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Abstract

Most conventional features used in speaker recognition are
based on spectral envelope characterizations such as Mel-scale
filterbank cepstrum coefficients (MFCC), Linear Prediction
Cepstrum Coefficient (LPCC) and Perceptual Linear Prediction
(PLP). The MFCC’s success has seen it become a de facto stan-
dard feature for speaker recognition. Alternative features, that
convey information other than the average subband energy, have
been proposed, such as frequency modulation (FM) and sub-
band spectral centroid features. In this study, we investigate
the characterization of subband energy as a two dimensional
feature, comprising Spectral Centroid Magnitude (SCM) and
Spectral Centroid Frequency (SCF). Empirical experiments car-
ried out on the NIST 2001 and NIST 2006 databases using SCF,
SCM and their fusion suggests that the combination of SCM and
SCF are somewhat more accurate compared with conventional
MFCC, and that both fuse effectively with MFCCs. We also
show that frame-averaged FM features are essentially centroid
features, and provide an SCF implementation that improves on
the speaker recognition performance of both subband spectral
centroid and FM features.

1. Introduction
Speaker recognition depends on the isolation of speaker-
dependent characteristics from speech signals, and the
speaker’s vocal tract configuration has been recognized to be
extremely speaker-dependent because of the anatomical and be-
havioral differences between subjects [1]. The most successful
vocal tract-related acoustic feature is the Mel-frequency cep-
stral coefficients (MFCC). However during the MFCC extrac-
tion procedure, information related to the distribution of en-
ergy across the band is not effectively captured. For a sub-
band speech signal MFCC carries mainly the average energy
of the subband as a single dimension (the overlapped triangular
filters capture some information from neighbouring bands, but
this can be considered an inter-band rather than an intra-band
information). In this paper, we investigate expanding this sin-
gle dimensional information into two dimensional information
that captures both the average energy and additional informa-
tion concerning the distribution of energy within each subband.

Research reported in [2, 3, 4, 5] suggests that phase or
frequency related features are potentially complementary to
MFCCs. One problem with using frequency modulation (FM)

extraction in practical implementations is computational com-
plexity [6]. Recently, the effectiveness of the frame-averaged
FM components extracted using second order all pole method
[2] on speaker recognition and its complementary nature to
magnitude based information was demonstrated [3]. A com-
parison between these frame-averaged FM components and the
deviation of subband spectral centroid [7] from the center fre-
quency of the subband, as shown in Figure 1, reveals that both
subband spectral centroid and frame-averaged FM components
carry similar information. However, estimation of subband
spectral centroid is more efficient than the estimation of frame-
averaged FM components.

In [7] it was shown that spectral centroid frequency carries
formant-related information. It was further argued that though
formant locations are robust to additive noise, formant frequen-
cies should not be directly used as features due to the problem
of accurate estimation. This problem can be overcome using
other features that carry formant related information such as
spectral centroid frequency, as in [7]. Spectral centroid fre-
quency was earlier used in [7] for speech recognition and the
use of subband spectral centroid in recent literature have shown
some success in noisy speech recognition [8, 9]. Recently, spec-
tral centroid frequency was also used for speaker recognition
[10, 11] to complement cepstral based features with very slight
success in contrast to FM features. Considering the similarity
with frame-averged FM seen in Figure 1, however, the slight
improvements over MFCC in speaker recognition applications
seems something of an anomaly.

In this paper, we investigate the effectiveness of the combi-
nation of Spectral Centroid Frequency (SCF) and Spectral cen-
troid Magnitude (SCM) features for speaker recognition, and
demonstrate an improved implementation of subband spectral
centroid. Here SCM carries the magnitude related information
similar to MFCC while SCF carries the frequency bias of the
SCM as shown on Figure 2. These features will be evaluated on
the NIST2001 and NIST2006 speaker recognition databases.

2. Spectral centroid feature extraction
The proposed SCF and SCM are extracted according to the
schematic diagram shown in Figure 3. Let s[n], for n ∈
[0, N−1], represent a frame of speech and let S[f ] represent the
spectrum of this frame. Then, S[f ] is divided into K subbands,
where each subband is defined by a lower frequency edge (lk)
and an upper frequency edge (uk). The frequency-sampled fre-
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Figure 1: Frame-averaged Frequency Modulation, based on the
all-pole method [2], compared with spectral centroid frequency
for a frame of voiced speech signal

quency response of the filter is wk[f ].

2.1. Spectral centroid frequency

Spectral centroid frequency (SCF) is the weighted average fre-
quency for a given subband, where the weights are the nor-
malized energy of each frequency component in that subband.
Since this measure captures the center of gravity of each sub-
band, it can detect the approximate location of formants, which
are manifested as peaks in neighbouring subband [1, 7]. How-
ever, the center of gravity of a subband is also affected by the
harmonic structure and pitch frequencies produced by the vo-
cal source particularly for narrow bandwidths. Hence, the SCF
feature is affected by changes in pitch and harmonic structure.
The kth subband spectral centroid frequency Fk is defined as
follows [7]:

Fk =

∑uk
f=lk

f |S [f ] wk[f ]|∑uk
f=lk

|S [f ] wk[f ]|
(1)

Spectral centroid frequency is commonly known as sub-
band spectral centroid [7, 10], however, we use the term spectral
centroid frequency in order to avoid the ambiguity with spectral
centroid magnitude, proposed herein.

2.2. Implementation of spectral centroid frequency

In the preliminary experiments, subband spectral centroid fea-
tures based on mel-scaled triangular filters as proposed in [7]
did not outperform second order all pole FM [2], achieving an
EER around 2% poorer than FM. Since SCF is a frequency-
based feature, we experimented with extracting SCF using Bark
scale Gabor filterbank which is motivated by the extraction of
second order all-pole FM [2]. In addition, we increased the
number of FFT points by an order of magnitude (from 160 to
2048 for fs = 8 kHz by zero-padding) to better approximate
the speech power spectrum and filterbank frequency response,
which was found to have a significant effect on the SCF perfor-
mance.

2.3. Spectral centroid magnitude

Spectral centroid magnitude (SCM) is the weighted average
magnitude for a given subband, where the weights are the fre-

Figure 2: Subband signal, average energy, spectral centroid fre-
quency and spectral centroid magnitude for a subband of center
frequency 906Hz

quency of each magnitude component in that subband as com-
puted in equation (2). SCM captures, to a first order approx-
imation, the distribution of energy in a subband, as shown in
Figure 4, for two arbitrary signals with the same average en-
ergy. Due to the weighting function, the two signals would each
be represented by different SCF and SCM values. The different
steepness of the weighting function with respect to the subband
bandwidth may also be noted; this results in different feature
element variances. Average energy could be computed using
equation (2) by simply setting f = 1. As the spectral centroid
magnitude is the magnitude at the position of the spectral cen-
troid frequency, it will carry formant related information which
is useful for speaker recognition.

Mk =

∑uk
f=lk

f |S [f ] wk[f ]|∑uk
f=lk

f
(2)

In equation (2), the denominator is not speaker dependent,
unlike for the SCF. In order to increase the speaker dependency
of the SCM, an alternative formulation, using only the P most
significant frequency components within each subband can be
proposed, as follows:

Msc,k =

∑
f
′
i∈Ik

f
′
i

∣∣∣S [f ′
i

]
wk[f

′
i ]
∣∣∣∑

f
′
i∈Ik

f
′
i

(3)

where Ik is a set of frequencies corresponding to the P
largest values of |S[f ]wk[f ]|. We refer to this alternative
method of SCM as SCM based on significant components
(SCM_SC). As shown in Figure 5, when SCM is plotted against
SCF, it provides a better approximation to the LPC spectrum
compared with average energy plotted against the center fre-
quency of each subband. To confirm this result, the average
MSEs of average energy, SCM and SCM_SC of 100 speakers
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Figure 3: Proposed feature extraction scheme

Figure 4: SCF and SCM extraction for two different example
subband signals (solid (1) and dashed (2)) with equal average
energy. Due to the SCM frequency weighting, SCM1>SCM2.

(50 male and 50 female from NIST2001 SRE) were computed
against the LPC spectrum. The resulting MSEs were 3.17 for
the average energy and 3.13 for SCM. The MSEs of SCM_SC
for P=3, 5 and 7 were 6.38.

3. Experiment
3.1. Database

Speaker recognition experiments were conducted using the
NIST 2001 SRE database and core condition of the NIST 2006
SRE database (1conv4w-1conv4w). Due to the extensive na-
ture of the initial investigative experiments, the NIST 2001 SRE
database was used for the intial experimental analysis. Finally
the NIST 2006 SRE database was used to evaluate a selection
of feature combination.

The NIST 2001 SRE development database consists of 38
male speakers and 22 female speakers. The evaluation database
comprises 74 male speakers and 100 female speakers for train-
ing, 850 male speakers and 1188 female speakers for testing.
The training time for each speaker was 2 minutes and the test-
ing segment duration was less than 60 seconds.

The final evaluation data is the core test condition
(1conv4w-1conv4w) of the NIST 2006 SRE where 51 448 tri-
als are tested, which includes 3612 true trials and 47 836 false
trials. The background data consists of 3079 speech utterances
from the NIST 2004 SRE, which cover a number of speakers
(female and male). The Nuisance Attribute Projection (NAP)

Figure 5: LPC spectrum, SCM vs SCF and Average energy vs
subband center frequency

[12] training data includes approximately 10000 speech utter-
ances from the NIST 2004 and 2005 SRE corpus. The training
data in the NIST 2004 SRE corpus and NIST 2005 SRE corpus
are used for training cohort models in ZNorm and Tnorm score
normalization [13] respectively.

3.2. Speaker verification system

The front-end of the recognition system includes an energy-
based speech detector which is applied to discard silence and
noise frames and delta coefficients are appended, as dynamic
features, to the static features.

The back-end of the recognition system for the NIST 2001
SRE database was based on Universal Background Model -
Gaussian Mixture Models (UBM-GMMs) for simplicity due to
extensive nature of initial investigation experiments. Initially,
two gender-dependent UBMs were created with 512 GMMs.
For UBM creation, the development set of the NIST 2001 SRE
database was used. Then the training data from the evaluation
set was used to adapt speaker models from the UBM. Finally,
the system was tested with the testing data of the evaluation set,
by detecting the target speaker as the model having the maxi-
mum likelihood for the given test segment.

The back-end of the final evaluation on the 1con4w-1con4w
database was based on the GMM-SVM technique. This sys-
tem used GMM supervectors to construct kernels of support
vector machines (SVMs). Given a speaker’s speech data, a
speaker model is estimated by using MAP adaptation on the
means of the UBM. The means of mixture components in the
speaker model are then concatenated to form a GMM supervec-
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Table 1: The speaker recognition results for spectral centroid
frequency with various normalisation approaches, on the NIST
2001 SRE database

Normalisation techniques EER (%)
No normalisation 12.17

CMS 10.11
Feature warping 9.47

tor, which is used as an SVM kernel.

4. Results
4.1. Comparison of normalization

Usually feature warping is used as a feature normalization for
magnitude based features. As SCF is a frequency based feature
we empirically studied the behaviour of the feature with dif-
ferent feature normalization techniques. In these experiments
14 uniformly spaced Gabor filter banks across the bandwidth
of 0.3 to 3.4 kHz were chosen to analyse the cellular telephone
speech data. Table 1 shows the EERs from speaker recogni-
tion experiments on the NIST 2001 SRE database with several
normalization techinques.

These experiments verify that the feature warping is the best
normalization technique for SCF. Hereafter in all subsequent
experiments, feature warping was used as the feature normal-
ization for both SCF and SCM.

4.2. Comparison of SCF and FM

After finalizing the normalization techniques in the previous
section, we investigate the effects of different frequency scales
and filter banks on SCF. In these comparative experiments three
different frequency scales: Bark, uniform and mel scales, and
two different filter shapes: Gabor and triangular were chosen.
Uniform-scaled and Bark-scaled Gabor were chosen for com-
parative studies between SCF and FM, since SCF and FM carry
similar information as discussed in Section 1, and also because
of the significant improvement of the uniform scale over Bark
scale observed for FM features in [14]. In all these experiments,
the number of filters was fixed at 14. Results for speaker recog-
nition experiments based on the NIST 2001 SRE database SCF
are given in Table 2.

According to the results, the Gabor filterbank with a mel
scale produced the best results for SCF, outperforming the mel-
scale triangular filterbank SCF implementation proposed in [7].
One reason might be that SCF is a frequency based feature and
previously for another frequency based feature, FM feature, the
Gabor filter bank was chosen for its optimum time, frequency
sensitivity and the absence of large side lobes [15]. Further,
Bark scale filters performed slightly better than uniform scale
filters for SCF in contrast to the results in [14] for FM features
on NIST 2001 database.

4.3. Comparison of filterbanks for SCM

The same filterbank configuration as mentioned in Section 4.2
were used for SCM extraction. Results for speaker recognition
experiments based on the NIST 2001 SRE database for SCM
are given in Table 3. For SCM, mel scale triangular filters per-
formed the best among our comparisons. This result is perhaps
expected since MFCCs also employ triangular mel scale filters,
for which SCM is equivalent to a frequency-weighted MFCC
feature.

Table 2: The speaker recognition results for spectral centroid
frequency on the NIST 2001 SRE database

Filterbank
SCF
EER
(%)

FM
EER
[14]
(%)

Gabor 8.83 -

Mel Scale Triangular 11.19
[7] -

Bark Scale Gabor 9.42 12.71
Uniform Scale Gabor 12.17 10.45

Table 3: The speaker recognition results for spectral centroid
magnitude on the NIST 2001 SRE database

Filterbank
SCM
EER
(%)

Gabor 9.12
Mel Scale Triangular 8.88

Bark Scale Gabor 9.53
Uniform Scale Gabor 9.62

4.4. Combination of SCM and SCF

In this section, we investigate the effectiveness of the combina-
tion of SCF and SCM features for speaker recognition. First,
SCM and SCF were combined using score level fusion with re-
sults as given in Table 4. Linear fusion was used, with weights
calculated using the same NIST 2001 database. The fusion can
thus be considered optimum. When the filter banks were fixed
to the same shape and scale, the best fused results were ob-
tained with mel scale triangular fitlers. Keeping the same fil-
terbanks for both SCF and SCM is preferred as it reduces the
computational complexity significantly. It could be observed
from equations (1) and (2) that only the denominator of equa-
tion (1) and (2) differs when using the same filter banks for both
SCM and SCF. This is one advantage of using the combination
of the (FFT-based) SCM and SCF over the alternative feature
combination of MFCC and FM, where FM extraction occurs in
the time domain and is very computationally demanding. Sys-
tem performance was further improved by fusing the best SCF
and best SCM features as shown on Table 4.

Though score level fusion is usually used to combine differ-
ent subsystems, in our case as both features are extracted using
the same filterbanks, feature level concatenation is a reasonable
alternative. The advantage of feature level concatenation over
score level fusion is that a development database is not required,
while score level fusion is biased by the choice of development
data for computing the fusion weights. Although the perfor-
mance of concatenation is slightly less than that of fusion, it
should be noted that the fusion is the optimum fusion trained
using the same evaluation database.

It can be observed that both fused and concatenated SCF
+ SCM systems perform better than the MFCC system (EER =
8.49%) [11], with an increment in the feature dimension from
32 (16 MFCCs + 16 ∆s) to 56 (14 SCFs + 14 ∆s + 14 SCMs +
14 ∆s).
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Table 4: Fused and Concatenated EER for speaker recognition
on the NIST 2001 SRE database

Features Fused EER (%)
SCF (Mel Scale Gabor) +
SCM (Mel Scale Gabor) 8.05

SCF (Bark Scale Gabor) +
SCM (Bark Scale Gabor) 8.43

SCF (Mel Scale Triangular)
+ SCM (Mel Scale

Triangular)
7.99

SCF (Mel Scale Gabor) +
SCM (Mel Scale

Triangular)
7.90

Features EER (%)
Concatenation of SCF (Mel Scale

Gabor) and SCM (Mel Scale
Gabor)

8.19

Table 5: EER of SCM_SC for speaker recognition on the NIST
2001 SRE database

Features N EER
SCM - 8.88

SCM_SC 3 9.57
SCM_SC 5 9.51
SCM_SC 7 9.08
SCM_SC 9 9.19
SCM_SC 11 12.22

4.5. SCM based on significant components

In this section, the alternative expression of equation (2) to
calculate SCM based on significant components is briefly ex-
plored. As shown on Table 5, the EER for SCM based on sig-
nificant components did not outperform SCM for which all fre-
quency components are taken into consideration. However, the
performance of SCM_SC is close to that of SCM even when we
use just a few frequency components.

4.6. SCF and SCM performance for 1conv4w-1conv4w

Finally, the combination of SCF and SCM were evaluated us-
ing the larger and more contemporary NIST 2006 database, in
order to see the database independency of the results. Based
on the results in Section 4.4, we selected mel scale triangular
filters SCM and SCF to compare with MFCC since this com-
bination gave the best results when they are extracted using the
same filters. Further, SCF performed better when mel scale Ga-
bor filter was used. So these filter banks were used to extract
SCF and SCM when evaluating on NIST 2006 database. The
performance of SCM and SCF when used alone is given in Ta-
ble 5 together with the MFCC baseline, and their fusion results
are given in Table 6.

It can be observed that SCF extracted using the Gabor filter
performed significantly better than SCF extracted using trian-
gular filter as proposed in [7] or all-pole based FM [14]. In
addition, triangular filter extracted SCF performs worse than
all-pole based FM as mentioned in Section 2.2.

Interestingly the fusion of MFCC with SCM extracted using
mel scale triangular filters improved the individual subsystems.

Table 6: Speaker recognition results for spectral centroid fea-
tures on the NIST 2006 SRE database

Features EER

System

Mel
Scale
Trian-
gular
SCM

Mel
Scale
Trian-
gular
SCF

Mel
Scale
Gabor
SCF

MFCC FM

Baseline 7.58 10.04 10.55 7.13 12.26
Baseline +

NAP
5.92 9.36 7.14 5.78 7.93

Baseline +
NAP +
ZNorm

5.36 9.11 6.42 5.15 7.23

Baseline +
NAP +
TNorm

5.90 9.66 6.98 5.73 7.81

Baseline +
NAP +

ZTNorm
5.40 9.23 6.45 5.09 7.01

This could be attributed partly to the different number of filters
used for MFCC (26 filters) and SCM (14 filters) which ’parti-
tions’ the acoustic space in a slightly different way, and partly to
the different extraction methods that is, MFCC is based on av-
erage energy while SCM is based on weighted average energy.

Results from this experiment showed that the improvements
discussed in Section 4.4, fusion of SCM + SCF outperforms
MFCC, were also found for the more contemporary NIST2006
database, where SCM and SCF improved on a 5.09% EER
MFCC baseline to 4.4% after fusion as shown in Table 6 and
7. When SCM and SCF is further fused with MFCC, the EER
dropped to 3.73% (Baseline + NAP + ZTNorm) as shown in
Figure 6. These results provide strong encouragement that SCM
and SCF carries complementary information to MFCCs.

5. Conclusion
In this paper, we have proposed an alternative centroid fea-
ture extraction method to extract subband magnitude-based and
frequency-based features from the speech spectrum. Evaluation
on the NIST 2006 database using a fusion of SCM-based and
SCF-based subsystems, demonstrated relative improvements of
13% over the performance of an MFCC-only system. This
strongly supports the hypothesis that the combination of SCM
and SCF carries more information than MFCC alone. SCF
was also shown to perform significantly better than the previ-
ously proposed subband spectral centroid and frame-averaged
FM features for speaker recognition. For future study, other
methods of characterizing the distribution of energy within a
subband and the usage of the proposed features under adverse
conditions will be explored.
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