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1Fraunhofer IAIS
Department NetMedia
St. Augustin, Germany

2Norwegian University of Science and Technology
Signal Processing Group

Trondheim, Norway

Abstract

Phonetic features have been proposed to overcome
performance degradation in spectral speaker recog-
nition in difficult acoustic conditions. The harmful
effect of those conditions, however, is not restricted
to spectral systems but also affects the performance
of the open-loop phone recognisers on which pho-
netic systems are based. In automatic speech recog-
nition, larger subword units and the use of additional
constraints from language models have been em-
ployed to improve robustness against adverse acous-
tic conditions. This paper evaluates the performance
of more constrained phone recognition and differ-
ent subword units for speaker recognition on hetero-
geneous broadcast data from German parliamentary
speeches.

Using phone clusters and a strong language
model instead of phones obtained from uncon-
strained recognition improves the equal error rate
from 14.3% to 8.6% on the given data.

1. Introduction

Spectral-based speaker recognition systems, like [1],
suffer from performance degradation in the presence
of spectral noise or varying spectral characteristics
in training and test data. This is a drawback for
speaker recognition applications on heterogeneous
data, such as speaker verification via telephone or
automatic metadata extraction in broadcast multime-
dia archives.

Especially in the last decade, various approaches
have been proposed to overcome this limitation by
adding high-level speech information to the recog-

nition process [2]. For example, different features
which capture speaker-specific pronunciation varia-
tion have been successfully used for speaker recog-
nition tasks: phone n-grams produced by an open-
loop phone recogniser [3, 4], time-aligned phone
pairs from multiple language phone recognisers [5],
and pairs of intended phonemes and their actual
phone realisations [6].

However, as the phone recognisers used for
pronunciation-feature extraction use spectral fea-
tures as their input, the same problems that affect
spectral-based speaker recognition will likely also
have an adverse effect on pronunciation-based sys-
tems. Automatic speech recognition (ASR) output
has been used in the past to improve spectral and
prosodic speaker recognition systems, for example
in [7, 8]. In ASR, a common approach to miti-
gate difficult acoustic conditions is to make use of
additional context information during decoding. A
lexicon can be employed to recognise larger sub-
word units and using a language model (LM) further
constrains the decoding process. In order to apply
these methods to speaker recognition, the normal-
ising effect of additional context should ideally be
strong enough to compensate for training/test mis-
match and noise but not so strong as to remove
speaker-specific pronunciation variations. Subword
units larger than phones – such as syllables [9] and
position-specific phone clusters [10, 11] – appear
to capture an appropriate amount of context and
thereby provide a suitable granularity of normalisa-
tion. In comparison to larger units, such as words,
these subword units also have the advantage of re-
quiring less training data to fully train a speaker
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model, thus alleviating the data sparsity problem.
In this work, we investigate subword units that

may be suitable to increase speaker recognition per-
formance on heterogeneous noisy data, using au-
dio material from German parliamentary TV broad-
casts.

2. Subword Units for Speaker Recognition

A low phone error rate with respect to the actual spo-
ken phones is crucial when using pronunciation fea-
tures in speaker recognition. In order to reduce the
phone error rate on heterogeneous data, we employ
larger decoding units and a higher-order language
model. We consider syllables and phone clusters
derived from syllables as promising for more robust
phonetic speaker recognition on heterogeneous data.

We evaluated syllables for different speech-
related tasks such as spoken term detection [10] and
pronunciation modelling [11] on German broadcast
data. Compared to phone recognition, syllable de-
coding is inherently more constrained since the pro-
nunciation of each syllable typically covers multiple
phonemes. On the evaluation set of [9] (which con-
tains studio quality planned and spontaneous speech
from the broadcast domain), our recogniser with a
2-gram phone language model achieves a phoneme
accuracy of 70%, while a 4-gram syllable language
model gives a phoneme accuracy of 83%. Although
the accuracy is measured for the “ideal pronunci-
ation”, i.e. on a phonemisation of the word tran-
script, and not the actual pronunciation, we assumed
that pronunciation-based speaker recognition would
benefit from this increased robustness. Syllables still
encode variations in pronunciation and should thus
be a suitable subword unit for speaker recognition.

As there are considerably more syllables than
phones (10k syllables in our syllable lexicon for
German vs. 48 phones that the phone recogniser
uses), data sparsity becomes more problematic dur-
ing speaker model training. Therefore, we did
not use the recognised syllables directly but sub-
segmented them into phones and phone clusters,
which capture a level of granularity between sylla-
bles and phones – 237 phone cluster types occur in
our dataset. This enables us to use the benefits of
stronger constraints imposed on syllable recognition
and at the same time keep the number of subword
types small.

2.1. Sub-syllabic Phone Clusters

In [10] we proposed to predict syllable pronun-
ciation variation by exploiting sub-syllabic phone
clusters, so-called position-specific clusters (PSC).
Syllables naturally consist of three phone cluster
positions, onset, nucleus, and coda. Greenberg
[12] showed that pronunciation variation is predom-
inantly realised at this cluster level. For example,
the process of omitting a phone in a word or syl-
lable, known as deletion, tends to occur at the end
of the word or syllable. Consider the German func-
tion word /U n t/ (and). This syllable contains an
empty Onset cluster, a vowel in the Nucleus cluster
and the two consonants /n t/ in its Coda cluster. The
Coda cluster is, especially in spontaneous speech,
often reduced to /n/, thus deleting the syllable-final
plosive. By breaking down recognised syllables into
their phone clusters one can effectively model reg-
ular pronunciation variations observed within sylla-
bles. At the same time, the training data can be used
more efficiently, as one does not need to observe
the pronunciation variants in all syllable contexts,
but rather learns variation patterns from sub-syllabic
phone clusters. Coming back to the example, we
are able to observe phonological processes inherent
to pronunciation mannerisms for a given speaker by
using phone clusters as identification features.

To break a syllable down into PSCs, a deter-
ministic parser needs to find the cluster boundaries
in the syllable. Admissible phone clusters can be
segmented following the sonority principle, which
states that different phone classes have different
sonority values. Sonority reflects the resonance of a
phone, for example plosives have the lowest sonor-
ity value and vowels the highest. In German sylla-
bles, sonority rises from the boundaries of the sylla-
ble towards the nucleus, where it reaches its peak.
The parser assigns a predefined sonority value to
each phone found in the syllable. In the example
mentioned above, the vowel /U/ forms the sonority
peak with a value of 4, whereas the nasal /n/ and the
plosive /t/ are assigned values of 2 and 1, respec-
tively (we use four levels of sonority, with 4 being
the highest and 1 the lowest). Once the sonority
peak has been identified, for example at a vowel,
diphthong, or syllabic consonant, the phones to its
left will be categorised as the onset cluster while ev-
erything to its right will be the coda cluster. Ulti-
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Syllable Syll w/ sonority values PSC analysis
S t r U m p f (sock) S[1] t[1] r[3] U[4] m[2] p[1] f[1] S t r[ONS] U[NUC] m p f[COD]
b r aU x s t (need) b[1] r[3] aU[4] x[1] s[1] t[1] b r[ONS] aU[NUC] x s t[COD]

S t i: 6: (bull) S[1] t[1] i:[4] 6:[4] S t[ONS] i: 6:[NUC] ∅[COD]

Table 1: Example of PSC segmentation with sonority.

mately, each PSC contains the clustered phones as
well as its position in the syllable. To illustrate the
process, consider the examples depicted in Table 1.
The second column shows each phone along with its
assigned sonority value. Because the vowels and the
diphthong both represent the peaks in the syllables,
they form the nuclei. Correspondingly, the remain-
ing clusters form the onsets and codas. If more than
one phone (such as two consecutive vowels) has the
highest value, they are clustered together.

For our experiments, we used the phone clus-
ters with and without the position information ap-
pended to each cluster token (yielding tokens like
S_t_r_[ONS] vs. just S_t_r). Using posi-
tion information may capture speakers’ pronuncia-
tion mannerisms better – like omitting a d in the
coda. On the other hand, it again increases the prob-
lem of data sparsity. See section 5 for the results.

3. Speaker Modelling

The speaker recognition modelling method used is
similar to [3] and [13] and is described in more detail
in [14]. Relative frequencies of subword n-grams
in the speaker and background training material are
computed and combined into log-likelihood ratios
λi(n), which indicate the speaker information for
speaker i contained in n-gram n:

λi(n) = log

[
Hi(n)
Ni

]
− log

[
HBG(n)
NBG

]
, (1)

whereHi(n) andHBG(n) are the number of oc-
currences of n-gram n, whileNi andNBG are the to-
tal n-gram counts for speaker Si and the background
data. The log-likelihood ratios for all n-grams in the
training data form the speaker models.

In order to cope with data sparsity, MAP-
adaptation of the speaker models from the back-
ground model, similar to [13], is employed. The
adapted n-gram counts for speaker i, Hi(n), are
derived from the counts in the background model

and the actual counts in the speaker’s training data
Hi(n)′:

Hi(n) = α ·Hi(n)′ + (1− α) ·HBG(n). (2)

During recognition, a speaker’s score si is calcu-
lated by summing the speaker n-gram scores λi(n)
for all n-grams in the test data, weighted according
to their number of occurrences c(n):

si =

∑
n
c(n)λi(n)∑
n
c(n)

. (3)

4. Experimental Methodology

The following section describes the evaluation sce-
nario and the ASR system which has been used to
generate the speaker pronunciation features.

4.1. Data

The data used for the experiments was selected to
contain German spontaneous speech in challenging
acoustic conditions, such as background noise, re-
verberation, and varying microphone settings. It was
taken from the German parliament’s “Web-TV” ser-
vice1, which offers video recordings of German par-
liamentary speeches searchable by speaker. Four-
teen federal ministers (6 female and 8 male) were
chosen to be the 7 test speakers and 7 impostors. Au-
dio from 5 video recordings per test speaker, each
between 2 and 25 minutes in length, was used as
speaker training material. The background models
were trained with 300 recordings from 300 back-
ground speakers. The development and test material
consisted of another 2 and 5 videos per test speaker
and per impostor, respectively, each from 9 minutes
to 1 hour in duration.

For phone and syllable recognition, the audio
material was automatically segmented and speech

1http://webtv.bundestag.de/iptv/player/macros/bttv/index.html
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parts were extracted before recognition. As we have
no phone / syllable / word reference transcription for
the data, we could not measure the phone / syllable
/ word error rates of the recognisers. For the spec-
tral system trained as a comparison, at least 6 min-
utes of audio material from 5 recordings per speaker
were manually selected to ensure correct segmenta-
tion and speech extraction. Also, speech samples
from 64 women and 41 men (of the 300) were man-
ually annotated, yielding at least 1 hour of back-
ground training material per gender.

4.2. ASR setup

We used triphone acoustic models optimised for
German broadcast news as described in [9]. Due to
the acoustic mismatch between the models and the
evaluation data, we expect a positive influence of a
more constrained language model on the ASR error
rate.

For the rather weakly constrained phone recog-
nition used as the baseline, we trained a bigram
phone language model using a large corpus of Ger-
man newswire data which consists of about 150
million running words. The more strongly con-
strained syllable recogniser used a 4-gram syllable
language model built on the same corpus of Ger-
man newswire data with a 10k syllable dictionary.
We applied Good-Turing discounting to smooth the
resulting model. The syllable transcripts produced
by the 4-gram syllable decoder were broken down
by a parser into two types of pronunciation features:
strongly constrained phones and phone clusters. The
former were used in order to directly compare phone
features from weakly constrained phone decoding to
phone features from more strongly constrained syl-
lable decoding.

4.3. Speaker Recognition Setup

We trained several speaker recognition systems
based on phone n-grams from weakly constrained
phone recognition, with modelling as described in
Section 3. The MAP-adaptation coefficient α for
Equation 2 was empirically determined on the devel-
opment data to be 0.98. We decided to pick the best
of those systems as baseline for further comparisons
with the new subword features. See the next section
for the results of the baseline systems.

Additionally, we used a basic spectral Gaussian

Mixture Model (GMM) system with 512-mixtures
per speaker model and a Universal Background
Model (UBM) (similar to [1]) as a comparison.

For the following experiments, all speaker and
impostor test files were scored against all true
speaker models, and the resulting scores were used
to produce equal error rates (EERs) and detection-
error trade-off (DET) curves to measure the recog-
nition performance.

5. Results

In this section, we present the results of using dif-
ferent subword-based n-gram features for speaker
recognition: weakly constrained phones, strongly
constrained phones obtained from syllable decod-
ing, and strongly constrained phone clusters.

Preliminary experiments were done to determine
which n gives the best performance for our setup
with weakly constrained phone n-grams, in order to
set the baseline. See Table 2 for the equal error rates.
3-grams performed best, which is consistent with the
findings in [13], so we decided to use 3-grams of all
subword features in the comparisons.

System EER
Phone 1-grams 25.7%
Phone 2-grams 20.0%
Phone 3-grams 14.3%
Phone 4-grams 20.0%
Phone 5-grams 26.0%

Table 2: Equal error rates for the phone n-gram base-
line systems using a 2-gram phone language model
for phone recognition.

We then set up speaker recognition systems with
n-grams of the different subword features. Figure 1
shows the DET curves for 3-grams of the compared
subword units, and Table 3 lists the equal error rates
for the tested systems. The baseline of weakly con-
strained phones was improved upon by using syl-
lable recognition instead of phone recognition: We
performed syllable recognition with a syllable 4-
gram LM and broke the syllables down into phones.
The strongly constrained phone features are more
stable with respect to decoding errors on heteroge-
neous data, improving the EER to 11.8%. Con-
verting the syllables into phone clusters instead of
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Figure 1: DET-curves for phone 3-grams, phone 3-
grams from constrained recognition (with 4-gram
syllable LM), and phone cluster 3-grams.

phones further decreases the EER to 8.6%, even be-
low the basic GMM-UBM baseline. The gain may
be a result of the larger context captured by phone
clusters: as the average cluster contains more than
one phone (an average of 1.22 phones per cluster
for the data used), we effectively model variable
length phone n-grams. Phone cluster 3-grams can
span more than 3 phones, and thus correspond to
full syllables in many cases (the average number of
phone clusters per syllable was 2.25). Strongly con-
strained phone 4-grams alone, however, result in a
worse performance, with an ERR of 11.4% (con-
strained phone 5-grams have an EER of 17.3%). A
reason why clusters outperform single phones could
be their variability in terms of context length. In-
stead of using simple n-grams of phones we rely on
the linguistically determined cluster lengths inher-
ent to syllables, which means that cluster trigrams
model more context than phone trigrams.

Finally, we tested phone clusters with and with-
out position information and found that position in-
formation does not improve speaker recognition per-
formance on the given data, which, again, may be
due to data sparsity.

System EER
Spectral (GMM-UBM) 11.4%
Phone 3-grams baseline (2-gram phone
LM)

14.3%

Phone 3-grams (4-gram syllable LM) 11.8%
Phone cluster 3-grams (4-gram syllable
LM)

8.6%

Phone 4-grams (4-gram syllable LM) 11.4%
Phone 5-grams (4-gram syllable LM) 17.3%
Phone cluster with position information
3-grams (4-gram syllable LM)

8.8%

Table 3: Equal error rates for the evaluated systems.

6. Conclusion

We investigated the use of different subword units
and a more strongly constrained ASR decoding pro-
cess for robust pronunciation-based speaker recog-
nition on challenging spontaneous speech data. We
found that a strong language model indeed improves
speaker recognition performance on real-life data,
lowering the decoding error caused by data hetero-
geneity while at the same time capturing speaker
specific pronunciation variation. Also, using sub-
syllabic phone clusters instead of phones as features
further enhances results, decreasing the EER from
14.3% for the baseline phone features to 8.6% for
phone clusters with a strongly constrained decoding
process.

In the future, we plan to evaluate speaker recog-
nition with phone clusters with different modelling
methods on larger datasets and in languages other
than German. Moreover we aim at fusing the pro-
posed method with other approaches.
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