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Abstract
Alternative approaches to conventional short-term cepstral

modelling of speaker characteristics have been proposed and
successfully incorporated to current state-of-the art systems for
speaker recognition. Particularly, the use of adaptation trans-
forms employed in speech recognition systems as features for
speaker recognition is one of the most appealing recent pro-
posals. In this paper, we also explore the use of adaptation
transform based features for speaker recognition. However,
we consider transformation weights derived from adaptation
techniques applied to the Multi Layer Perceptrons that form a
connectionist speech recognizer, instead of using transforms of
Gaussian models. Modelling of the high-dimensionality vec-
tors extracted from the transforms is done with support vector
machines (SVM). The proposed method –named Transforma-
tion Network features with SVM modelling (TN-SVM)– is as-
sessed and compared to GMM-UBM and Gaussian Super vec-
tor systems on a sub-set of NIST SRE 2008. The proposed
technique shows promising results and permits further improve-
ments when it is combined with baseline systems.

1. Introduction
Modelling of short-term cepstral features by means of any pat-
tern classification method – typically Gaussian Mixture Models
(GMM) [1] or Support Vector Machines (SVM) [2] – is one of
the most successful approaches to the speaker recognition task.

However, several efforts have been recently devoted to in-
vestigate new alternative approaches to conventional short-term
cepstral based methods [3, 4]. One of the main motivations is
the need for dealing with the inability of short-term features –
extracted from few milliseconds – for capturing higher order
structure information in speech that might be useful for char-
acterizing speakers. For instance, cues at the syllable, word or
even whole sentence level [4, 5, 6]. An additional limitation
of short-term features is that they typically comprise not only
the speaker variability information, but they also contain nui-
sance factors such as channel effects and a strong dependence
on the words uttered. These problems enforce the application of
feature normalization [7], channel compensation [8] and score
normalization methods [9] among others.

In fact, although short-term cepstral based systems are still
the core of some of the most successful systems, current state-
of-the-art systems typically employ a combination of long-term
and short-term features permitting a better characterization of
speakers and consequently an improved performance [10, 11,
12].

In [13] an appealing method that uses Maximum-
Likelihood Linear Regression (MLLR) speaker adaptation
transform based features for speaker modelling is proposed.
Instead of modelling cepstral observations directly, it models

the difference between the speaker-dependent and the speaker-
independent models. Thus, although this approach is also
based on cepstral features, unlike standard frame-based cep-
stral speaker recognition models, it normalizes for the choice
of spoken words in text-independent speaker verification. The
high-dimensional vectors formed by the transform coefficients
are then modelled as speaker features using support vector ma-
chines (SVM).

The work that we present in this paper closely resembles
the work in [13]. The aim is also to find an alternative ap-
proach for speaker recognition consisting on the use of adap-
tation transforms employed in speech recognition as features
for speaker recognition. However, in contrast to [13], the au-
tomatic speech recognizer that we rely on for computing the
differences between the speaker independent and the speaker
dependent model is a connectionist hybrid artificial neural net-
work/hidden Markov model (ANN/HMM) system [14]. In this
case, the use of MLLR or other similar transform methods like
constrained MLLR [15] that are employed in Gaussian systems
can not be considered any more.

In [16] and [17], several techniques for speaker adaptation
of a hybrid ANN/HMM continuous speech recognition system
are compared and evaluated. A method referred to as Linear
Input Network (LIN) [16] adaptation technique or Transforma-
tion Network (TN) [17] employs a trainable linear input net-
work to map the speaker-dependent input vectors to the speaker
independent system. The mapping is trained by minimizing the
mean squared error of the posterior probabilities at the output of
the connectionist system while keeping all the other parameters
fixed.

In the present work, TN adaptation weights are used as fea-
tures for speaker recognition. In this way, this work reports a
novel method for incorporating hybrid connectionist speech rec-
ognizer based features to speaker recognition tasks. An attrac-
tive characteristic of the proposed method –called TN-SVM– is
that an independent set of TN features can be obtained for every
single feature stream that form the hybrid connectionist speech
recognition system. Like in [13], support vector machines are
used for speaker modelling of the high dimensionality extracted
features. In contrast to the MLLR technique that estimates an
affine transformation of the model parameters, the TN adapta-
tion can be seen as a sort of feature pre-processor stage as will
be discussed in the next sections.

The paper is organized as follows. In the next section
the basic principles of the connectionist speech recognition
paradigm are reviewed together with a description of the ASR
system for narrow-band data that was built ad hoc for this work.
Section 3 describes the Transformation Network method for
speaker adaptation in connectionist speech recognition systems.
Then, the feature extraction processing for speaker recognition
and how to build speaker models based on SVM is described.
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The experimental assessment of the TN-SVM novel approach
and its comparison to a GMM-UBM and a Gaussian Super vec-
tor baseline systems on a sub-set of one NIST Speaker Recog-
nition Evaluation 2008 [18] test condition is reported in Section
4. Finally, we present the conclusions in Section 5.

2. Connectionist Speech Recognition
Among the several paradigms proposed during decades of re-
search in automatic speech recognition (ASR), Hidden Markov
Models of Gaussian mixtures (HMM/GMM) [19] is doubtless
the most widely accepted framework. Alternatively, Artificial
Neural Networks (ANN) have also been proposed [20], but de-
spite their high discrimination ability in short-time classification
tasks, they have proved inefficient when dealing with long-term
speech segments. With the goal of solving the problem of long
time modelling of the ANN framework, one of the most suc-
cessful alternatives to HMM/GMM was later proposed, com-
monly known as hybrid ANN/HMM or connectionist paradigm
[14]. In general, hybrid architectures seek to integrate the ANN
ability for estimation of Bayesian posterior probabilities into a
classical HMM structure that allows the modelling of long-term
speech evolution.

On the one hand, the main advantage of hybrid ANN/HMM
are that classification networks are usually considered better
pattern classifiers than Gaussian mixtures approaches. Addi-
tionally, an appealing characteristic of the hybrid systems is
that they are very flexible in terms of merging multiple input
streams: the posterior probabilities generated by various net-
works trained with different streams (usually different feature
representations of the same speech data) can be merged, obtain-
ing improved performances. On the other hand, some of the
most significant limitations of hybrid systems are related with
the lack of flexibility and increased difficulty when context-
dependent phone modelling or speaker adaptation is desired,
since state of the art methods typically used in Gaussian sys-
tems can not be applied.

2.1. Broadcast News Speech Recognizer

The AUDIMUS framework developed during the last years of
research at the INESC ID’s Spoken Language Systems Labo-
ratory permits the development of several ASR based applica-
tions, such as LVCSR of Broadcast News (BN) for several lan-
guages [21, 22, 23]. The core speech recognizer of AUDIMUS
is a hybrid ANN/HMM system characterized by the use of Mul-
tiple Layer Perceptron (MLP) networks that act as phoneme
classifiers for estimating the posterior probabilities of a sin-
gle state Markov chain monophone model. Figure 1 shows a
block diagram of the AUDIMUS speech recognizer. The sys-
tem combines three MLP outputs trained with Perceptual Lin-
ear Prediction features (PLP, 13 static + first derivative), log-
RelAtive SpecTrAl features (RASTA, 13 static + first deriva-
tive) and Modulation SpectroGram features (MSG, 28 static).
The decoder of the recognizer is based on a weighted finite-
state transducer (WFST) approach to large vocabulary speech
recognition.

The BN transcription system for American English [23] is
based on AUDIMUS architecture, but it incorporates explicit
modelling of phone transitions and additional sub-phonetic
units in addition to conventional monophone modelling [24].
The MLP acoustic models were trained on 140 hours of man-
ually transcribed HUB-4 speech. The language model is a 4-
gram model, with Kneser-Ney modified smoothing, trained on

Figure 1: General block diagram of the AUDIMUS speech
recognition architecture.

150 million words from HUB-4 transcripts, and about 1 billion
words of newspaper and news-wire texts. The 64k word vocab-
ulary consists of all the words contained in the HUB- 4 training
set plus the most frequent words in the broadcast news texts and
Newspapers texts. Multiple-pronunciations are allowed and ac-
count for a total of 70k entries. In the 1997 evaluation corpus of
the NIST HUB-4 American English transcription campaign the
system achieves a 17.6% word error rate (WER).

2.2. Narrow-band Speech Recognizer

The fact that we did not have access to conversational telephone
speech (CTS) orthographically labelled data prevented us from
having an ASR system in more accordance with the character-
istics of the NIST Speaker Recognition Evaluation data sets.

For this work we built a basic ad hoc narrow-band speech
recognizer with acoustic models trained with down-sampled
BN data. That is, we trained phonetic MLP networks for PLP,
RASTA, MSG features at 8 KHz sampling rate and we addition-
ally incorporated a new stream with Advanced Font-End from
ETSI features (ETSI, 13 static + first and second derivatives)
since it was considered adequate for the kind of data. In the
narrow-band recognizer only monophone units were modelled.
Informal evaluations permitted us to verify a very weak per-
formance of the ASR system for CTS data (word error rates
above 70 %). For that reason, it was decided to use our own
system for obtaining the phonetic alignment according to the
automatic transcriptions provided by NIST, instead of using it
also for speech recognition. However, it is worth noting that
this weak ASR system is the one that we use for training the
speaker adaptation networks.

3. MLP/HMM Speaker Adaptation
In [16] a study of different speaker adaptation techniques ap-
plied to hybrid connectionist ANN/HMM systems was pre-
sented. The various proposed methods consisted either on the
transformation of the parameters (weights) of the ANN compo-
nent (typically a MLP) and/or augmenting the structure of the
speaker independent network. In this work we are interested in
an adaptation method able to keep unaltered the speaker inde-
pendent (SI) components while estimating some sort of speaker
dependent (SD) transformation. Thus, an approach known as
Transformation Network [17] or Linear Input Network [16] fits
in our expectations.

3.1. Transformation Network (TN) normalization

The TN normalization technique employs a trainable linear in-
put network (LIN) to map the SD input vectors to the character-
istics of the SI system. It is said to be a normalization method
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Figure 2: Block diagram of the Transformation Network (TN)
normalization technique. It can be distinguished a MLP speaker
independent network (MLP-SI) and a speaker dependent linear
input transformation network (TN-SD).

since its goal is to map the incoming speech to a better repre-
sentation that enhances the MLP classifier ability to estimate
posterior probabilities. A block diagram of the TN adaptation
approach is depicted in Figure 2

In order to train the TN for a new speaker, the weights of the
mapping are initialized to an identity matrix. This guarantees
that the SI model is the initial point prior to adaptation. During
training, the output error of the posterior probabilities is calcu-
lated and back-propagated as usual in MLP training. But the
SI part is kept frozen and weight adaptation is performed only
in the new transformation network. That is, the input mapping
is trained with the enrolment data available for a given speaker
by minimizing the mean square error of the probabilities at the
output of the connectionist system while keeping all the other
parameters fixed. The result is a linear mapping that represents
the differences between a new speaker and a generic SI model.

Notice, that although it can be considered a sort of spectral
normalization technique it presents some particularities. First,
the TN method does not impose any restriction at the LIN out-
put in terms of a reference or target speaker. The only restric-
tion comes from the output error minimization. Second, accord-
ing to [16] the TN approach is architecture dependent, hence it
can not be considered a generalized spectral normalization tech-
nique.

3.2. Feature extraction

Phonetic alignments of every speech segment with the auto-
matic transcription provided by NIST are generated with the
narrow-band speech recognition system described in section
2.2.

Then, the frame-level forced alignments are used to train
the linear speaker dependent mapping for each data segment in-
dependently. Consequently, a speaker adapted transformation
matrix is obtained for each segment. In order to avoid captur-
ing too much information of the background or channel condi-

tions, long segments of silence were removed from the adap-
tation data. All the data of the speech segment is used for es-
timating the transformation matrix (no data is kept for cross-
validation). A fixed number of training epochs with a relatively
small adaptation step is used for estimating the transformation
weights.

The transformation mapping is a full square matrix of di-
mensions [Nfeat · Ncontext, Nfeat · Ncontext] where Nfeat

and Ncontext are the size of the feature vector and the number
of context input frames of the MLP network respectively. For
instance, in the case of the PLP network the number of trans-
formation weights that form the adaptation matrix is 114244
([26 · 13, 26 · 13]). In some preliminary experiments, we con-
firmed that it is possible to estimate tied networks sharing the
same weights for all the context frames instead of training a
full-matrix, while maintaining a similar speaker adaptation per-
formance. Thus, we can reduce the dimensionality of the linear
mapping to just [Nfeat, Nfeat]. In this work, we consider only
tied transformation matrices.

One characteristic of the hybrid systems is the normaliza-
tion that is applied to the MLP inputs. Each input feature is
normalized to have zero mean and unit variance according to
estimates obtained during training. It is known [16] that the
speaker adaptation performance is enhanced by estimating new
feature normalization from the adaptation data. Hence, in this
work we also estimate mean and variance normalization feature
statistics in a per segment basis. In fact, it is expected that the
statistics are related to the adaptation weights and that provide
additional speaker dependent information.

The coefficients from the linear mapping obtained for each
speaker are concatenated in a vector. An independent TN fea-
ture vector can be obtained for each network stream: PLP,
RASTA, MSG and ETSI. Except as otherwise noted, mean and
variance of the features extracted from the speaker segment are
also incorporated to the feature vector.

3.3. SVM modelling

Connectionist transformation network feature vectors are used
to train SVM target speaker models: the target speaker feature
vector is used as positive example, while the feature vectors
extracted from a background data set (in the same fashion de-
scribed above) are used as negative examples.

The dense implementation of the libSVM toolkit [25] is
used for training. In this work, linear kernel has been used for
training speaker models. Like in [13], the dynamic ranges of
the feature vector components are normalized in order to re-
duce sensitive of the SVM kernel function to the magnitude of
the feature values. In this case, we apply a min-max normaliza-
tion in the [0,1] rank.

4. Speaker Recognition Experiments
4.1. Experimental set-up

4.1.1. Task definition

Speaker verification consists of determining whether a specified
speaker is speaking during a given segment of speech. In this
work, it is assessed in one sub-set of the short2-short3 NIST
Speaker Recognition Evaluation 2008 test condition [18]. Con-
cretely, we consider the telephone-telephone training and test
condition.
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4.1.2. Data sets

Training and testing data sets of the telephone-telephone con-
dition consists of one two-channel telephone conversational ex-
cerpts, of approximately five minutes total duration, with the
target speaker channel designated. The gender of speakers in
train and test segments is also known. The complete test condi-
tion consists of 37050 trials with 648 male and 1140 female tar-
get speakers, each of them being tested against approximately
20 different test segments.

Additional training data sets from previous SRE evaluations
are used for development of the speaker recognition systems.
Concretely, single channel conversation sides of approximately
5 minutes of SRE2004, SRE2005 and SRE2006 evaluations are
used for background modelling/training and score normaliza-
tion.

Automatically produced English language word transcripts
are available for all speech segments with word error rates in
the range of 15-30%. These automatic transcripts are used for
phonetic alignment needed for Transformation Network feature
extraction.

4.1.3. Baseline systems

Two well-known state of the art methods – without session vari-
ability compensation techniques applied – have been developed
for comparison.

B GMM-UBM
Gaussian Mixture Models (GMM) for each target
speaker are obtained with MAP adaptation of the Gaus-
sian means of a Universal Background Model (UBM)
[1]. The GMM-UBM feature front-end extracts 19 PLP
static features with log-RASTA processing and the frame
energy from a sliding window of 20 milliseconds with a
step size of 10 milliseconds. First and second deriva-
tives are concatenated to form 60 element feature vec-
tors. A well-trained MLP speech-non-speech detector is
combined with the alignment generated by a simple bi-
Gaussian model of the log energy distribution computed
for each speech segment to remove low-energy and high
likely non-speech frames. Finally, mean and variance
feature normalization is performed in a segment-based
fashion. Gender dependent UBMs of 1024 components
are trained with 742 female and 520 male speaker seg-
ments obtained from SRE2004 and SRE2005 training
data sets. UBM means are adapted with 5 MAP itera-
tions with a relevance factor of 16 to obtain the speaker
models. Raw log-likelihood scores are T-normalized us-
ing 200 speech segments (100 for female and 100 for
male) randomly selected from the background SRE2004
and SRE2005 data set.

B GSV-SVM
The Gaussian Super Vector (GSV) system concatenates
the mixture means of the MAP adapted Gaussian speaker
models trained in the GMM-UBM system to obtain su-
per vectors of every speech segment. The linear SVM
kernel of [3] is used for training the speaker models with
the libSVM tool. Min-max rank normalization is also ap-
plied to the super vectors. For training, the target speaker
super vector is used as the positive example, while a set
of background super vectors are used as negative sam-
ples. The background set used as negative examples for
SVM training is formed by 493 female super vectors
(293 SRE2004 and SRE2005 background segments +

200 SRE2006 additional segments) and 453 male speech
segments (254 SRE2004 and SRE2005 background seg-
ments + 199 SRE2006 additional segments). It was ver-
ified that score normalization strategies do not provide a
remarkable improvement in discriminative scoring sys-
tems like the GSV-SVM, hence we decided not to apply
score normalization.

4.1.4. Score calibration and fusion

Every single system is calibrated with the s-cal tool avail-
able in the Focal toolkit [26]. It permits to discriminatively
train a mapping to convert detection scores to detection log-
likelihood-ratios. Linear logistic regression is further applied to
the s-calibrated scores. In the following experiments, whenever
more than one system is combined, the corresponding scores
are fused together at this stage. Thus, the linear logistic re-
gression permits simultaneous calibration and fusion of multi-
ple systems scores. All calibration and fusion parameters are
gender-dependent. A five-fold cross-validation strategy on the
test set is applied to simultaneously estimate the calibration and
fusion parameters and to evaluate speaker detection systems.

4.1.5. Performance Metrics

The detection cost function (DCF) is the metric used in NIST
evaluations and it is defined as a weighted sum of miss and
false alarm error probabilities: Cdet = CMiss · PMiss|Target ·
PTarget + CFalseAlarm · PFalseAlarm|NonTarget · (1 −
PTarget). The parameters of this cost function are the rel-
ative costs of detection errors, Cmiss and CFalseAlarm, and
the a priori probability of the specified target speaker, Ptarget.
The parameter values are the ones used in NIST 2008, that is,
Ptarget=0.01, Cmiss=10, CFalseAlarm=1. In this work, we
provide the minimum DCF point for assessment of the speaker
detection systems. Additionally, we also report the Equal Er-
ror Rate (EER) and the Detection Error Trade-off (DET) curve
for a better evaluation of the speaker recognition systems under
study.

4.2. Experimental results

4.2.1. Network selection experiments

The aim of this first set of experiments is to validate the Trans-
formation Network features trained with Support Vector Ma-
chines (TN-SVM) approach and to verify that TN features
effectively contain speaker information that can be used for
speaker recognition applications. It is worth noting that in pre-
liminary experiments we observed insignificant improvements
in TN-SVM systems with score normalization strategies, hence
it has not been applied in any of the following TN-SVM detec-
tion systems.

As commented previously, one of the attractive properties
of connectionist ASR systems is the possibility of having mul-
tiple streams and the flexibility for merging them. The fact that
our narrow-band speech recognizer uses 4 different networks
permits us extracting 4 independent TN feature vectors. In or-
der to validate our proposal, we have first trained single TN-
SVM detectors with the features extracted from the four differ-
ent stream MLPs. DET curves, minDCF and EER scores are
reported in Figure 3 and Table 1. The first remarkable observa-
tion is that that every single system has the ability for speaker
discrimination. The best single TN-SVM detector is the one
based on the ETSI network. One possible reason may be the
higher dimensionality of the TN feature vector. However, the
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Figure 3: DET curves of each individual stream based detector
(TN PLP-SVM, TN RST-SVM, TN MSG-SVM and TN ETSI-
SVM), of the fusion of the four systems (TN FUSE-SVM) and of
the four concatenated feature vectors system (TN ALL-SVM).

System minDCF (x100) EER (%) #feats

TN PLP-SVM 8.08 22.69 728
TN RST-SVM 8.19 23.07 728
TN MSG-SVM 8.30 23.65 840
TN ETSI-SVM 7.70 21.96 1599
TN FUSE-SVM 6.63 17.55 —
TN ALL-SVM 6.59 17.33 3895

Table 1: Minimum Detection Cost (x100), EER and number
of features of each individual stream based detector (TN PLP-
SVM, TN RST-SVM, TN MSG-SVM and TN ETSI-SVM), of the
fusion of the four systems (TN FUSE-SVM) and of the four con-
catenated feature vectors system (TN ALL-SVM).

MSG based system shows the weaker detection results and it
is of slightly higher dimensionality than the PLP and RASTA
based TN features. In fact, it seems that ETSI based features
perform better not only because of the TN vector dimension,
but also because the ETSI features are better suited to the char-
acteristics of the speech data involved in this evaluation.

The availability of multiple TN-SVM systems opens the
possibility for merging or fusion. The first approach at-
tempted was the fusion of the four detectors at the score level
(TN FUSE-SVM). Another possibility is to form a high dimen-
sionality vector concatenating the TN features extracted from
the four individual MLP networks (TN ALL-SVM or simply
TN-SVM). In both cases, a considerable improvement with re-
spect to the best individual system is achieved. It seems that
using a single feature vector of high dimensionality achieves
slightly better results than the fusion at the score level in both
minDCF and EER score, although the DET curve shows very
similar results at the different possible operation points. In
the case of the TN ALL-SVM detector, a 14.4% and a 21.1%
minDCF and EER relative rate reduction is achieved with re-
spect to the best individual system (TN ETSI-SVM).
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Figure 4: DET curves of the single stream TN ETSI-SVM de-
tector with and without feature mean and variance statistic fea-
tures.

System minDCF (x100) EER (%) #feats

TN ETSI wmv 7.70 21.96 1599
TN ETSI womv 8.05 23.66 1521

Table 2: Minimum Detection Cost (x100), EER and number of
features of the single stream TN ETSI-SVM detector with and
without feature mean and variance statistic features.

4.2.2. Mean and variance feature experiments

The use of mean and variance statistics computed from the
speaker specific data used for feature normalization provides
improvements of the speaker adaptation techniques used in
connectionists systems for ASR. According to this, it was de-
cided to concatenate mean and variance feature statistics of the
speaker data to the transformation matrix weights to form the
TN vector. In Figure 4 and Table 2 are compared the best single
stream performing system (TN ETSI-SVM) when the feature
vector incorporates mean and variance statistics (with mean and
variance ≡ wmv) and when it does not (without mean and vari-
ance ≡ womv). Regarding these results, it can be confirmed the
importance of the features mean and variance also for speaker
recognition with TN features.

4.2.3. Baseline systems comparison

The GMM-UBM and the GSV-SVM baseline systems are com-
pared to the proposed TN-SVM technique in Figure 5 and Ta-
ble 3. The proposed TN-SVM detector clearly outperforms
the state-of-the-art GMM-UBM detector with t-norm score nor-
malization in terms of minimum detection cost. However, it
is worth noting that the differences between these two detec-
tors strengthens as long as we approximate to the EER opera-
tion point and are almost equivalent in other points of the DET
curve. It is not clear the reason for these differences at the
different detection thresholds. With respect to the GSV-SVM
baseline technique, slightly worse results in terms of minimum
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Figure 5: DET curves of the TN-SVM proposed system and of
the GMM-UBM (with t-norm) and GSV-SVM baseline systems.

System minDCF (x100) EER (%)

GMM-UBM 7.34 17.88
GSV-SVM 6.32 14.65
TN-SVM 6.59 17.33

Table 3: Minimum Detection Cost (x100) and EER of the TN-
SVM proposed system and of the GMM-UBM (with t-norm) and
GSV-SVM baseline systems.

detection cost are achieved. Once again, the TN-SVM detector
seems to perform worse with respect to the GSV-SVM system
as long as we move away from the threshold of minimum detec-
tion cost. Anyway, it can be stated that the TN-SVM is able to
provide comparable speaker detection capabilities to two state
of the art speaker recognition systems.

4.2.4. Systems combination

Finally, the last set of experiments is focused on the study of the
ability of the new speaker detector to fuse with other baseline
systems. Results shown in Figure 6 and Table 4 demonstrate
that the TN-SVM detector permits a considerable improvement
when it is fused. For instance, when it is fused with the GSV-
SVM system a 9.5 % and a 11.6 % minDCF and EER relative
reduction is achieved with respect to the GSV-SVM (that was
the best baseline detector). A considerable improvement can
also be observed with respect to the fusion of the two base-
line systems (GMM+GSV) when the three detectors are fused
(TN+GSV+GMM). Regarding these results, we can conclude
that the TN approach provides complementary cues for speaker
recognition.

4.3. Discussion

In this paper we have shown how features derived from ASR
adaptation techniques used in connectionist ANN/HMM speech
recognition systems can be used for speaker recognition task.
The Transformation Network features technique for speaker
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Figure 6: DET curves of the TN-SVM proposed system when
it is fused with the GMM-UBM system (TN+GMM), with the
GSV-SVM system (TN+GSV) and with both (TN+GSV+GMM).

System minDCF (x100) EER (%)

GMM+GSV 5.96 13.87
TN+GMM 5.84 14.45
TN+GSV 5.72 12.95
TN+GSV+GMM 5.58 12.40

Table 4: Minimum Detection Cost (x100) and EER of the fusion
of the two baseline systems (GMM+GSV) and of the TN-SVM
proposed system when it is fused with the GMM-UBM system
(TN+GMM), with the GSV-SVM system (TN+GSV) and with
both (TN+GSV+GMM).

recognition proposed in this work has shown relative good per-
formance when compared to other state of the art baseline de-
tectors. Although the method is based on short-time cepstral
feature extraction, the transformation features are estimated for
a whole speech segment. Consequently, the extracted features
are normalized independently on the words uttered. Moreover,
the proposed approach seems particularly convenient for fusion
with more conventional acoustic model-based approaches, pro-
viding complementary discrimination abilities.

Some questions may arise related to the proposed technique
and the influence of the ASR system employed. First, a very
weak speech recognition system has been used for both pho-
netic alignment and network adaptation. In fact, we suspect
that using a more robust system would permit an improved es-
timation of the transformation network, and consequently, the
extraction of more informative speaker recognition features that
would allow an improved detection performance. Second, the
use of automatic transcriptions generated by our own speech
recognizer has not been experienced and only transcripts pro-
vided by NIST have been used. The use of weak transcrip-
tions as the ones provided by our system should be evaluated in
the future, testing its impact on the speaker recognition perfor-
mance. This fact arises an interesting related problem: whether
it is feasible to apply the TN-SVM method in a way that it is
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not necessary an automatic transcription, for instance using an
open loop grammar of phonetic units or similarly to [15]. This
is a very interesting question that remains open for future inves-
tigation.

Another possibility for future research is related to the
adaptation method considered and the way it is applied. The use
of the Transformation Network approach has shown the ability
for capturing speaker cues, however it is likely that other meth-
ods applied in connectionist systems can be also useful. Ad-
ditionally, some adaptation parameters such as the number of
adaptation epochs and the size of the adaptation step have been
determined heuristically based on few samples. It is likely that
we can obtain better results using other adaptation strategies,
for instance using cross-validation data for determining an op-
timum number of adaptation epochs.

Some implementation aspects may have had a considerable
influence on the performance achieved by the proposed method
and the other baseline systems. Particularly, a relatively small
background set has been used as negative examples for SVM
model training or for background modelling. Thus, an improved
detection performance of the TN-SVM method can be expected
with a larger background data set.

Finally, it is worth noticing that session variability compen-
sation techniques have not been applied neither to the baseline
techniques nor to the proposed approach. The application of
such techniques and the benefit that might provide is a subject
of future research.

5. Conclusions
Recent advances in speaker recognition tasks comprise the use
of features derived from speech recognition adaptation tech-
niques such as MLLR. In this paper, we have shown that is is
also possible to extract meaningful features for speaker recog-
nition derived from adaptation techniques used in connectionist
ANN/HMM speech recognition systems. Concretely, we have
adapted speaker independent MLP networks with a method
known as Transformation Network in order to obtain a set of
speaker dependent linear mappings. The weights of these map-
pings are concatenated to form a high-dimensionality feature
vector that is used for training speaker SVM models. This novel
approach is named TN-SVM. The proposed TN-SVM speaker
recognition system has been evaluated in a sub-set of the NIST
SRE 2008 core condition showing detection performance com-
parable to two state of the art baseline detectors. Additionally,
the novel method has probed to be adequate for combination
with other conventional baseline systems due to the comple-
mentary speaker cues that provides.
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