I)). Thus M is assumed to be normally distributed with
mean vector m and covariance matrix TT ∗. The process of
training the total variability matrix T is equivalent to learning
the eigenvoice V matrix [2], except for one important differ-
ence: in the eigenvoices training, all the recordings of a given
speaker are considered to belong to the same person; in the case
of the total variability matrix however, a given speaker’s en-
tire set of utterances are regarded as having been produced by
different speakers. This new model can be viewed like a prin-
cipal component analysis of the larger supervector space that
allows us to project the speech utterances onto the total vari-
ability space. In this new speaker modeling, factor analysis
plays the role of features extraction where we now operate on
the total factor vectors,{w}, also called ivectors. Since the to-
tal variability space is significantly smaller then the supervector
space (e.g., 400 vs. 122,880 dimensions), manipulations, such
as compensations, modeling and scoring, become considerably
more tractable.

1.2. Cosine similarity scoring

In the ivector space, a simple cosine similarity has been applied
successfully to compare two utterances for making a speaker
detection decision [6, 3]. Given two ivectors generated via pro-
jection of two supervectors into the total variability space, a tar-
get, wtarget, from a known speaker and a test, wtest, from an
unknown speaker, the cosine similarity score is given as

score
(
wtarget, wtest

)
=

(
wtarget

)t

wtest∥∥∥wtarget
∥∥∥.

∥∥∥wtest
∥∥∥

R θ (3)

where θ is the decision threshold. This scoring function is
considerably less complex than scoring operations used in JFA
[5]. Note that the cosine similarity only considers the angle be-
tween the two ivectors and not their magnitudes. It is believed
that non-speaker information (such as session and channel) af-
fects the ivector magnitudes so removing magnitude in scoring
greatly improves the robustness of the ivector system.

2. Intersession compensation
In the total variability representation, there is no explicit com-
pensation for inter-session variability as there is in JFA. How-
ever, once data has been projected into the low-dimensional to-
tal variability space it is rather straight forward and computa-
tionally efficient to apply standard compensation techniques.
In [3], we tested three channel/session compensation tech-
niques: Linear Discriminant Analysis (LDA), Nuisance At-
tribute Projection (NAP) and Within Class Covariance Normal-
ization (WCCN). The best performance was obtained with the
combination of LDA followed by WCCN. We next describe
these compensations as applied to ivectors.

2.1. Linear Discriminant Analysis

LDA seeks to find a new orthogonal basis (rotation) of the
feature space to better discriminate between different classes.

Here, our classes are speakers. The new basis is sought
to simultaneously maximize the between class variance (inter
speaker discrimination) and minimize within class variance (in-
tra speaker variability). These axes can be defined using a pro-
jection matrix A composed of the best eigenvectors (those with
highest eigenvalues) of the general eigenvalues equation

Σbv = λΣwv (4)

where λ is the diagonal matrix of eigenvalues. The matrices Σb

and Σw correspond to the between classes and within class co-
variance matrices, respectively. These are calculated as follows:

Σb =

S∑
i=1

(wi − w) (wi − w)t (5)

Σw =

S∑
s=1

1

ns

ns∑
i=1

(ws
i − ws) (ws

i − ws)
t (6)

where ws = 1
ns

∑ns
i=1 ws

i is the mean of the ivectors for each
speaker, S is the total number of speakers and ns is the number
of utterances for each speaker s. In our previous work [6, 3],
we assumed the mean vector of the entire speaker population w
is equal to the null vector since the factors have a standard Nor-
mal distribution, w ∼ N (0, I), with zero mean. However, in
more recent experiments, we used the actual computed global
mean, rather than assuming it was zero, and found a slight per-
formance improvement.

2.2. Within class covariance normalization

In [1], we successfully applied WCCN [7] as compensation to
the ivector system, with the best performance obtained when
it was preceded by LDA. The idea behind WCCN is to scale
the ivector space inversely proportional to an estimate of the
in-class covariance matrix, so that directions of high intra-
speaker variability are deemphasized in ivector comparisons.
The within class covariance is estimated using ivectors from a
set of development speakers as

W =
1

S

S∑
s=1

1

ns

ns∑
i=1

(
Atws

i − ws

) (
Atws

i − ws

)t
(7)

where A is the LDA projection matrix, ws = 1
ns

∑ns
i=1 Atws

i

is the mean of the LDA projected ivectors for each speaker s ,
S is the total number of speakers, and ns is the number of ut-
terances of each speaker s. We use the inverse of this matrix in
order to normalize the direction of the projected ivector com-
ponents, which is equivalent to scaling the space by the matrix
B, where BBt = W−1. With LDA and WCCN applied, the
cosine similarity becomes

score
(

wtarget, wtest
)

=

(
Atwtarget

)t
W−1

(
Atwtest

)

√(
Atwtarget

)t
W−1

(
Atwtarget

)
.
√(

Atwtest
)t W−1 (

Atwtest
)

(8)

3. What score normalization is doing in
cosine similarity scoring?

In this section, we analyze how score normalization techniques
are reflected in the ivector cosine similarity to derive a new ex-
tended cosine similarity that does not require explicit score nor-
malization. We first define w′ = BtAtw∥∥∥BtAtw

∥∥∥
, where A is the
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LDA projection matrix and BBt = W−1 being the Cholesky
decomposition of the inverse WCCN matrix. The cosine simi-
larity is then simplified to a dot product between a normalized
target ivector w′target and a test ivector w′test,

score
(
w′target, w

′
test

)
=

(
w′target

)t (
w′test

)
(9)

The z-normalized score is

sznorm =
score

(
w′target, w

′
test

)
− µz norm

σz norm
(10)

where µz norm and σz norm are the score normalization pa-
rameters for z-norm relative to the target. These parameters are
computed over a set of utterances from speakers different than
the target speaker (i.e., impostor or non-target speakers),

µtarget =

(
w′target

)t (
w′z imp1

)
+

(
w′target

)t (
w′z imp2

)
+ ... +

(
w′target

)t (
w′z impN

)

N

=
(

w
′
target

)t
w′z imp (11)

Where w′z imp =

(
w′z imp1

)
+

(
w′z imp2

)
+...+

(
w′z impN

)

N
corresponds to the

mean of z-norm impostor ivectors. As we do with LDA, we
estimate the impostor ivector mean rather than assume it to be
equal to zero.

The second z-norm parameter can be obtained by

σ
2 = Ei

[ ((
w
′
target

)t (
w
′
z impi

)
− µtarget

)

∗
((

w
′
target

)t (
w
′
z impi

)
− µtarget

)t ]

= Ei

[ ((
w
′
target

)t (
w
′
z impi

)
−

((
w
′
target

)t (
w′z imp

)))

∗
((

w
′
target

)t (
w
′
z impi

)
−

((
w
′
target

)t (
w′z imp

)))t ]

=
(

w
′
target

)t
Σz imp

(
w
′
target

)
(12)

Where Σz imp = Ei

[((
w′z impi

)
− w′z imp

) ((
w′z impi

)
− w′z imp

)t]
is the

covariance matrix of the set of z-norm impostor ivectors. Thus
equation (10) can be rewritten as

sznorm =
score

(
w′target, w′test

)
−

(
w′target

)t
w′z imp√(

w′target

)t
Σz imp

(
w′target

)

=

(
w′target

)t (
w′test − w′z imp

)

√(
w′target

)t
Σz imp

(
w′target

) (13)

If we suppose that Σz imp is a diagonal matrix, the last equa-
tion can be simplified to

sznorm =

(
w′target

)t (
w′test − w′z imp

)

∥∥∥Cz impw′target

∥∥∥
(14)

Where Cz imp is diagonal matrix which contains the square
root of diagonal z-norm impostor’s covariance matrix, Σz imp.
In summary, z-norm score normalization is shifting the test
ivector w′test by the mean of the z-norm impostor projected
ivectors and scaling by the length of the target ivector based
on z-norm impostor covariance.

In a similar manner, we can obtain the score normalization
parameters for t-norm and the final normalized score can be ex-
pressed by

stnorm =

(
w′target − w′t imp

)t (
w′test

)
∥∥∥Ct impw′test

∥∥∥
(15)

Table 1: Corpora used to estimate the UBM, total variability
matrix (T ), LDA and WCCN

UBM T LDA WCCN
Switchbord II, Phase 2
and 3

X X X

Switchboard II Cellu-
lar, Part 1 and 2

X X X

Fisher English database
Part 1 and 2

X

NIST 2004 SRE X X X X
NIST 2005 SRE X X X X

Where Ct imp is diagonal matrix which contains the square
root of diagonal t-norm impostor’s covariance matrix, Σt imp.
Comparing the final normalized scores, we see that z- and t-
norm in the ivector space are just duals of each other merely
switching the roles of target and test ivectors.

4. New scoring
In this section, we propose a new cosine similarity scoring equa-
tion that combines the effects of z- and t-norm score normaliza-
tion. This new scoring, given below in Equation 16, does not
require test-time score normalization compared to the classical
cosine similarity scoring proposed in our previous works [3, 1].

score
(

w
′
target, w

′
test

)
=

(
w′target − w′imp

)t (
w′test − w′imp

)

∥∥∥Cimp.w′target

∥∥∥
∥∥∥Cimp.w′test

∥∥∥
(16)

where w′imp is the mean of the impostor ivectors. Cimp is

a diagonal matrix that contains the square root of the diagonal
covariance matrix of the impostor ivectors.

5. Experiment
5.1. Experimental set-up

Our experiments operate on cepstral features, extracted using
a 25 ms Hamming window. 19 mel frequency cepstral coeffi-
cients together with log energy are calculated every 10 ms. This
20-dimensional feature vector was subjected to feature warping
[8] using a 3 s sliding window. Delta and double delta coeffi-
cients were then calculated using a 5 frame window to produce
60-dimensional feature vectors. We used gender dependent uni-
versal background models containing 2048 Gaussians. Table 1
summarizes all corpora are used to estimate the UBM, total vari-
ability matrix, LDA and WCCN. The choice of these corpora is
described in [3, 1]

The baseline system uses original cosine scoring with zt-
norm score normalization. We used 250 t-norm impostor mod-
els taken from NIST 2005 SRE data and 1200 impostor models
taken from Switchboard II, Phases 2 and 3; Switchboard Cellu-
lar, Parts 1 and 2; and NIST 2004 SRE data. In the new scoring
system, we used all previous impostors in the baseline system
to estimate the impostor mean and covariance matrix.

5.2. Results

All our experiments were carried out on the female telephone
data part of the 1 conversation train/1 conversation test (nomi-
nally 2.5 min in train and test, 1conv-1conv core) and 10 second
train/10 second test (10sec-10sec) conditions of the 2008 SRE

73



Table 2: Comparison of results between original cosine simi-
larity scoring and the new scoring that incorporates score nor-
malization. The results are on the female portion of the 1conv-
1conv 2008 SRE core telephone condition.

English trials All trials
EER DCF EER DCF

Origial cosine sim-
ilarity scoring with
zt-norm

2.90% 0.0124 5.76% 0.0322

New cosine similar-
ity

3.41% 0.0127 5.21% 0.0248

Table 3: Comparison results between original cosine similarity
scoring and the new scoring that incorporates score normaliza-
tion. The results are on the female portion of the 10sec-10sec
2008 SRE telephone condition.

English trials All trials
EER DCF EER DCF

Origial cosine sim-
ilarity scoring with
zt-norm

12.10% 0.0577 16.59% 0.0725

New cosine similar-
ity

11.42% 0.0573 15.83% 0.0673

dataset. We compared the results obtained from the original co-
sine similarity scoring with zt-norm score normalization and the
new cosine scoring that incorporates score normalization. The
results are reported in Tables 2 and 3.

The results obtained with these two systems show that the
new scoring generally gives the best results especially for all
trials pooling. We achieved a DCF of 0.0248 with the new scor-
ing compared to 0.0322 obtained with original cosine similarity
and zt-norm score normalization. However, the original cosine
similarity obtained the best EER for English trials of the core
condition. In the next section, we will describe how we use
the new scoring with a simple speaker unsupervised adaptation
algorithm.

5.3. Speaker unsupervised adaptation:

In [4], we propose a new unsupervised speaker adaptation al-
gorithm based on the cosine similarity computed between ivec-
tors. The two challenging problems in the unsupervised adap-
tation problem are (1) updating both the score normalization
parameters and (2) setting the decision threshold to allow adap-
tation. This new adaptation algorithm propose an easier way to
update the score normalization parameters and the optimal de-
cision threshold corresponds to one which minimize the DCF
on the development dataset. Using this new scoring, the unsu-
pervised speaker adaptation algorithm becomes less complex
because there is no score normalization parameters updating
compared to the previous cosine similarity scoring. When we
have a target and test ivectors, the cosine similarity is computed
and compared to the decision threshold. If it is greater than the
threshold, the test ivector is considered as a target ivector and
is kept with the original target ivector to represent the target
speaker. When we have another test ivector to compare with the
target speaker; we compute the cosine similarity to each target

Table 4: Comparison results between the original cosine sim-
ilarity scoring and the new scoring using the unsupervised
speaker adaptation algorithm. The results are on the female por-
tion of the 1conv-1conv 2008 SRE core telephone condition.

English trials All trials
EER DCF EER DCF

Origial cosine sim-
ilarity scoring with
zt-norm

2.90% 0.0124 5.76% 0.0322

New cosine 3.41% 0.0127 5.21% 0.0248
Similarity Without
adaptation
New cosine similar-
ity With adaptation

3.17% 0.0107 4.83% 0.0229

Table 5: Comparison results between original cosine similar-
ity scoring and the new scoring using the unsupervised speaker
adaptation algorithm. The results are on the female portion of
the 10sec-10sec 2008 SRE telephone condition.

English trials All trials
EER DCF EER DCF

Origial cosine sim-
ilarity scoring with
zt-norm

12.10% 0.0577 16.59% 0.0725

New cosine similar-
ity Without adata-
tion

11.42% 0.0573 15.83% 0.0673

New cosine similar-
ity With adaptation

10.68% 0.0560 15.42% 0.0660

speaker ivectors and the final score is equal to the mean of the
two scores. This new score is compared to the decision thresh-
old and, if greater, the test ivector is added to the target list.
The process continues for all test utterances. The results of the
unsupervised speaker algorithm based on the new scoring are
reported in Table 4 and 5. Note that the results are obtained on
the NIST 2008 SRE, but the decision threshold is estimated on
a development dataset from the NIST 2006 SRE. All unsuper-
vised speaker adaptation experiments are carried out with the
respect to the NIST 2008 SRE unsupervised adaptation proto-
col.

The results given in Tables 4 and 5 show an improvement
by using the unsupervised adaptation algorithm, especially for
all trials pooling. The EER for the 1conv-1conv condition de-
creases from 5.21% (see Table 2) to 4.83% (see Table 4). The
same behavior was noted for the 10sec-10sec condition. We
also achieved and Minimum DCF of 0.0107 for female part of
the English core condition. Figure 1 shows the both detcurves
with and without speaker unsupervised adaptation on the En-
glish female part of the NIST 2008 SRE.

6. conclusion
In speaker recognition systems using JFA, score normalization
is critical for good performance. In this paper, we proposed
an extension of the cosine similarity to remove explicit score
normalization from the decision process. This new scoring sim-
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Figure 1: Detcurves on the English female part of the NIST
2008 Speaker recognition evaluation.

ulates directly zt-norm. The mean and covariance matrix com-
puted on a set of impostor ivectors are used to normalize the
cosine similarity. This new scoring simplifies the speaker unsu-
pervised adaptation algorithm already proposed for cosine sim-
ilarity scoring. We achieved a MinDCF of 0.0107 on female
English part of the NIST 2008 speaker recognition evaluation.
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