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Abstract

In conventional Speaker-Identification using GMM-UBM

framework, the likelihood of the given test utterance is com-

puted with respect to all speaker-models before identifying the

speaker, based on the maximum likelihood criterion. The cal-

culation of likelihood score of the test utterance is computa-

tionally intensive, especially when there are tens of thousands

of speakers in database. In this paper, we propose a computa-

tionally efficient (Fast) method to calculate the likelihood of the

test utterance using speaker-specific Maximum Likelihood Lin-

ear Regression (MLLR) matrices (which are precomputed) and

sufficient statistics estimated from the test utterance only once.

We show that while this method is an order of magnitude faster,

there is some degradation in performance. Therefore, we pro-

pose a cascaded system with the Fast MLLR system identifying

the top-N most probable speakers, followed by a conventional

GMM-UBM to identify the most probable speaker from the top-

N speakers. Experiments performed on the NIST 2004 database

indicate that the cascaded system provides a speed up of 3.16
and 6.08 times for 1-side test (core condition) and 10 sec. test

condition respectively, with a marginal degradation in accuracy

over the conventional GMM-UBM system.

1. Introduction

In speaker identification, the unknown speaker is determined by

the best matching model from among a list of registered speaker

models [1]. Mathematically, it can be written as,

Ŝ = arg max
1≤S≤NS

T
X

t=1

log P (xt|λS) (1)

where x and λS are the test feature vectors and speaker

models in the database respectively. Ŝ is the recognized speaker

based on Maximum Likelihood (ML) criteria of log likelihood

score among NS speakers in the database.

It can be observed from Eqn. (1) that it is a computation-

ally intensive task to find the best speaker especially when the

database has many speakers (e.g. 20, 000 or even more). This

is because most of the time will be spent in calculating the like-

lihood of all the speaker models before finding the one with the

maximum score.

Several techniques have been proposed in literature to re-

duce the computational load, and these include, pruning [2, 3],

pre-quantization [4], Hash model [5], speaker cluster selection

based [6] and Universal Background Model (UBM) based adap-

tive approach [7]. Many of these techniques have been proposed

for speaker-verification task, but nevertheless are equally appli-

cable in speaker-identification frame-work.

The pruning method as described in [2, 3] iteratively re-

duces the search space by dropping the most unlikely speakers

on the fly. The pruning interval and number of speakers that will

be pruned out during each iteration are the control parameters

in the method. The pruning interval is defined as the number of

new features vectors which will be taken and this successively

acts on a reduced set of models in each iteration.

In the pre-quantization technique in [4], test feature vec-

tors were down-sampled to reduce the computational task of the

system . McLaughlin et al. [4] showed that upto 20 : 1 down-

sampling can be done on test feature vectors without loss of

speaker verification performance. However, these studies have

been done only on speaker verification task.

The Hash-model was introduced by Auckenthaler et al. [5]

using an idea similar to that of fast scoring GMM-UBM system

[7]. In Hash Modeling case, two GMM models are trained with

the same amount of training data. One contains smaller num-

ber of Gaussian components called the Hash model (for e.g. 32
components) where as other is larger (e.g. 2048 components).

There exists a correspondence between each component of the

Hash model to a list of best scoring components of the large

GMM. In test phase, feature vectors are first scored against

all components of the Hash-model and then the best scoring

Gaussian components are used to retrieve the dominant scoring

mixtures of the large GMM. The speaker verification task was

speeded up by about 10 : 1, with minor degradation in perfor-

mance.

A speaker clustering based identification task was proposed

by Vijendra et al. [6], where speaker models were clustered into

different groups or clusters based on a similarity measure. Each

cluster was represented by a single speaker model called repre-

sentative speaker. During identification, the test utterance was

first scored against the representative speakers to select the best

matching speaker group. It was shown that the identification

can be speeded up by 4.4 to 8.7 times by varying the number

of clusters and its respective speakers with minor degradation

in performance.

It is important to note that the results reported in [3, 4, 5, 6]

compare the efficiency of their proposed method to the conven-

tional system where the conventional system likelihood calcu-

lation are done by considering all Gaussian Components in the

model.

The conventional large Gaussian Mixture Model Univer-

sal Background Model (GMM-UBM) based speaker identifi-

cation system was proposed by Reynolds et al. [7]. In this

method, GMM-UBM is trained using data from various speak-

ers. Individual speaker models are then derived from the GMM-

UBM using Maximum a Posteriori (MAP) adaptation tech-

nique. Since speaker models are adapted from a single GMM-
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UBM, a fast scoring technique was developed to calculate the

likelihood of test utterance as follows: The top-C best Gaus-

sian components are found by alignment of the test data with

respect to GMM-UBM. Then, the top-C best Gaussian com-

ponents per feature vector are traversed through all the speaker

models to calculate the likelihood from respective models. The

fast scoring technique significantly reduces the computational

load of speaker identification system. If there are M Gaussian

components in GMM-UBM and there are Ns speaker models,

then the likelihood calculation requires only computing over

M + Ns × C components.

In this paper, we propose an efficient speaker identification sys-

tem using Maximum Likelihood Linear Regression (MLLR)

matrices that are pre-computed for each speaker. This method is

motivated by our earlier work in [8], where an efficient method

was proposed for the estimation of Vocal Tract Length Normal-

ization (VTLN) warp factor in speech recognition. The best

warp factor was estimated by computing likelihoods for a range

of possible warp factors. This was efficiently implemented by

doing only one alignment of speech segment to collect suffi-

cient statistics. The likelihood computation was done by a sim-

ple matrix multiplication of pre-computed VTLN matrices on

the sufficient statistics. Hence, the proposed method provided

huge computational gain compared to conventional VTLN sys-

tem without degradation in performance.

Similar to [8], we propose an efficient speaker identification

system, where each speaker is represented by a unique MLLR

matrix which is estimated by using the speaker training data as

adaptation data. During identification, two sufficient statistics

are first estimated by alignment of test speech segment with re-

spect to GMM-UBM. The sufficient statistics are multiplied ap-

propriately by speaker’s MLLR matrix to get the corresponding

speaker-model likelihood. The speaker with maximum likeli-

hood score is recognized as the identified speaker. Since the

sufficient statistics are computed only once irrespective of the

number of speaker-models and the computation of likelihood

involves only matrix multiplication, the proposed method is

computationally efficient. We call it Fast MLLR method.

Although the Fast-MLLR method is very computationally

efficient, there is a degradation in speaker-identification per-

formance compared to the conventional GMM-UBM system.

We therefore, propose to use the Fast-MLLR method to ob-

tain a set of most probable speakers (say, N ≪ Ns) from

the database. The conventional GMM-UBM system, then, finds

the best speaker using top-C best Gaussian based scoring tech-

nique on these N speakers. The top-C best components are se-

lected from the alignment information during estimation of suf-

ficient statistics of the fast-MLLR system. Hence, the proposed

cascade system does not need to align the test data twice. A

schematic of the cascade speaker-identification system is shown

in Fig. 1.
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Figure 1: Cascade speaker identification system.

The paper is organized as follows: In Section 2, we describe

the procedure to obtain the MLLR matrices for each speaker in

the database. These matrices are then used for efficient compu-

tation of likelihood during test as described in Section 3. Sec-

tion 4 describes the baseline GMM-UBM system based on top

C-best mixture scoring technique. Section 5 describes exper-

imental setup. In Section 6, we compare the performance of

the baseline system with Fast-MLLR system. In Section 7, we

describes the cascade speaker identification system. Finally, in

Section 8, we conclude the paper.

2. Estimation of Speaker-Specific MLLR
Matrix

Maximum Likelihood Linear Regression (MLLR) [9] is a

speaker adaptation technique commonly used in Automatic

Speech Recognition (ASR). It estimates a linear transformation

matrix, W with respect to speaker independent (SI) model us-

ing speaker training data in ML framework. The matrix is then

applied to mean vectors of the Gaussian components to get the

adapted model. Mathematically,

µ̂ = Wµ + b, Σ̂ = Σ (2)

where µ and Σ represent the mean and co-variance matrix of

the original SI model, and (W,b) are the MLLR transforma-

tion parameters. µ̂ and Σ̂ are the parameters of the transformed

model.

The training of the Fast MLLR system is similar to the con-

ventional MLLR system, with the difference being that it only

estimates a speaker-wise MLLR matrix using the training data

instead of actually deriving the speaker model from the GMM-

UBM. The speaker wise MLLR matrix acts as the representa-

tion of the speaker. In our experiment, GMM-UBM is consid-

ered as the SI model. The speaker specific MLLR transforma-

tion is estimated using his/her training data. Single iteration is

followed for MLLR transformation. Bias, b is not considered in

our experiment.

The following steps are used to estimate the MLLR matrix

for speaker, S.

1. Determine the probabilistic alignment of speaker training

vectors, x = {x1, . . . xt} with respect to GMM-UBM mix-

tures, i.e. γj (t) for mixture, j.

γj (t) = Pr(j|xt) =
wjpj(xt)

PM

k=1 wkpk(xt)
(3)

2. Using γj (t) and xt compute the following two statistics

[10],

K
(i)
S =

Rs
X

r=1

M
X

j=1

µ
(i)
j

σ
(i)2

j

T
X

t=1

γ
r
j (t)x

′

r(t) (4)

G
(i)
S =

Rs
X

r=1

M
X

j=1

1

σ
(i)2

j

µjµ
′

j

T
X

t=1

γ
r
j (t) . (5)

µ
(i)
j , σ

(i)
j

2
and M are the the ith component of mean, the

ith component of co-variance and total number of Gaussian

components in the model, respectively. Rs denotes number

of training utterances for speaker S.

3. Finally, ith row of the MLLR matrix for speaker S is ob-

tained using,

W
′

S,i = G
(i)
S

−1
K

(i)
S

′

(6)

The symbol (.)′ indicates matrix transpose operation.
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These MLLR matrices {WS}
Ns

S=1 are pre-computed using

speaker-training data and stored. In the next section, we show

how these pre-computed matrices can be used efficiently to

compute the likelihood of test-utterance with respect to speaker-

models.

3. Efficient calculation of Likelihood using
pre-computed MLLR matrices

In this section, we describe how the optimal speaker can be

identified by using the pre-computed MLLR matrix and the

Sufficient Statistics collected only once from the test data.

The following steps are involved in finding the best matching

speaker:

Initial Step: Store the MLLR matrices of all speakers as

described in Sec. 2.

1. Compute the γj (t) of the test feature vectors, x =
{x1, . . . xt} with respect to the GMM-UBM as Eqn. (3).

2. Estimate the following two statistics,

K
(i) =

M
X

j=1

µ
(i)
j

σ
(i)2

j

T
X

t=1

γj (t)x
′

(t) (7)

G
(i) =

M
X

j=1

1

σ
(i)2

j

µjµ
′

j

T
X

t=1

γj (t) . (8)

The symbol (.)′ indicates matrix transpose operation.

The statistics, K and G, are exactly same sufficient statistics

as before, except that they are computed from test data and

are not specific to any speaker.

3. The best probable speaker is selected in ML sense using the

MLLR matrices of all speakers in the database, i.e.,

S
∗ = arg max

S

(

−
1

2

(

D
X

i=1

(ws,iG
(i)

w
′

s,i − 2K
(i)

w
′

s,i)

))

(9)

where, ws,i and D are the ith row of MLLR matrix (WS) of

speaker S, and the dimension of the feature vectors, respec-

tively. S∗ is the identified speaker in the test utterance.

As mentioned earlier, the method is efficient, since the test

utterance is aligned only once against the GMM-UBM model to

compute the γj(t) and the two necessary sufficient statistics, K

and G. The statistics are then modified by the MLLR matrices

of the speakers to find the identified speaker, S∗. It is a simple

search over the MLLR matrices of the speakers in the database.

4. GMM-UBM system

The state-of-the-art GMM-UBM system [7] is used as the

baseline system. GMM-UBM with 2048 gaussian compo-

nents, is trained using data from the NIST 2002 SRE and the

Switchboard-1 Release-2 with EM algorithm. Diagonal covari-

ance matrices are considered in each Gaussian mixture. Speaker

models are derived from GMM-UBM using his/her training

data with single iteration of MAP. Only mean vectors of the

GMM-UBM are adapted to get speaker adapted models. The

value of relevance factor, 16 is used during MAP adaptation.

During identification, top 15 best mixtures per feature vector

[7] are considered to calculate the log likelihood from speaker

models, which yields the best performance in our experiment.

5. Experimental setup

Experiments are performed on NIST 2004 SRE in two condi-

tion. One is single-side (1-side) training single-side (1-side)

testing (core condition) and other is single-side training 10 sec.

testing i.e. speaker models are trained using data from single-

side condition and tested by utterances in single-side and 10
sec. condition. Details of the database can be found in [11].

The utterances are 5 minutes long in 1 side condition having

around 2.5 minutes of speech. There are 310 unique speak-

ers in the train set and 306 speakers in the test example set.

For close loop speaker identification task, we considered 306
speakers who have both training and test utterances. The setup

resulted in 1163 test utterances in each condition.

A 39 dimensional MFCC feature vector ( C1 to C13 with

∆ and ∆∆ excluding C0) is extracted from the 8 kHz sam-

pled speech signal at 10ms frame rate with 20ms Hamming

windowing, over frequency band 300-3400Hz. Different frame

removal techniques are used to remove the silence and very

low energized feature vector as in [12]. Bi Gaussian model-

ing of energy components of the frames for NIST 2002 SRE

and Switchboard-1 Release-2 and tri Gaussian modeling of nor-

malized energy components of the frames for NIST 2004 SRE

are used respectively. Finally, silence removed frames are nor-

malized to zero-mean and unit-variance by removing the global

mean and by dividing the standard deviation at utterance label.

All experiments are conducted on a desktop with Intel Quad

Core Processor (Q9550) with 2.83GHz CPU and 8 GB RAM.

We measure the relative time taken between the approaches to

assess their computational complexity.

6. Performance Comparison of
GMM-UBM and Fast-MLLR systems

In this section, we compare the performance of GMM-UBM

and Fast-MLLR speaker identification systems in terms of iden-

tification accuracy and time taken to process the data on identi-

cal computer set-up.

Table 1: Comparison GMM-UBM system with Fast MLLR sys-

tem for the NIST 2004 SRE with 306 speaker models.

Test System Acc. Avg. time/ Speed

seg. (%) uttn. (sec.) up

10 sec. GMM-UBM 40.76 7.388 1×
Fast MLLR 31.29 1.078 6.85×

1 side GMM-UBM 60.71 44.155 1×
(5 min.) Fast MLLR 47.54 4.984 8.86×

Table. 1 shows the individual system performance for dif-

ferent lengths of test utterances. Both systems in Table. 1 de-

termine the best speaker for the unknown test utterance by esti-

mating the likelihood from all speakers in the database i.e. 306
in our experiment. It is observed that Fast MLLR system al-

ways performs poorer than GMM-UBM system. On the other

hand, the Fast-MLLR system provides a speed up of 1 : 6.85
and 1 : 8.86 for 10 sec. and 5minutes test utterances respec-

tively. Note that in comparison, the GMM-UBM is using only

top-15 mixtures in likelihood calculation and is already compu-

tationally efficient. The gains provided by Fast-MLLR are over

this computationally efficient GMM-UBM system.

9



50 100 150 200 250 300
0

10

20

30

40

50

Number of speaker 

A
v
g
. 
ti

m
e
 p

e
r 

u
tt

e
ra

n
c
e
 (

se
c
.)

 

 

GMM −UBM Sys. (10 sec.)

Fast MLLR Sys. (10 sec.)

GMM−UBM Sys. (1 side)

Fast MLLR Sys. (1side)

Figure 2: Comparison of time taken to find the optimal speaker

by GMM-UBM and Fast MLLR system.

From Table. 1, we can conclude that Fast MLLR system is

faster but does not provide the same accuracy as the baseline

GMM-UBM system.

Fig. 2 shows the time taken by each system to find the op-

timal speaker as the number of speakers in the database and

test duration increases. It can be observed that the time taken

by Fast MLLR system to find the optimal speaker does not in-

crease significantly as the number of speakers in database and

test data duration increase. This is because, Fast MLLR Sys-

tem involves only matrix multiplication to calculate the like-

lihood after estimating sufficient statistics. Therefore, while

Fast-MLLR has degradation in performance, it has significant

advantage in terms of computation time. This computational

advantage becomes even more significant when there are thou-

sands of speakers in the database unlike the 306 considered in

this experiment. In the next section, we investigate the use of

a cascade system to combine the computational advantage of

Fast-MLLR with the performance advantage of GMM-UBM.

7. Cascaded speaker identification system

In our proposed cascade-system, Fast-MLLR is used to effi-

ciently identify the top-N most probable speakers from the thou-

sands of speakers in the database. The conventional GMM-

UBM is then used to test among these top-N speakers to find

the optimal speaker. During test, the cascade system finds the

best speaker from the database using the following steps,

• Step1: Fast MLLR System

(i) Find the best N (≪ NS) probable speakers from the

database of the test utterance as described in Sec. 3.

• Step2: GMM-UBM System

(ii) Get the top-C (C = 15) best Gaussian components

per feature vector from the alignment information

used in Step1.

(iii) Calculate the likelihood among N best speaker models

using top-C Gaussian components knowledge [7].

(iv) Identify the speaker whose model provide max likeli-

hood as Eqn. (1).

It is to be noted that speakers are represented by MLLR matri-

ces (rather than models) in the Fast MLLR and adapted speaker

models in the GMM-UBM system.

7.1. Effect of choice of N-best on the performance of Cas-

cade system

We now investigate the choice of N in N -best for the Fast

MLLR based system, so that the cascade system performance

comes closer to the GMM-UBM system while saving com-

putational time. First, we study the performance of the Fast

MLLR system for N -best speaker identification task. The N -

best speaker identification accuracy involves testing to see if the

correct speaker of the test utterance lies within most probable N

speakers. Fig.3 shows the N best speaker identification perfor-

mance of the Fast MLLR system with GMM-UBM system for

different duration of test segments.
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Figure 3: Comparison of N-best speaker identification perfor-

mance of Fast MLLR system with baseline system for different

test segment.

From Fig.3, it is observed that Fast MLLR system provides

10-best accuracy of 59.24 and 73.43, which is much higher

than the GMM-UBM baseline 1-best performance of 40.76 and

60.71 for 10-sec and 1-side respectively. Now if we consider

our cascade system configuration, it may not yield comparable

results to the standalone GMM-UBM system, since, the GMM-

UBM system itself has some identification error. However, as

N is increased the performance of the cascade system should

approach close to that of the standalone GMM-UBM system.

Table. 2 shows how accuracy and computation time of the

cascade speaker identification varies over different value of N
at Fast-MLLR stage. From Table. 2, following observation can

be drawn:

• As value of N increases, the performance of cascade system

performance comes closer to baseline GMM-UBM system

but there is a corresponding drop in computational gain.

• For test segments with longer duration (e.g. 5 min.), cascade

system achieves small computational gain when compared

to shorter test segments (e.g. 10 sec.). This is due to the

significant computation time taken by GMM-UBM system

even for the reduced set of speakers (in Table. 1). However,

in all cases, cascade system provides significant gain in com-

putational time with marginal loss in performance

• By tuning the value of N a compromise between accuracy

loss versus system speed can be achieved.

If we consider N = 20 for the cascade system, the com-

putational speed is 6.08× and 3.16× faster than conventional

baseline system with loss of accuracy being 0.86% and 1.04%

for 10 sec. and 5 minutes (1-side) test segment respectively.

We would like to remind the reader that the above obser-

vations are for the case of 306 speakers in the database. If we
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Table 2: Comparison of speaker identification accuracy and computational time with baseline system for different value of N in cascade

system on NIST 2004 SRE.

Test System N Acc. (%) Acc. degrade Avg. time/ Speed up

seg. (%) over baseline uttn. (sec.) over baseline

GMM-UBM - 40.76 - 7.388 1×
10 38.95 1.81 1.028 7.19×

10 sec. Cascade 20 39.90 0.86 1.215 6.08×
30 40.33 0.43 1.408 5.25×
40 40.41 0.35 1.594 4.63×

GMM-UBM - 60.71 - 44.155 1×
10 58.21 2.50 13.335 3.31×

1 side Cascade 20 59.67 1.04 13.970 3.16×
(5 min.) 30 59.93 0.78 14.797 2.98×

40 60.02 0.69 15.662 2.82×

have thousands of speakers in the database, then the compu-

tational advantage offered by our cascade system will be very

significant.

8. Conclusion

In this paper, we have proposed a cascade system for speaker

identification tasks involving large population database. The

first-stage system is based on MLLR with Sufficient Statistics to

reduce the search space of speakers. This stage is computation-

ally very efficient since it involves only matrix multiplication

to compute likelihood for different speakers but involves some

degradation in performance. The second stage uses GMM-

UBM system which provides good identification accuracy but

is computationally expensive especially when there are many

speakers. The use of cascade system reduces the search-space

for the GMM-UBM to identify the optimal speaker in a compu-

tationally efficient manner. The speed up in system performance

is 6.08 and 3.16 times faster than conventional GMM-UBM for

test utterance of duration 10 sec. and 1-side respectively and

involves very little degradation in performance. In this paper,

we have used only 306 speakers in the database, and the com-

putational gain is expected to be very significant for databases

having thousands of speakers.
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