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Abstract

In Gaussian mixture model - universal background model
(GMM-UBM) speaker verification system, UBM training is the
first and the most important stage. However, few investigations
have been carried out on how to select suitable training data. In
this paper, a VTL-based criterion for UBM training data selec-
tion is investigated and a multiple background model (MBM)
system is proposed. Experimental results on NIST SRE06 eval-
uation show that the presented method decreases the equal er-
ror rate (EER) of about 8% relatively when compared with the
baseline.

1. Introduction

The Gaussian mixture model - universal background model
(GMM-UBM) system, firstly proposed in [1], is now one of
the state-of-the-art text-independent speaker verification sys-
tems. It is based on the likelihood ratio test for verification,
using GMMs for likelihood computation, using a UBM for al-
ternative speaker modeling, and using maximum a posteriori
(MAP) adaptation to derive a speaker model from the UBM.
UBM training is the first and the most important stage of the
whole system. A high-quality UBM is supposed to represent
the speaker-independent feature distribution. To achieve this
goal, on the one hand, training data of different types and qual-
ities from thousands of speakers are usually involved to reflect
the alternative speech to be encountered during recognition. On
the other hand, people often use gender- or channel-dependent
UBMs to get better performance on some specific subpopula-
tion of data. Above all, the data selection depends mainly on
experience and experiments, which implies the quality of UBM
cannot be guaranteed until experimentally tested.

In this paper, we try to resort to people’s vocal tract length
(VTL) to study this problem. A VTL-based criterion was firstly
used to divide the whole training corpus into separate datasets,
each of which was used to train a VTL-dependent UBM. Then
the performance of each UBM was examined, which to some
extent explained why some data were suitable for UBM train-
ing but others were not. After that a multiple background model
speaker recognition system was proposed by combining the
UBMs together. The multiple background model system can be
viewed as a natural extension of gender-dependent UBM sys-
tem. It can benefit from both subpopulation specification and
system fusion.

The paper is organized as follows. Section 2 describes vo-
cal tract length and its extraction method. Section 3 describes
our experiment setup. In section 4 and section 5, the VTL-based
data selection criterion and the multiple background model sys-
tem are detailed. And the conclusion and future directions are
given in section 6.
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2. Vocal tract length clue to speaker
recognition

The speaker variability extensively lies in many aspects, such
as speech rate, speech volume, emotion and so on. But the ma-
jor difference between the speakers is due to the difference be-
tween their average VTL [2]. The average VTL of children and
females is shorter than that of males, which leads to formants
of children and females move towards higher frequencies and
formants of males move towards lower frequencies. In speech
recognition fields, the main task is to recognize the content of
the speech, so vocal tract length normalization (VTLN) is often
used to obtain speaker-independent features. But in the speaker
recognition situation, where we try to utilize speaker variabili-
ties, VTL parameters are only extracted instead of normalizing
the speech features.

The VTL can be measured by a warping factor «.. In speech
feature extraction procedure, the frequency axis can be warped
by a frequency warping function in the filterbank analysis. The
commonly used frequency warping function has several forms.
In this paper, we use bilinear warping function, which can be
expressed as [3]

o _ 2(fu — f1) (1-«)sing
f7=F+ = arctan (m) W
where
I
b= fu_fl ’ (2)

and f and f“ are the original and warped frequencies, re-
spectively. In VTLN, ac < 1 corresponds to compressing the
spectrum, which means the original speech is female-like; and
a > 1 corresponds to stretching the spectrum, which implies
the original speech is male-like. The warping factor should has
continuous values, but in practice, it is often discretized as from
0.88 to 1.12 with step-size 0.02.

The warping factor « can be estimated through maximiza-
tion of likelihood of warped features O against the warping
model A* [3]

a” = argmax p(O%|A"). ©)

The warping model can be obtained by iterative training the
model parameters and estimating the warping factors for the
training data [3].

The difference of warping factors reflects the variability be-
tween speakers, so it can be used directly for speaker recogni-
tion [4]. But in this paper, we took another approach. We em-
ployed the warping factor as a criterion to select data for UBM
training.



3. Experimental setup

Our work is a mainly a process of exploration, discovery and
utilization, each of which was companied with experiments, so
we first introduce the experimental setup.

All the experiments were carried out on NIST SREO06 [5]
corpora in core test condition (1conv4w-1conv4w) and in cross-
channel conditions (1conv4w-1convmic).

The UBM training data were selected from NIST SRE04
1-side (616 utterances) and SRE03, SRE02 corpora (500 utter-
ances).

For the frontend, speech/silence segmentation was per-
formed by a G.723.1 VAD detector [6]. 12 MFCC coeffi-
cients plus CO were computed using 20 ms window and 10 ms
shift. Cepstral mean subtraction and feature warping [7] with a
3 s window were applied for channel mismatch compensation.
Delta, acceleration and triple-delta coefficients were appended
to each feature vector, which resulted in a dimensionality of 52.
After that, 25% of low energy frames were discarded using a
dynamic threshold. Finally, HLDA was employed to decorre-
late features and reduce the dimensionality from 52 to 39 [8].

The performance measure is the same as NIST SRE, using
equal error rate (EER) and minimum detection cost function
(min DCF).

4. VTL-based data selection
4.1. Dataset partition

We first estimated the warping factors of all the utterances of
the UBM training data. The distribution of the warping fac-
tors is illustrated in Fig. 1. From Fig. 1, we can observe that
the warping factors distribute nonuniformly. The females’ and
males’ means of warping factors are approximately 0.91 and
1.02, respectively.

200

Il female
Il male

150

100

Number of utterances

50

0.9

0.95 1 1.05
Warping factor

11

Figure 1: The VTL distribution of the UBM training data.

In order to reveal the relation between VTL and the UBM
quality, we divided UBM training data into /N disjoint datasets
according to the warping factors. Considering the data size of
each dataset, N = 8 was chosen. The detailed partition method
is listed in Table 1. 8 UBMs were trained using each of the
dataset and were used in next stages.
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Table 1: Dataset partition for UBM training data.

Dataset Warp factor Utterances
1 0.88 183
2 0.90 152
3 0.92 138
4 0.94 115
5 0.96,0.98 123
6 1.00, 1.02 176
7 1.04, 1.06 139
8 1.08,1.10, 1.12 90

Table 2: Performance of baseline gender-independent GMM-
UBM system.

Condition EER(%) min DCFx100
female 1conv4w-1conv4w 10.19 4.57
male 1conv4w-1convdw 9.42 4.23
female 1conv4w-1convmic 11.84 5.69
male 1conv4w-1convmic 9.70 4.73

4.2. Experiments
4.2.1. Baseline performance

A classical GMM-UBM system as described in [1] has been
built as baseline for contrastive analysis. A UBM with 1024
mixtures was trained. Speaker models were obtained by MAP
adaptation of that UBM, only means were adapted. In the ex-
periments, no channel compensation and no score normaliza-
tion technologies were used.

The performance of gender-independent GMM-UBM sys-
tem is listed in Table 2. The EERs for the four test conditions
are about 10%, which is relatively high compared with other
more powerful GMM-UBM system making use of complicated
channel compensation techniques [9].

4.2.2. Performance of gender-dependent UBM

In order to reveal the effect of gender-dependent UBM to
speaker recognition, we tested the gender-dependent GMM-
UBM system. The results are listed in Table 3. In addition
to the matched gender conditions, we also tested the cross gen-
der conditions, i.e., we use female UBM to test male segments
and use male UBM to test female segments. We can see that
for the matched gender conditions, the performances are better
than that of gender-independent GMM-UBM system. But for
the cross gender condition, the performances significantly dete-
riorate, even the relative EERs are more than 100%. This shows
that matched UBM training data are very important.

4.2.3. Performance of VTL-dependent UBM

We trained N = 8 VTL-dependent UBMs by using each of the
dataset listed in Table 1, each of which was used to adapt all the
target speaker models and to test all the trials of each conditions
in the same way as the baseline. The performance of each UBM
is listed in Table 4. We can see that for female condition, the
UBM2 obtain the best results and for male condition, the UBM6
obtain the best result. Referring to Fig. 1, we can observe that
the warping factors of UBM2 and UBM6 are approximately lo-
cated in the means of female and male VTL distributions, re-



Table 3: Performance of gender-dependent GMM-UBM system.

Condition Measure UBM female UBM male

female 1conv4w-1conv4w EER(%) 9.69 19.88
min DCFx100 4.49 7.92

male lconv4w-1convdw EER(%) 20.78 8.38
min DCFx 100 8.20 3.97

female 1conv4w-1convmic EER(%) 11.65 24.06
min DCFx 100 5.63 10.47

male 1conv4w-1convmic EER(%) 23.19 10.01
min DCFx 100 8.89 4.42

spectively. This shows that selecting UBM training data with
mean VTL for each gender is better than selecting data with
other values.

Comparing the UBM2 results for female conditions and the
UBMG6 results for male conditions with the baseline, we can
find that a UBM with far less but well-selected training data
can obtain even better performance than the UBM with all the
training data.

5. Multiple background models

From the results of the previous section, we can see that select-
ing data with mean VTL results in better performance. Since we
have N UBMs, if we combine the results from all the UBMs
together, even better performance may be achieved. Follow-
ing this idea, we proposed a Gaussian mixture model - multiple
background model (GMM-MBM) system for speaker verifica-
tion. This system consists of N background models, each of
which is trained using VTL-dependent data. The speaker en-
rollment and testing framework are described in the following
subsections.

5.1. Speaker enrollment

To enroll a target speaker, all of the N UBMs are adapted using
MAP (maximum a posteriori) as shown in Fig. 2. After enroll-
ment, each target speaker is associated with N (speaker GMM,
UBM) pairs, each of which is of a specific VTL warping factor.

Speaker Model

MAP
adaptation

UBM pool ﬁ
[UBM1J[UBM 2] ------ [UBM Nj

Figure 2: Speaker enrollment of the GMM-MBM system.
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5.2. Testing framework

During verification, each testing utterance is tested against all
the N (speaker GMM, UBM) pairs. Scores are fused to get
final result. This procedure is illustrated in Fig. 3.
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Figure 3: Testing framework of the GMM-MBM system.

5.3. Score fusion

For a test utterance, each (speaker GMM, UBM) pair can pro-
duce a log-likelihood-ratio score:

s = L, P(OIGMM,,)

T % p(O[UBM,)” @

where T' is the number of frames of the utterance. The fol-
lowing problem is how can we convert the score vector s =
[s1 s2 SN | " into the final result.

Although more delicate data-driven fusion methods can be
used, such as linear fusion, bilinear fusion, GMM fusion etc.,
we only study the empirical fusion method in this paper.

5.3.1. Average method

The simplest fusion method is to average the score over all the
(speaker GMM, UBM) pairs, i.e.,

1 N
Savg = N Z Sn. (5)
n=1

This method, however, without considering differences of each
VTL, may not yield a good result.

5.3.2. Maximum likelihood (ML) method

The results in Table 4 remind us that selecting more matched
UBM leads to better performance. Since more matched UBM
may give higher likelihood score, we use maximum likelihood
(ML) method to find the matched UBM.

For a test utterance, we first calculate the likelihood using
each UBM, then select the UBM with maximum likelihood.

n" = arg max p(O|UBM,,), (6)



Table 4: Performance of each GMM-MBM system.

Condition Measure UBM1 UBM2 UBM3 UBM4 UBMS UBM6 UBM7 UBMS
female 1conv4w-1conv4w EER(%) 10.80 9.81 10.49 12.12 16.86 20.82 22.37 23.77
min DCFx 100 5.00 4.37 5.06 5.53 6.66 7.81 8.41 8.80
male 1conv4w-1convdw EER(%) 23.09 20.95 18.96 16.91 11.34 9.02 10.06 11.98
min DCFx 100 8.13 7.77 7.42 7.36 5.76 4.25 4.81 5.67
female 1conv4w-1convmic EER(%) 13.01 11.13 11.91 13.53 18.65 25.12 26.07 26.16
min DCFx 100 5.77 5.32 5.63 6.33 7.70 8.72 8.77 9.05
male 1conv4w-1convmic EER(%) 25.16 23.67 21.90 20.05 12.94 9.91 11.63 13.96
min DCFx 100 8.25 791 7.65 7.54 6.45 4.72 5.60 6.99
Table 5: Performance of average fusion method. Table 6: Performance of ML fusion method.
Condition EER(%) min DCFx100 Condition EER(%) min DCFx100
female 1conv4w-1conv4w 13.92 5.98 female 1conv4w-1conv4w 9.77 4.28
male 1conv4w-1conv4dw 12.50 5.48 male 1conv4w-1convdw 8.46 3.88
female 1conv4w-1convmic 15.62 6.33 female 1conv4w-1convmic 11.79 5.62
male 1conv4w-1convmic 14.08 6.37 male 1conv4w-1convmic 9.43 4.21
At last, we use the score of corresponding (speaker GMM, Table 7: Performance of MLR fusion method.
UBM) pair to calculate the likelihood rate.
Condition EER(%) min DCFx100
SML = Sn*- @ female 1conv4w-1conv4w 9.40 4.14
5.3.3. Minimum likelihood ratio (MLR) method male Iconvdw-lconvdw 8.36 371
In this method, we want to use the likelihood ratio produced by female Iconv4w-1convmic 10.76 343
a (speaker GMM, UBM) pair directly instead of selecting the male 1conv4w-1convmic 9.38 4.08

model via ML method. But intuitively, the speaker GMM like-
lihood and the UBM likelihood will both increase if a matched
test utterance is encountered. How about the likelihood ratio?
In order to find the behind law, we calculated the means and
standard deviations of likelihood ratios of SRE06 with each
(speaker GMM, UBM) pair. The results are plotted in Fig. 4.
Compare with Table 4, we can find that the less the likelihood
ratio is, the better the performance gets. These results imply that
for a matched utterance and model, the speaker GMM and UBM
give higher likelihood, but the increment of speaker GMM is
less than that of UBM. Other test corpora also give similar re-
sults. The underlying reason is just under investigation.

Based on this phenomenon, we can straightforwardly select
the minimum likelihood ratio as the last score.

®)

SMLR = min s,.
n

5.4. Experiments

In this section, we tested the three fusion method. The results
of average fusion method are listed in Table 5. We can see that
the performance of average method is not as good as, but even
worse than that of GMM-UBM baseline system. The reason
may be it is unfair to weight each UBM equally.

The results of ML fusion method are listed in Table 6. Com-
pared with Table 4, we can see that it outperforms UBM2 and
UBMB6.

The results of MLR fusion method are listed in Table 7.
This method gives best performance among the three, which
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shows that MLLR method can select more matched models and
thus leads better result.

6. Conclusions

In this paper, we first investigated the the VTL-based criterion
for UBM training data selection. Experiments showed that the
UBM trained with selected mean-VTL data was better than the
UBM trained with all the data. Based on this finding, we fur-
ther proposed a multiple background model system, i.e., using
multiple speaker GMM and UBM pairs, for speaker recogni-
tion. Through minimum likelihood ratio fusion, the proposed
method can improve the performance evidently.

Further works will focus on investigating whether the tech-
niques improve the state-of-the-art systems and developing ef-
ficient method to lower the computational cost.
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