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Abstract

It has long been claimed that spectral envelope features outper-
form prosodic features on speaker recognition tasks. However,
the reasons for such an arrangement are not entirely compelling.
In the current work we present some evidence to challenge these
claims. We propose that energy found at harmonically related
frequencies encodes the acoustic correlates of variables which
are typically referred to as prosodic, making harmonic energy
summation highly relevant. Its frequent implementation for es-
timating pitch appears to have gone unnoticed by the speaker
recognition community, because pitch estimators quite deliber-
ately discard what they compute, retaining only the abscissa of
a maximum. We argue that this latter step renders pitch esti-
mation somewhat ill-suited to speaker recognition tasks. We
present the detailed construction of a discrete transform, and a
normalization, which are amenable to relatively laconic model-
ing. With this framework we achieve or exceed the performance
of spectral envelope features in nearfield, matched-channel and
matched-multisession conditions; performance improves fol-
lowing envelope destruction. We believe these results may have
far-reaching consequences. For speech processing in a multi-
tude of applications, they suggest that modeling the harmonic
structure in the way we propose is at least as relevant as is mod-
eling other aspects of the signal.

1. Introduction
Automatic speaker recognition is an important task in today’s
society, with diverse application in the management of access,
security, and privacy. Modeling speaker characteristics can also
benefit other speech technologies, whose direct aim is not the
inference of speaker identity. It is therefore somewhat surpris-
ing, given this broad scope of impact, that the most stable and
oft-cited baselines [1, 2] are those whose signal representation
is both speaker-independent by design and optimized for a dif-
ferent task (namely speech recognition).

An analysis of acoustic features as used frequently in
speech processing reveals that they fall into four categories,
along two discrete dimensions. Along the first dimension, fea-
tures may describe the instantaneous, within-frame characteris-
tics of a signal; alternately, they may describe longer time-span
variation across frames. Along the second dimension, features
represent either the spectral envelope, broadly understood to en-
code the shape of the vocal tract, or aspects purported to char-
acterize the glottal source or other excitation.

It is commonly understood that instantaneous features rep-
resenting the spectral envelope are of immediate relevance to
automatic speech recognition (ASR), and they are colloquially
referred to as such. The termprosodic featureshas come to de-
note the other three categories, variation in which ASR systems

attempt to normalize out. As might be expected, that variation
has been shown to be useful in speaker recognition [3, 4, 5], but
its utility by itself is relatively low and benefit stems from the
fact that it is merely complementary to ASR features. Further-
more, prosodic features are known to be notoriously difficult to
model [6] and to require large amounts of training material.

In this work, we focus on only a subset of these prosodic
features, namely those that characterize within-frame aspects
of the frequency magnitude spectrum. The most well-known
among them is fundamental frequency (F0), or pitch. We argue
that the estimation of pitch, anarg max operation in a trans-
formed domain, does not serve the needs of speaker recogni-
tion. Those pitch errors which are considered most egregious
may actually be just as speaker-discriminative as is pitch itself,
if not more so. From a systems engineering perspective, the re-
sult is that the speaker discriminative information which pitch
estimators may first compute, but then suppress or discard in the
service of a betterarg max hypothesis, is never made available
to downstream components. As one would expect, that infor-
mation appears to be mostly unrecoverable even in the face of
costly and arcane modeling efforts. Our goal is to reverse these
seeming anomalies, at their source.

2. Pitch Estimation and Processing
2.1. Pitch Detection

A pitch detector is a within-frame 1-bestarg max locator, in
some space which we refer to as thetransformed-domain. Quite
a few alternative transformed-domains have been proposed, and
each is purported to have specific desirable properties mak-
ing its arg max a good estimate of the fundamental frequency.
Transformed-domains which are popular include the comb fil-
terbank energy spectrum [7, 8], the autocorrelation spectrum,
the magnitude frequency domain, and the cepstral domain.

2.2. Error Types

Pitch detectors of course commit errors, and these fall into three
categories [9]. First, pitch detectors may fail to identify whether
a speech frame contains voicing. This error will then lead to
an erroneous estimate of pitch (a type I error), or a failure to
provide an estimate where one is sought (a type II error). Sec-
ond, pitch detectors may commit what is known as anoctaveor
a suboctaveerror, by misidentifying a rational multiple of the
trueF0, namely(p/q) F0 for p ∈ N, q ∈ N, p 6= q, as theF0 es-
timate they seek. These errors are typically referred to asgross
errors. Finally, pitch detectors may commitfine errors, of small
magnitude relative to gross errors, for a variety of biomechani-
cal, phonotactic, environmental, or measurement reasons.

Research in pitch detection has generally focused on elimi-
nating the gross errors, since they are not unimodally distributed
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and contribute disproportionally to cumulative error rates. Fur-
thermore, they can frequently be identified visually, which is
less true of both voicing errors and fine errors.

2.3. Pitch Tracking

Since pitch trajectories are physiologically constrained to be
continuous between unvoiced occlusions [10], a useful ap-
proach to curtailing gross errors is to track the frame-level pitch
estimate in time. This is frequently implemented via dynamic
programming, and trackers are typically exposed to not only the
1-best but toN -best detector estimates per frame. The success
of the continuity assumption has blurred the distinction between
mere detectors and trackers, and currently no off-the-shelf de-
tector exists which does not employ some form of tracking.

Although technological improvement to tracking in time
is independent of improvement to frame-level pitch detection,
the details of parameter tuning in dynamic programming im-
plementations may be pitch-detector-specific. As such, there is
a potential that, in lowering gross error rates, tuning may actu-
ally increase the occurrence and magnitude of fine errors (which
may be speaker-specific).

2.4. Downstream Processing of Pitch Information

Despite the considerable investment in the complexity of pitch
detection and tracking to reduce gross errors, downstream
speech processing applications, such as speaker recognition
systems, frequently find it important to further smooth theF0

estimate sequence. Common approaches are median filtering
and/or linearization; without a doubt these approaches elimi-
nate potentially speaker-discriminative fine errors.

Following such gross pitchcorrection measures, systems
designed to exploit pitch variation frequently compute a very
large number of additional features,derivedfrom the corrected
trajectory estimate. These include derivatives, durations, sepa-
rations; alignments with utterance, talkspurt, word or syllable
boundaries; various normalizations of these features; and their
statistics over some interval of fixed or variable duration. It
is obvious that uncorrected underlying errors, distributed non-
unimodally, would have serious deleterious impact on the utility
of models of such features.

2.5. Desiderata

We now posit that improving pitch estimation may actually be
somewhat orthogonal to speaker recognition and many other
speech classification problems. This is because it seeks to
eliminate the error type which contributes most to cumulative
pitch detection error rates, namely octave errors. To see why
this could be suboptimal for speaker recognition, consider the
discrete-frequency domain in which the distance fromf = 0
to each harmonic peak might be used as anindependentfeature
characterizing each speaker. Assuming that measurement noise
(and other sources of noise, such as frequency smearing or fine
errors) does not scale linearly with frequency, and there is no
reason to believe that it generally does, any two speakers with
partially overlappingF0 domains will have(2 · F0) domains
which arelessoverlapping, a property which is only the more
relevant for the remainingp > 2 harmonics.

Even if this were not the case, and if estimation error did for
some reason scale linearly with frequency, it is computationally
unjustifiable to discard the entire transformed-domain signal ex-
cept for its globalarg max. It is conceptually tantamount to
attempting to run a speech recognizer by discarding the entire

frequency-domain signal except for the center frequency of e.g.
the first formant.

It is important to note that prosodic speaker recognition
systems frequently compute features other than instantaneous
pitch, either from the pitch trajectory itself (as mentioned in
Subsection 2.4) or via separate processing. Such other features
may exhibit some correlation with the transformed-domain sig-
nal which has by then been discarded. The measurement of this
correlation is beyond the scope of the present work.

3. Harmonic Structure Transform (HST)
The transform we present operates on the discrete-frequency en-
ergy domain, which we refer to as the FFT domain. This choice
facilitates conceptualization of the phenomena most germane to
pitch analysis from a perceptual standpoint, such as “fundamen-
tal frequency”, “octave error”, “harmonic”, etc.

3.1. Preprocessing

The audio used in the current work was sampled atfs =
16 kHz. We first apply a 32 ms Hann window every 8 ms; the
Hann window appears to be much less sensitive to noise than
the ubiquitous Hamming window [12]. Given these constraints,
each frame of audio consists of 512 points. We transform this
data into the frequency domain, yieldingNf + 1 = 257 dis-
tinct, equi-spaced, positive-half-frequency bins, spanning from
0 kHz to fs/2 = 8 kHz. We assume these bins to be centered
on the frequenciesfc [j] = j · ∆fc, for 0 ≤ j ≤ Nf , with
∆fc ≡ fs/Nf = 31.25 Hz. We treat the bins as tesselating the
frequency axis without overlap, such that the width of each bin
is identically∆fc.

From the complex spectra thus computed, we retain only
the squared-magnitude response and discard the phase compo-
nent, leading to input vectorsx ∈ R(Nf +1).

3.2. Comb Filtering in the Frequency Domain

We now seek a linear filterbank transform, implemented as a
matrix multiplicationH ∈ R(Nf +1)×(Nh+1), into a different
domain which will become our feature space of vectorsy. We
propose that this feature space be theharmonic frequencydo-
main [11], representing energy distribution atcandidate funda-
mental frequencies and their harmonics. This requires that the
columns ofH becomb filters.

A comb filterh (f) is a digital FIR or IIR filter whose nulls
in the frequency domain are located at integer multiples of some
candidate fundamental frequencyF0 [8]. WhenF0 is unknown,
it may be estimated by minimizing the energy appearing at the
filter’s output, over a bank of such filters. The form of the fil-
ter, effectively a harmonic notch-stop filter, has an equivalent
formulation in the continuous- time and frequency domains, as
well as in the discrete- time and frequency domains; however, in
the discrete frequency domain, it is more convenient to ignore
spectral shaping considerations and to use a harmonicnotch-
passcounterpart [13, 9, 14].

We are at liberty to choose the candidate fundamental fre-
quencies{fh}, which we do in a most general manner by let-
ting fh [i] = fmin

h + i · ∆fh, for 0 ≤ i ≤ Nh. Setting
fmin

h ≡ 50 Hz, ∆fh ≡ 1 Hz, andNh = 400 produces a
span from 50 Hz to 450 Hz, conservatively bracketing the over-
whelming majority of observed fundamental frequency values
in adult human speech.

For eachi, 0 ≤ i ≤ Nh, corresponding to a candi-
date fundamental frequencyfh [i], we construct one comb filter
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∆fc

∆ft

fc [j − 2] fc [j − 1] fc [j] fc [j + 1] fc [j + 2]

k · fh [i]

Figure 1: Riemann sampling of thekth idealized harmonic
of the continous-frequency comb for fundamental frequency
fh [i]. Shown in gray is the area assigned, during filter construc-
tion, to thejth element of the corresponding discrete-frequency
comb filterhi. Frequency shown along thex-axis; symbols as
in the text.

hi ∈ R(Nf +1). We first conceive of the comb filter in the con-
tinuous frequency domain, as the sum offh [i]-harmonically
spaced Dirac delta functions convolved with a triangular peak
shapeW (f),

hi (f) =

+∞
X

k=1

Z +∞

−∞

δ ((φ − kfh [i]) − f) W (φ) dφ (1)

The triangle window function only very roughly approximates
the Hann window frequency response. At its base, we assign it
the width∆ft; its peak is assigned a magnitude of unity.

We then Riemann sample each continuous comb filter
hi (f) at the sampling quefrency imposed by our FFT frequency
bin centersfc [j], as shown in Figure 1. (For the first twelve fil-
ters, corresponding to candidate fundamental frequencies below
63 Hz, this leads to aliasing since the frequency bin centers are
∆fc = 31.25 Hz apart; in this first work on this topic, we ig-
nore that concern entirely.) The resulting discrete filtershi [j]
form the columns of our transformH; two examples are shown
in Figure 2. We note that such comb filters rarely appear har-
monically spaced, due to discrete sampling.

0 200 400 600 800 1000

0

1

0 200 400 600 800 1000

0

1

(a)F0 = 100 Hz (b)F0 = 50 Hz

Figure 2: Discrete-frequency comb filtershi, in gray, produced
by Riemann sampling of continuous-frequency filtershi (f), in
black, with triangular harmonics of base width∆ft −→ 0. The
example in (b) violates the Nyquist quefrency criterion; that in
(a) does not.

As is performed at the output of the Mel-frequency filter-
bank prior to decorrelation, we take the (natural) logarithm of

the transformed vector,y = log(HT x). The resulting space
of y is shown for an ideal spectrumx whose fundamental fre-
quency is 200 Hz, in Figure 3. The spectrum is simply one of
the columns ofH, with added white noise; the gray line shows
y whenx has a signal-to-noise ratio (SNR) of 10, while that
in black is for a SNR of 1. Panel (a) is quite similar to the
SNR = ∞ spectra in [9].
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Figure 3: Various intermediate representations leading to Equa-
tion 3. The idealized spectrumx was formed by adding a col-
umn ofH, that corresponding toF0 = 200 Hz, to white noise.
Gray denotes a SNR of 10, black that of 1.

3.3. Within-Frame Normalization

To reduce the potential effects of noise in our transformed space
y ∈ R(Nh+1), we propose to normalize the energy found at
each candidate harmonic frequency and its harmonics by the
energy found elsewhere. We form the complement transform
H̃, also∈ R(Nf +1)×(Nh+1), by computing the element-wise
additive complement of each entry ofH,

H̃ [i] [j] = 1 − H [i] [j] . (2)

Then the normalized feature vector, used in the experiments in
this paper, is given by

y = log
“

H
T
x

”

− log
“

H̃
T
x

”

. (3)

The resulting space of the normalizedy is shown in panel (d)
of Figure 3. As can be seen, the proposed normalization elim-
inates the differences in vertical offset observed for different
SNR values, leading only to a difference of magnitude (which
also appears to encode SNR).

3.4. Feature Decorrelation

Figure 3 demonstrates that the elements ofy are correlated. In
particular, any two elements corresponding top/q mutliples of
the same candidate fundamental frequency will show signifi-
cant correlation during voicing. We note that this is true not
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only of the transformed-domain ofy, but of all domains, to our
knowledge, in which pitch trackers pick their peaks. It is these
correlations which are responsible for octave errors.

For classification tasks, the existence of harmonically-
distributed energy at higher frequencies presents a rather im-
portant opportunity, provided it is not discarded or is discarded
only after consideration (via decorrelation). There exists an
abundance of algorithms for decorrelating data, and in our ex-
perimental section we explore two of the most laconic: princi-
pal component analysis (PCA) and linear discriminant analysis
(LDA). Both transform typesF−1 ∈ {F−1

PCA,F−1
LDA} provide

the opportunity to eliminate candidate fundamental frequencies
which are irrelevant to the population of test set speakers. LDA
is additionally likely to prefer those candidate fundamental fre-
quencies which actually discriminate among them. Application
of such a transform leads to our proposedharmonic structure
cepstral coefficients (HSCCs)

HSCC = F−1 log
“

H
T
x

”

−F−1 log
“

H̃
T
x

”

, (4)

where the second term represents the (decorrelated) normaliza-
tion of the previous section.

3.5. Relationship to Other Comb Filtering Methods

The discrete-frequency comb filters ofH are a direct discrete
implementation of the continuous-frequency “harmonic product
spectrum” [11],

Σ(f) ≡ 20 log10

K
X

k=1

|X (kf)| , (5)

for some finite integer maximumK. Their construction is sim-
ilar to that of the discrete-frequency “uniform comb” (UC) fil-
tersC in [9]. A filterbank C of such combs yields a linear-
amplitude “PitchPeaks (PP)” representation, which we imply to
be given by

y
UC
PP [i] ≡

Nf +1
X

j=0

C [j] [i] · x [j] . (6)

The similarities between our work and [9, 14] end here, because
those authors seek to manipulatey such thatarg max (yPP )
corresponds to the true pitch value. To do so, they first propose
the “simple comb” (SC) which limits the number of comb teeth
and weights the filter envelope,

y
SC
PP [i] ≡

Ki
X

j=0

1

ci

C [j] [i] · x [j] , (7)

for F0-dependent tooth limitKi and scaling functionci. They
then explicitly attempt to suppress the various(p/q) harmonics
via the “alternate comb” (AC) filters which contain negative co-
efficients,

y
AC
PP [i] ≡ y

SC
PP [i] −

X

p,q

ξpqy
SC
PP [(p/q) i] , (8)

for some manually set weights{ξpq}.
We could have chosen to also perform these additive and

multiplicative operations, and there is the possibility that we are
doing so when we infer ourF−1

PCA or F−1
LDA transforms. But

perhaps not; our task is the discrimination of speakers and not
of candidate fundamental frequencies, and the operations may
differ significantly.

3.6. Relationship to HNR Computation

For voiced speech frames with true fundamental frequencyF0,
exactly one element ofy as given by Equation 3, that at index

i∗ =
F0 − fmin

h

∆fh

, (9)

implements a naive variant of a quantity known as the
Harmonics-to-Noise Ratio (HNR) [15]. The measure was pro-
posed originally as a tool for diagnosing dysphonic voicing,
and many algorithms have been designed for its computation
[15, 16, 12, 17]. Estimation, there and in the myriad speech
processing systems which have since tried to make use of it, is
always conditioned on an available estimate ofF0. We note that
HNR is sensitive to (correlated with) bothF0 and jitter.

From the point of view of speech therapists, those values
of y which correspond to candidate fundamental frequencies
other than the signal’s trueF0 are undefined, as are all values
for unvoiced speech.

3.7. Relationship to the FFV Spectrum

Conceptually and functionally, the harmonic structure trans-
form is related to the fundamental frequency variation (FFV)
spectrum introduced in [18], and recently applied to speaker
recognition in [19]. The FFV algorithm compares the FFT spec-
trum to a synthetic FFT spectrum, namely the frequency-dilated
version of the true FFT spectrum from the preceding speech
frame, over a range of logarithmically-spaced dilation factors.
This yields a search space; nominally, itsarg max is the relative
change inF0 expressed in octaves per second.

Here, the HST computation compares the FFT spectrum to
another idealized FFT spectrum, namely the discrete-frequency
comb filter with knownF0, over a range of linearly-spacedF0

values. This also yields a search space; nominally, itsarg max
is the absoluteF0 expressed in Hertz.

In both cases,F0-independentdialogue act recognition [20]
andF0-dependentspeaker recognition, respectively, we opt to
model the entire search space rather than itsarg max.

3.8. Relationship to the Mel Filterbank

The filterbankH has a role which is near-analogous to the well-
known Mel filterbank [21], whose matrix formulation we de-
note asM. MFCC processing consists of computing

MFCC = F−1 log
“

M
T
x

”

− MFCCnorm , (10)

whereF−1 is the data-independent inverse staggered cosine
transform and the normalization term is frequently a vector of
utterance cepstral means. This equation resembles Equation 4
rather closely.

We note that both filterbanks yield a cepstral coefficient
space which is a finite-data approximation of some aspects of

CC = F−1 (log (x)) , (11)

namely the cepstral coefficients obtained without a filterbank.
The filterbanks mitigate the need for (near-)infinite data by
smearing energy across disparate frequencies, be they related
through adjacency (as forM) or harmonicity (as forH). Con-
ceptually, it is important to appreciate thatM andH mutually
destroy each other’s input; the spectrum ofM is unrecoverable
afterH has been applied, and vice versa1.

1Information pertaining to the vocal sourceis available in the higher-
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3.9. Biological Plausibility

It must be admitted that the Mel filterbank [21] owes at least
some of its ubiquity to the reputed plausibility of its biological
implementation. There are of course many alternatives to the
Mel scale [22] on which the filterbank is based, but preferences,
for it specifically, are neither undisputed [23] nor germane to
this discussion.M can be any reasonably staggered filterbank
whose joint frequency support is contiguous, corresponding to
the range of human hearing, and whose individual filterseach
have contiguous frequency support. The physiological evidence
for such anM is: (1) that the basilar membrane implements a
one-dimensional tonotopic map ; and (2) that collocated neu-
rons, innervating adjacent hair cells along the organ of Corti,
may be reasonably expected to fire together. For completeness,
we briefly entertain a similar notion of the plausibility ofH,
whose individual filters, most notably,do nothave contiguous
frequency support.

We posit that the ability to amplify energies found at integer
multiples of a frequencyF0 might also be achieved by colloca-
tion, at least in principle, byrolling a frequency scale into a
circle of circumferenceF0. To do so for a range of frequencies
{F0} calls for a series of circles. Alternately, it calls for aspiral,
arranged such that the lowest frequencies map to the smallest
radii — not unlike the human cochlea. It is worth mentioning
that scientists do not know why the cochlea is coiled [24], short
of that it conserves cranial volume or extends frequency range.
Almost all studies of human hearing have relied on exclusively
one-dimensional models of the basilar membrane,uncoiled.

That the cochlea should be additionally aharmonic fre-
quency analyzer, rather than merely the housing for afrequency
analyzer(the basilar membrane) as is widely believed, is most
interesting. For if we accept the hypothesis that vocalization
and hearing in animal species have co-evolved to benefitintra-
species communication [25], then, under the above hypothesis,
only certain animals should possess a coiled cochlea. Harmonic
frequency summation should be of direct value to those species
whose members had the ability to control theirF0 indepen-
dentlyof their vocal tract shape — a function provided for by,
most commonly, a glottis. Conversely, we should expect species
not possessing a glottis not to have evolved a coiled cochlea.
Perhaps serendipitously, both vocal chords and coiled cochleas
are near-exclusively unique to mammals; birds, whose vocaliza-
tions are considered to be predominantly monophonic whistles,
have neither. We close these comments, squarely outside the
main scope of the present work, by noting that the average cra-
nial volumes for birds are much smaller than for mammals.

4. HSCC System
The classification system we propose, as elsewhere, accepts au-
dio snippets and produces 1-best hypotheses as to their source.
Unlike other systems, our system performs no speech/non-
speech segmentation2. Every utterance is treated as a contigu-

order MFCCs, but of very degraded quality. This is because the Mel fil-
ters smear energy across non-harmonically related FFT frequency bins.

2In our previous nearfield work [19], on the same data as used here
(cf. Section 5.1), we employed an energy-based speech activity detector
(SAD) which had been tuned on farfield audio. Since the publication of
[19], we have determined that in the nearfield, that SAD algorithm led
to very skewed distributions of the number of frames availableacross
speakers. We believe that modifying the SAD algorithm to better match
nearfield speech may ultimately mitigate this problem. In the meantime,
our much better baseline MFCC results reported here (despitelower
model complexity and the absense of a UBM) are achieved withouta

ous sequence of frames; ideally, we would like the features to
be robust towards within-utterance pauses.

4.1. Training

As explained in Section 3.1, audio snippets are first framed;
each frame is then windowed, transformed into the discrete-
frequency domain, and transformed again via Equation 3. Since
we model no inter-frame relationships, all frames are assumed
independent, and each is individually associated with a source
speaker identity. Given thus labeled TRAINSET and DEVSET

audio frames, we proceed as follows.
First, we compute a global decorrelating transformF−1

PCA

using TRAINSET, including also the subtraction of a global
mean to center the data. This reduces the dimensionality
from 400 to, consistently, 397 elements with positive, non-
vanishing eigenvalues. Optionally, we compute a second trans-
form,F−1

LDA on top of the first one (and also with its own global
mean subtraction), further reducing dimensionality to at most
the number of TRAINSET speakers less one.

Second, we optimize the numberND of decorrelated di-
mensions by minimizing the speaker classification error on DE-
VSET. Using TRAINSET data, we train for each speaker a mul-
tidimensional Gaussian mixture model (GMM) with a single
diagonal-covariance Gaussian. This is a most prosaic model
which treats each dimension independently.

Third, we optimize the speaker-independent numberNG

of Gaussians in all GMMs by again minimizing the classifica-
tion error on DEVSET. This time, we retrain the GMMs using
the value ofND optimized above, for a range ofNG values.
We make no effort to optimizeND andNG jointly, and treat
the resulting GMMs as our final models.

Importantly, during this process, no additional data other
than that collected from TESTSET speakers in TRAINSET and
DEVSET is made use of. In particular, we train no universal
background model (UBM), and instead rely on the much sim-
pler to compute maximum likelihood estimates of our models’
parameters. While UBMs may ultimately find application for
HSCC features, an evaluation of their benefits is beyond the
comparative scope of the current work.

4.2. Testing

In testing, snippets from DEVSET or TESTSET are transformed
just like those in TRAINSET. Then, every candidate speaker’s
model is used to estimate the likelihood of all of the snippet’s
frames. We hypothesize that speaker whose model yields the
highest likelihood as the snippet’s most likely source.

5. Validation
5.1. Data

Experiments described in the current work use data drawn from
the LDC CSR-I (WSJ0) [26] and LDC CSR-II (WSJ1) [27]
corpora. Speech snippets consist primarily of read sentences
from the Wall Street Journal, but also include some sponta-
neously produced utterances. We selected them from files in
the published corpora which had a.wv1 extension (indicating
a Sennheiser HMD414 close-talk head-mounted microphone).
For each target speaker, TRAINSET, DEVSET, and TESTSET

contributions were constructed by including utterances until
there were at least 5 minutes of speech data per speaker for
training, at least 3 minutes for development, and 3 minutes for

SAD component.
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testing. In total, we identified enough speech data for 95 male
speakers and 102 female speakers. Trials initially consisted of
60-second snippets (but we also formed alternative durations of
30 seconds and 10 seconds, as explained below).

Although the data in TRAINSET, DEVSET, and EVAL SET

for each speaker is multi-session, the majority of sessions from
which DEVSET and EVAL SET snippets were drawn are also
present in TRAINSET. This may turn out to be important, as
session mismatch is known to have serious deleterious effect on
the performance of other features used in speaker recognition.
Specifically, just over 50% of the speakers, of both genders, are
represented by speech snippets drawn from exactly the same 4
sessions in each of TRAINSET, DEVSET, and EVAL SET. Ap-
proximately 25% of both females and males are represented in
all three datasets by data drawn from the same 7 sessions. The
remaining 25% of speakers are represented by snippets drawn
from 10 to 25 sessions, and in these cases the session overlap
among the three datasets is between 75% to 100%.

5.2. Experiments

We demonstrate our optimization of the numberND of prin-
cipal components and linear discriminants in Figure 4. The
classification accuracies are obtained as described in the second
step of Section 4.1, using a single diagonal-covariance Gaus-
sian model per speaker. Because accuracies for the original 60-
second snippets in DEVSET were higher than expected, we de-
cided to cut them further into 30-second sub-snippets or, alter-
nately, into 10-second sub-snippets. Performance for all three
durations of both the PCA- and LDA-transformed development
data are shown.

1 2 3 4 5 10 20 50 100 400
0

20

40

60

80

100

PCA, 10s
PCA, 30s
PCA, 60s
LDA, 10s
LDA, 30s
LDA, 60s

Figure 4: DEVSET accuracy for females, in % along they-axis,
as a function of the number of retained dimensions (along the
x-axis). Results for males similar.

As can be seen, accuracies of 99.35%, 97.28%, and 80.56%
were achieved for females using PCA, for the three durations
of 60 seconds, 30 seconds, and 10 seconds, respectively. As
expected, they were higher using LDA: 100%, 99.09%, and
95.94%, respectively. For males (not shown), the PCA results
were 100%, 98.46%, 85.42%, respectively, and the LDA results
were 100%, 99.81%, 98.67%, respectively. LDA trajectories,
almost always, achieved their maxima for smaller numbers of
dimensions than did PCA trajectories. We note that all of these
results are obtained using one Gaussian per speaker.

We retain only the 10-second condition for the remainder of
the experiments in this paper. The number of dimensions, op-

timized independently for females and males, was also retained
throughout. Optimization of the number of Gaussian compo-
nents per speaker mixture was performed such that the number
is identical for females and for males; the best number we found
from amongst those that we sampled wasNG = 256.

To contrast with HSCC performance, we also trained a stan-
dard MFCC system as a baseline. The system retains the first
20 MFCC coefficients, and, for the purposes of comparison,
makes no use of a universal background model. On DEVSET,
we found that the optimal number of Gaussian components for
this system also happened to be 256. Finally, we applied LDA
to the MFCC system to produce a variant of the baseline, which
more closely matches the design of our HSCC system.

DEVSET and TESTSET accuracies for all three systems, for
females and males separately, are provided in Table 1. As the ta-
ble shows, the accuracy of the proposed HSCC system is higher
than that of a baseline MFCC system, with or without LDA. The
differences on DEVSET are 1.1%abs for females and 0.3%abs
for males; on TESTSET they are 0.6%abs and 1.1%abs for
females and males, respectively. Linear equal-weight model-
space fusion of the HSCC and MFCC systems yields TESTSET

accuracies of 100.00% for females, from 99.87% for HSCCs
alone, and 99.87% for males, from 99.65% for HSCCs alone.
This translates to two failed trials out of a total of 2922; it also
indicates that MFCCs and HSCCs contain complementary in-
formation.

Table 1: Classification accuracies (in %) for females (♀) and
for males (♂), on both DEVSET and TESTSET. Number of
10 second trials in each split shown in parentheses.

DEVSET TESTSET

Feature LDA ♀ ♂ ♀ ♂

(1775) (1660) (1510) (1412)

MFCC no 98.66 99.37 99.27 98.58
MFCC yes 98.71 99.34 99.27 98.87
HSCC yes 99.72 99.70 99.87 99.65

Irrespective of the magnitude of the observed differences
(but being mindful of their sign), the main consequence of these
results is that the HST filterbank provides a representation of the
speech signal which is at least as good as the Mel filterbank, for
speaker recognition tasks, if not better. But it does so while
destroying the spectral envelope. In doing so, it encodes a set of
features commonly referred to as (a subset of) prosodic features,
which are largely eliminated by the Mel filterbankM. It may be
assumed, at this early stage, that HSCCs yield a representation
of the glottal source much as MFCCs yield a representation of
the vocal tract shape.

6. Analysis & Discussion
The precise formulation of the proposed transform is governed
by many parameters, namely: the sampling frequencyfs; the
presence of an optional pre-emphasis filter1 − 0.97z−1; the
shape and width of the time-signal framing window; the num-
berNh and spacing∆fh of the candidate fundamental frequen-
cies; the shapeW (f) and assumed width∆ft of the harmonic
model; and alternative normalizations. In this work, these pa-
rameters have been set to seemingly reasonable or simply com-
putationally expedient values; no effort has been made to opti-
mize them for speaker recognition or any other task. We leave
the majority of such optimization to future work.
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The remainder of this section explores the effect on classi-
fication accuracy of large perturbations to the frequency mag-
nitude spectrum, prior to computing HSCC features. We have
chosen to present only DEVSET numbers, and only using a sin-
gle diagonal-covariance Gaussian model per speaker, as it has
saved us the need to optimize and train more complicated infras-
tructure. As we have seen, the performance on both DEVSET

and TESTSET is very similar, even when we train models with
multiple Gaussians and when the numberNG of Gaussians is
optimized for DEVSET.

6.1. Ablation of Source-Domain Frequency Range

As a first perturbation, we ablate the frequency range in the
magnitude frequency domain prior to computing HSCC fea-
tures. This consists of simply zeroing out the energy be-
low some low-frequency (LF) cutoff and above some high-
frequency (HF) cutoff. The results for LF ablation are shown in
panels (a) and (b) of Figure 5. As is evident, the cutoff we have
chosen for the systems in our experimental section, of 300 Hz,
is the best from among those investigated. Increasing the cutoff
to 600 Hz leads to a 4%abs increase in classification error for
females, and a 1.5%abs error increase for males. Reducing the
cutoff to 0 Hz hurts both genders, but by less. We suspect that
the cutoff we chose (actually 296.975 Hz, the first 10 bins in our
FFT domain), was overly aggressive and that best performance
is to be found for a LF cutoff somewhere between 0 Hz and
300 Hz. A cutoff may not be necessary if signal pre-emphasis
is used (as was not done in this work).
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Figure 5: Effect of ablation of source-domain frequency range
on DEVSET accuracy, in % along they-axis, as a function of
the number of LDA coefficients (along thex-axis).

Results for ablating the higher frequencies is shown in pan-
els (c) and (d). Here, ablation always leads to lower accuracies.
In particular, for a HF cutoff of 4000 Hz (with the fixed LF
cutoff of 300 Hz), corresponding approximately to a standard
telephony line, the increase in error is 1%abs and 2%abs for
females and males, respectively.
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Figure 6: Effect of perturbation to frequency resolution on DE-
VSET accuracy, in % along they-axis, as a function of the num-
ber of LDA coefficients (along thex-axis).

6.2. Perturbation of Transformed-Domain Frequency Res-
olution

While the perturbation of frequency resolution in the magni-
tude frequency domain depends only on factors which are in a
sense external to the HSCC computation, namely the sampling
frequencyfs and the analysis window duration, the frequency
resolution in the transformed-domain can be manipulated inde-
pendently. As mentioned in Section 3.2, we have chosen 400
candidate fundamental frequencies, spaced every∆fh = 1 Hz
between 50 Hz and 450 Hz. Panels (a) and (b) of Figure 6 show
DEVSET performance had we made other choices for the value
of ∆fh but kept the sameF0 range.

It appears that the inclusion of more comb filters, spaced
more finely in harmonically compressed frequency, yields im-
provements. They are relatively large for females, of 1.7%abs.

6.3. Ablation of Source-Domain Spectral Envelope

Although we have argued that the HSCC representation is inde-
pendent of the spectral envelope, as would be directly modeled
by the MFCC representation, we haven’t provided any empir-
ical evidence. Given that it manipulates the FFT magnitude
frequency domain, and that an outcome is that there aremore
dimensions in the transformed-domain (Nf = 400) than there
were in the source-domain (Nf + 1 = 257), one might suspect
that decorrelation may recover some envelope information.

To test this hypothesis, we ablate the spectral envelope by
truncating the cepstrum, leading to an altered source-domain
feature vectorx′. First, we transform the log-magnitude fre-
quency domain vectorlog x, whose energy isE , via an inverse
Fourier transform into the log-magnitude quefrency domain.
There, we zero out the first coefficients. We then transform the
signal back into the log-magnitude frequency domain, where
we undo the log operation, and compute the energyE ′. Finally,
we normalize the signal such that its energy is againE ;

x
′ = (E/E′) · eF(ZT

·F
−1(log x)) , (12)

whereZ ∈ {0, 1}2Nf×2Nf is a matrix operator which performs
the zeroing. The results are shown in Figure 7, for truncation of
the first 13 or the first 20 cepstral coefficients, approximating
the information available to a “standard” ASR system and to
our MFCC speaker recognition baseline, respectively.

We observe that removal of the information contained in the
first 13 cepstral coefficients, characterizing the spectral enve-
lope, leads to significant increase in speaker classification accu-
racy for females, of 2.3%abs. For males there is almost no dif-
ference. Further ablation of the next 7 cepstral coefficients hurts

18



0 20 40 60 80 100
80

85

90

95

100

CC ALL 95.94 (52)
CC − 13 98.20 (61)
CC − 20 97.46 (76)

0 20 40 60 80 100
80

85

90

95

100

CC ALL 98.67 (53)
CC − 13 98.61 (87)
CC − 20 97.41 (82)

(a)♀ (b) ♂

Figure 7: Effect of ablation of the spectral envelope on DE-
VSET nearfield accuracy, in % along they-axis, as a function of
the number of LDA coefficients (along thex-axis). “CC ALL”
indicates no ablation, “CC - 13” indicates ablation of the first
13 cepstral coefficients, and “CC - 20” indicates ablation of the
first 20 cepstral coefficients.

performance, particularly for males (to 1.3%abs lower than for
no perturbation). This provides additional support to claims
that higher-order cepstral coefficients (which map roughly to
the same-numbered Mel-filterbank cepstral coefficients) con-
tain speaker-specific information. However, those coefficients
account for only a fraction of the performance we observe us-
ing all the HSCC coefficients, whether ablated in the quefrency
domain or not.

7. Conclusions
We have proposed a novel means of modeling instantaneous as-
pects of prosody, via a harmonic structure transform in magni-
tude frequency space. Variants of the transformed-space have
been repeatedly studied over the past 3 decades; our main con-
tribution consists of resisting the temptation to compute its
arg max, an estimate of pitch. Aside from a normalization, the
modeling we have employed is nearly identical to that employed
elsewhere in the processing of short-time speech envelope spec-
tra.

The proposed features achieve comparable performance
to an MFCC baseline under matched-channel and matched-
multisession nearfield conditions. In contrast to prosodic fea-
tures elsewhere, HSCCs are simple to compute, simple to
model, and appear to require neither segmentation nor large
quantities of training material. Our analysis suggests that they
are robust to various types of gross ablations in frequency space,
and that in particular they perform better when the spectral en-
velope is eliminated.

We believe that the proposed feature space offers a paradig-
matic shift in the processing of prosody for speaker recognition,
and possibly for other speech processing tasks. Our immedi-
ate plans are to examine the features’ robustness in the farfield,
not only because that condition may most naturally exercise our
phylogenetic hypotheses, as well as to derive a compact rep-
resentation suitable for speaker verification scenarios such as
those in the NIST Speaker Recognition Evaluations.
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