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Abstract

Universal background models (UBM) in speaker recognition
systems are typically Gaussian mixture models (GMM) trdine
from a large amount of data using the maximum likelihood
criterion. This paper investigates three alternativeedat for
training the UBM. In the first, we cluster an existing autoimat
speech recognition (ASR) acoustic model to generate the UBM
In each of the other two, we use statistics based on the speake
labels of the development data to regularize the maximues lik
lihood objective function in training the UBM. We presentign
erative algorithm similar to the expectation maximizat{&m)
algorithm to train the UBM for each of these regularized max-
imum likelihood criteria. We present several experimehtt t
show how combining only two systems outperforms the best
published results on the English telephone tasks of the NIST
2008 speaker recognition evaluation.

1. Introduction

Improved user security in speech-driven telephony apidica
can be achieved with automatic speaker verification. Curren
automatic speaker verification systems face significant- cha
lenges caused by adverse acoustic conditions. Telephamk ba
limitation, channel/transducer variability, as well astunal
speech variability have a negative impact on the performaific
speaker verification systems. Degradation in the perfocman
of these systems due to inter-session variability has beerb
the main challenges to the deployment of speaker verifigatio
technologies. We investigate how integrating more infdroma
about the development and test sets into the speaker réicogni
system may improve its performance and robustness.

In this work, we propose two main approaches for train-
ing the UBM. In the first, the UBM is constructed by using
the Kullback-Leibler (KL) distance as a measure for cluster
the Gaussian components of an ASR acoustic model. This ap-
proach attempts to exploit the context-dependent phoimétic
mation of the ASR acoustic model in estimating the UBM pa-
rameters. Subsequently, this method is called the phatigtic
inspired UBM (PIUBM) approach. The approach is motivated
by the fact that many of the speaker characteristics areicond
tioned on some phonetic units or phonetic classes and tireref
may be better modeled using a UBM trained with an explicit
modeling of these units and classes. Examples of using ASR
systems for speaker recognition include modeling the speak
ers using maximum likelihood linear regression (MLLR) san
forms generated by an ASR model [1] and using counts of n-
gram words or phones generated from an ASR transcription of
the audio [2, 3, 4].

Inthe second approach, we examine two discriminative reg-
ularizations of the maximum likelihood objective functifor
estimating the UBM parameters. Most speaker verificati@a sy
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tems use maximum likelihood estimation (MLE) or Bayesian
methods to estimate the parameters of the UBM. The popylarit
of MLE is attributed to the existence of efficient algorithins
implement it, such as the expectation-maximization (ENpal
rithm [5]. Itis also attributed to its consistency and asyotip
efficiency, if the true probability density function (PDF§lbngs

to the admissible set of parameterized PDF models [6]. How-
ever, as we do not know the true PDF, we can not guarantee a
small approximation error. A small approximation error ten
achieved by using a complex structure of the hypothesizedi mo
els that can approximate a large set of PDFs. On the other hand
this increases the computational and conceptual complexkit
the system, increases the required amount of training data-t
tain a robust estimate of the model parameters, and degtfor
the generalization ability of the model. Discriminativaiting
offers an alternative that estimates the model parameiep-t
timize an estimate of the training data recognition erroriké
maximum likelihood estimation of the UBM parameters, opti-
mizing a discriminative criterion can be made directly teth

to any weighted sum of the false alarm and the miss probabil-
ities such as the Equal Error Rate (EER) or the minimum De-
tection Cost Function (DCF). Discriminative training haseh
used in SVM-based speaker recognition systems [7]. However
in GMM-based SVM speaker recognition systems, the UBM
parameters are estimated using the EM algorithm to maximize
the likelihood of the training data. One of the prominentraxa
ples of discriminative training of the GMM parameters is us-
ing the Maximum Mutual Information (MMI) criterion to opti-
mize the GMM parameters of an automatic language identifica-
tion system. This discriminatively trained GMMs [8] proeidi
noteworthy improvements compared to the MLE GMMs. In
this work, we integrate information about the speakers ef th
development set into the objective functions used for ingin
the UBM discriminatively and describe efficient iteratilga
rithms to estimate the UBM parameters.

In the next section, we describe the main architecture of the
speaker verification system used in this work. In Sectione, w
formulate the problem and describe our objective critefan
the PIUBM approach. In Section 4, the details of estimating
the UBM parameters to optimize the two regularized maximum
likelihood objective functions are described. The experits
performed to evaluate the performance of the systems are de-
scribed in Section 5. Finally, Section 6 contains a discussf
the results and future research.

2. The speaker verification system

In this work, the speaker recognition systems are based on
the use of GMM supervectors. These GMM supervectors are
formed from the concatenation of the MAP [9, 10] adapted

means that are normalized according to a mapping proposed



in [7]. Nuisance Attribute Projection (NAP) [7] is applied t
remove supervector directions that correspond to larga-int
speaker variability. In all the systems reported in this kyor
128 nuisance directions were removed. These nuisance direc
tions, as per our submission in the NIST 2008 speaker recog-
nition evaluation [11], are based on the principal comptsen
extracted from the average within-class covariance mték

Before score normalization, the output scores of the speake
verification systems can be represented by some kind of gener
alized inner product of two vectors representing the vextiion
and the enrollment utterances [7]. This can be describetidoy t
relation

s=0TK®,, (1)

where®. is the supervector representing the enrollment utter-
ance,®, is the supervector representing the verification utter-
ance K is the NAP projection matrix, anglis the score corre-
sponding to this pair of utterances. Babh and®,, are vectors
in a high dimensional space of dimension equal to the prod-
uct of the feature vector dimension and the number of Gaussia
probability density functions in the UBM.

(u1,u2,...,ux), that minimize the average distortiahof C'
Gaussian components; = (g1, 92,...,9c), Which corre-
spond to the ASR acoustic model. The average distortion is
specified by

(4)

where d(ug,g.) = KL(ug,g.) + KL(ge,ur), and
K L(ug, gc) is the KL distance betweem, andg..

To minimize the average distortion in each iteration of the
K-means clustering, the update equations for the mean &nd th
variance for each dimension of each Gaussian componerg of th

UBM are
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For each utterance, the mean based supervector is generatedWhereSk is the set of indices of ASR Gaussian components as-

by concatenating functions of the adapted Gaussian metms in
a supervector. A GMM withK mixture components is used to
construct the high-dimensional supervectors for the éneoit
utterance®., and the verification utteranc®,,. These super-
vectors are constructed as follows
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wherewy, is the weight of thekth Gaussian component in the
GMM, uzd“” is the MAP adapted mean for this component,
py?™ is the universal background model (UBM) mean for this
component, an®;, is the diagonal covariance matrix of the
kth Gaussian component in the GMM. We use the single iter-
ation MAP adaptation presented by Reynolds [10] to generate
the utterance-specific adapted medng,***}, from the UBM
means{u ™},

For all the systems reported in this work, the UBM consists
of 1024 mixture components. The UBM of the baseline system
is trained using Maximum Likelihood (ML) training [5, 13].
Both Z-Norm and T-Norm [14] score normalization approaches
were applied separately for each gender. Further detailstab
the various systems are described in the experiments sectio

3. PIUBM approach

This approach was first applied to nonnative speaker and ac-

cent detection in [15]. It achieved the best published tssar

signed to thekth Gaussian of the UBMN, is the size of this
set, ur# is the current mean for théth dimension of thesth
Gaussian of the UBMn.,, s andv,, ¢ are the mean and variance
respectively for thefth dimension of theath ASR Gaussian.
The weight of each UBM Gaussian is set equal to the normal-
ized number of ASR Gaussian components assigned to it.

4. Regularized ML training approach

The UBM in speaker verification systems is typically a Gaus-
sian mixture model (GMM) trained on a large amount of data
using the EM algorithm. In this work, two methods for train-
ing the UBM are investigated. In both methods, the UBM pa-
rameters are estimated by adding a regularization termeto th
maximum likelihood objective function. In the first methaolde
UBM parameters are trained using an objective function that
favors a sparse representation for each speaker in théngain
data. In the second, the regularization term favors largér v
ues for target trial scores and smaller values for imposiar t
scores. In the following, we discuss the two approaches-n de
tail.

4.1. Sparse speaker representation approach

Estimating the UBM parameters using maximum likelihood
training does not take into consideration the availablelkpe
labels of the training data. In this approach, we add a regula
ization term to the likelihood objective function to enstine
sparsity of the speaker supervector representation. Tizerpa
eters of the UBM are updated using an EM-like algorithm to

both tasks on the Fisher and the CSLU-FAE databases respec- maximize the regularized maximum likelihood objectivedun

tively. In this system, the UBM is estimated directly frometh
acoustic model of the ASR system by using K-means clustering
A symmetric variant of the Kullback-Leibler (KL) distance-b

tween two Gaussian components is used as a distance measure

in the K-means clustering algorithm to achieve the final clus
tering of the ASR acoustic model to a UBM of 1024 Gaussian
components. This novel method for UBM construction is ap-
plied to ASR acoustic models trained in the feature-based mi
imum phone error (FMPE) feature space [16].

The process of K-Means model training, in this context,
consists of specifying a set df Gaussian components, =
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tion. To ensure the sparsity of the supervector representat
for each speaker in the training data, the average of ther-supe
vector representation of the utterances of the speakereid us
to represent the speaker. Increasing the sparsity of threkepe
representation is equivalent to minimizing thenorm of the
speaker supervector. The norm of a vector is equal to the
number of non-zero elements of the vector. Th&orm of a
speaker supervectob,, is

Y
[®4llo = Z f(9qy), (7



where
0 z=0
1 otherwise ’

1) ={
andY is the dimension of the supervector representation which
equals the product of the number of Gaussian components in
the UBM and the feature vector dimension.

Given the supervector representation in Equations 2 and 3,
it can be shown that minimizing thig norm of the speaker’s
supervector representation is equivalent to maximizireglth
norm of the vector of estimates of the expected posteridspro
abilities of the Gaussian components given the speakeiincai
data which is given by

2
vy, ®)
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WhereK is the number of Gaussian components in the UBM,
vé" N ZZ | 'yql is an estimate of the expected posterior
probablllty of thekth Gaussian component of the UBM given
an observation from speak@r%’;i = P(k|X4:) is the posterior
probability of thekth Gaussian component of the UBM given
theith observation of speaket N, is the number of observa-
tions from speakey. Adding the sum over all speakers of the
> norm of the expected posterior probabilities of the Gamssia
components given the speaker training data as a regularizat
term, the objective function to be maximized is

0= L+>\227 :

q=1 k=1

©)

whereX > 0, L is the log likelihood of the training data, is
the regularization parameter, aiglis the number of training
speakers.

We use an iterative algorithm similar to the EM algorithm
to estimate the UBM parameters that maximize the objective
function in Equation 9. It can be shown that the update equa-
tions for the mean and the variance for each dimension of each
Gaussian component of the UBM are

N,
Z?: 2oih ﬁgimqif
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where
By = [1+X| g — ZZ%%Z , (12)

=1 g=1

andzx, ¢ is the fth dimension of theth observation vector of
speakey in the development data. It can be shown also that the
update equation for the weight of each Gaussian component of
the UBM is

Z Zz 1 ‘1;7'
Zg:l ZNQ ﬁgz

This approach is called the sparse speaker represent&&) (
approach in the following sections.

(13)
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4.2. Discriminative regularization approach

Estimating the UBM parameters using maximum likelihood
training does not directly target reducing the speakerfigeri

tion errors on the training data. In this approach, we add a
regularization term to the log-likelihood objective fuioct to
reduce the value of the imposter scores and increase the valu
of the target scores. The parameters of the UBM are updated
using an EM-like algorithm to maximize the regularized maxi
mum likelihood objective function

J
ap+bpspy;
_)\p§ etr pm’
Jj=1

T

O=L—X\) et e

r=1

(14)

whereX: > 0, A\, > 0, \; is the target-trials regularization pa-
rameter,)\,, is the imposter-trials regularization parametsy,

is therth target scores,; is thejth imposter scoreg:, b, are

the parameters of the target regularization functign,b, are

the parameters of the imposter regularization functibis the
number of target scores, adds the number of imposter scores.
The parameters of the target and imposter regularizatioc-fu
tions can be estimated on a held-out set to provide proper con
ditioning of the target and imposter scores respectivaijthe
experiments reported here, we used the same value for\poth
and ), which is half the value that ensures all the variances of
the UBM Gaussian components are positive in the first itemati
and is kept the same for the remaining iterations. Also tigeta
and imposter scores are the speaker recognition scoresuwith
NAP compensation and without ZT normalization. We inves-
tigated using the NAP-compensated and ZT-normalized score
in the objective function but we keep the discussion andehe r
sults in this work to the simpler case of scores without NAP
compensation and without ZT normalization.

We use an iterative algorithm similar to the EM algorithm
to estimate the UBM parameters that maximize the objective
function in Equation 14. It can be shown that the update equa-
tions for the mean and the variance for each dimension of each
Gaussian component of the UBM are
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zuif IS the fth dimension of theth observation vector of the
development data for utteranae U is the total number of ut-
terances in the training datdy, is the total number of obser-
vations for utterance:, v¥, is the posterior probability of the
kth Gaussian component given tiik observation vector of ut-
teranceu, ¢, is the speaker of utteranee U,,, is the set of all
other utterances belonging to the speakgrF’ is the dimension
of the feature vector, anR is the map adaptation relevance fac-
tor. It can be shown also that the update equation for thetweig
of each Gaussian component of the UBM is

=1 auz

Zu 12
DukyBEuky’
u:l Zf:l o—%f
where the value of is estimated to satisfy the constraint

Zf;l wyg = 1. This approach is called the discriminative reg-
ularization (DR) approach in the following sections.

N

(24)
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5. Experiments

The three previously discussed methods to train the UBM
parameters were evaluated on the English tasks of the core
condition of the NIST 2008 Speaker Recognition Evaluation
(SRE) [11] and compared to the MLE UBM baseline systems.

The development data set consists of a combination of
audio from the NIST 2004 speaker recognition database, the
Switchboard Il Phase Ill corpora, the NIST 2006 speakergeco
nition database, and the NIST 2008 interview development se
The collection contains 13770 utterances: 6038 utteraotes
male speakers and 7732 utterances of female speakers. -The to
tal number of speakers in the development data is 1769 speak-
ers: 988 female speakers and 781 male speakers. The develop-
ment set or a subset of it was used to estimate the UBM param-
eters, to estimate the expected within-class covariandexma
over all speakers for NAP compensation, as well as for gender
dependent ZT-norm score normalization.

5.1. Baseline system

A frame-by-frame noise floor tracking algorithm is used fue t
speech activity detection similar to [17]. The front-endtfees
consist of 36 dimensional features forged from 12 cepstral ¢
efficients and their corresponding delta and delta-detttufes.
There are 24 filters in the filter bank, over a frequency rarfge o
125-3800 Hz, used to generate the cepstral coefficientsavith
32ms window and a 10ms frame shift. Feature warping is ap-
plied to the resulting feature vectors [18] to reduce lirekaan-

nel and slowly varying additive noise effects. Each utteeain

both the training and the testing data is represented by a GMM
mean based supervector of dimension 36864. This representa
tion was generated using a UBM of 1024 Gaussian components
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by MAP adaptation. The system performance was measured at
two operating points, hamely in terms of the Equal-ErroreRat
(EER) and the minimum Detection Cost Function (DCF) as de-
fined in the evaluation plan [11].

In all experiments, we used the GMM-based setup de-
scribed in Section 2 which generates a score for each pair of
utterances using the inner product of the corresponding GMM
based mean supervectors after applying NAP compensation to
the supervectors. ZT-normalization is applied to theseescto
generate the final scores.

5.2. PIUBM system

In the first set of experiments, the 1024 Gaussian compo-
nent UBM for the baseline is trained using the whole 13770-
utterance development set. On the other hand, for the PIUBM
system, the UBM is generated by clustering the 250K Gaus-
sian components of the English telephone conversation® AS
acoustic model to 1024 Gaussian components. In the follpwin
we describe the ASR system and then details about the experi-
mental setup.

5.2.1. ASRsystem overview

The 40-dimension features for the IBM ASR system are esti-
mated from sequences of 13-dimensional perceptual lirrear p
diction (PLP) features by using a linear discriminant asisly
(LDA) projection, and then applying a maximum likelihood
linear transformation (MLLT). The acoustic model consists
250K diagonal-covariance Gaussian components. In thexbnt
of speaker-adaptive training, vocal tract length nornaaion
(VTLN) and feature-space maximum likelihood linear regres
sion (FMLLR) are used. For the feature-based minimum phone
error (FMPE) baseline, an FMPE transform is applied on top
of the utterance-specific FMLLR transforms. A single pass of
MLLR adaptation is also performed. The language model is a
72K-vocabulary interpolated back-off 4-gram language ehod

5.2.2. Testing setup

Three systems are compared in this set of experiments: the
baseline system using the 36 MFCC-based speaker recagnitio
frontend, a system with a UBM trained on the ASR FMPE fron-
tend using the EM algorithm, and the PIUBM which uses a
UBM generated from the ASR acoustic models using the clus-
tering algorithm described in Section 3. The MLE 1024 Gaus-
sian component UBM for both the baseline and the ASR fron-
tend systems are trained using the whole 13770-utteraved-de
opment set. The results are reported on the English taske of t
core condition of the NIST 2008 speaker recognition evidaat
The description of these tasks is provided in Table 1. As show
in Table 2, the performance of the two systems which use the
ASR frontend features outperform the baseline system on the
Int-Tel, the Tel-Mic, and the Int-Int-S tasks. The resuitsTa-

ble 2 show also that the PIUBM system outperforms the other
two systems significantly on the Tel-US and Tel-Eng tasks.

5.3. Regularized maximum likelihood systems

The baseline speech activity detection and front-end of 36-
dimensional features are used for these systems. Our focus i
this set of experiments is on the Int-Int-All interview task

the NISTO8 evaluation. We achieved the best baseline system
on this task, for the system architecture described in &e&;j

by using only the NIST 2008 development data for training the
UBM parameters and the whole 13770-utterance development



Task Description

Int-Int-All | Interview speech in training and test.

Int-Int-S Interview speech from the same (lapel) microphone in tngjrsind test.

Int-Int-D Interview speech from different microphones in trainingl éest.

Int-Tel Interview speech in training and telephone speech in test.

Tel-Mic Telephone speech in training and telephone microphonekpedest.

Tel-Eng English language telephone speech in training and testv@imsty).

Tel-US English language telephone speech spoken by a native U&E&gleaker in training and test.

Table 1: Description of the English NIST 2008 core conditimaluation tasks reported in our experiments.

Performance
minDCF (x10%) and EER (%) (in parentheses)
System Int-Int-All | Int-Int-S | Int-Int-D Int-Tel Tel-Mic Tel-Eng Tel-US
Baseline 239(4.6) | 2.0(0.8) | 24.2(4.6) | 37.5(10.3)| 28.8(7.4)| 15.6 (3.5)| 15.4 (4.4)
ASR Frontend| 21.4(4.8) | 0.7(0.4) | 22.2(5.0)| 31.8(7.6) | 21.8(6.4)| 16.4 (3.4)| 15.4 (4.4)
PIUBM 23.4(5.3) | 1.7(0.3) | 245(5.5)| 30.7(8.6) | 22.1(6.7)| 12.7 (2.7)| 11.6 (3.0)

Table 2: The results on NIST 2008 English core conditiongagkmparing the baseline system with systems utilizing A&Rures

and the PIUBM.

data for estimating the NAP rejected subspace and the gender
dependent ZT score normalization. As shown in the baseline
results of Tables 2 and 3, significant gains on the intervaskg

in both EER and minimum DCF are achieved by using the NIST
2008 interview development set for training the UBM inste&d

the whole 13770-utterance development set. To keep the com-
parisons fair, only the NIST 2008 development data is used fo
training the UBM parameters of the sparse speaker repeaesent
tion and the discriminative regularization systems. Ingkger-
iments on discriminative regularization reported heresetg,,
anda. to zero and, andb; to one in Equation 14. As shown

in Table 3, no significant gains in EER and minimum DCF on
the Tel-Eng and the Tel-US tasks are obtained by using either
the sparse speaker representation or the discriminatyeare
ization objective functions to train the UBM parameters.isTh
can be explained by the fact that the NIST 2008 development
data, which was used for estimating the UBM parameters, is
interview data only and did not have any telephone utteance
On the other hand, significant gains in EER and minimum DCF
are obtained by using either the sparse speaker repreeargat

the discriminative regularization objective functiongrain the
UBM parameters on all other tasks which have interview data o
microphone data as shown in Table 3. Table 3 shows also that
the discriminative regularization system outperformsdparse
speaker representation system on all tasks that have imerv
data or microphone data. The results on the mixed condition
tasks of Int-Tel and Tel-Mic in Table 3 show more significant
gains for the DR system versus the SSR system compared to
the results on the interview tasks.

5.4. Combination of the two approaches

In this set of experiments, we combine with equal weights the
scores of the PIUBM system and the discriminative reguariz
tion system. As shown in Table 4, significant improvements on
the three interview tasks are obtained by combining the figo s
tems. As far as we know, the result on the Int-Int-S task is the
best result published on this task.

The results in Table 4 also show significant improvements
on the telephone and mixed condition tasks from the combina-
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tion of the two systems. As far as we know, the results on the
telephone tasks of Tel-Eng and Tel-US are significantlyeoett
in both EER and minimum DCF than the best published com-
bination results on these tasks. The fact that these remdts
achieved by combining two systems only may be attributed to
the use of diverse systems with different features, UBMiraj
data, and objective functions for training the UBM paramete

6. Conclusions

The sparse speaker representation system consistengigrout
forms the baseline system on the English NIST 2008 core con-
dition tasks. The discriminative regularization systesoaion-
sistently outperforms the baseline system with a maximies li
lihood estimated UBM on the same tasks. In both cases, the
improvement is achieved by integrating information abdet t
development speakers into the estimation of the UBM param-
eters. Integrating context-dependent phonetic inforomaitito

the training of the UBM parameters is demonstrated to be use-
ful as well but at the expense of making the speaker recagniti
system language-dependent. In the PIUBM system, estighatin
the UBM parameters using an ASR telephone English acous-
tic model provided the best single-system performance en th
telephone tasks of the NIST 2008 evaluation task. Combining
the PIUBM system with the discriminative regularizatiorssy
tem at the score level gives the best published performance o
the English telephone tasks of the NIST 2008 evaluation and
significant gains on the other tasks compared to the indaidu
systems. We plan to integrate together the information &abou
the training speakers and the context-dependent speeshnuni
training the UBM parameters and compare the results to using
either information by itself as reported in this work.
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