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Abstract
This paper presents the ALIZE/SpkDet open source software
packages for text independent speaker recognition. This soft-
ware is based on the well-known UBM/GMM approach. It
includes also the latest speaker recognition developments such
as Latent Factor Analysis (LFA) and unsupervised adaptation.
Discriminant classifiers such as SVM supervectors are also pro-
vided, linked with the Nuisance Attribute Projection (NAP).
The software performance is demonstrated within the frame-
work of the NIST’06 SRE evaluation campaign. Several other
applications like speaker diarization, embedded speaker recog-
nition, password dependent speaker recognition and pathologi-
cal voice assessment are also presented.

1. Introduction
Indicated by the growing number of participants in the inter-
national NIST speaker recognition evaluations (SRE) [1], text-
independent automatic speaker verification (ASV) has experi-
enced an increasing interest in recent years. At the same time
meaningful improvements in performance have been achieved
with error rates roughly halving over the last three NIST SRE
campaigns. These two phenomena are not directly linked since
the best performances invariably come from a limited number of
sites, mostly with previous experience in such campaigns. And
any exceptions to this observation tend to relate to site combina-
tions where perhaps one or more of the partners have previous
SRE experience. The key point here is the high level of research
and technology investment required to reach and remain close
to the ever moving state-of-the-art. In this context, combined ef-
fort across sites can clearly help; the simplest and most common
example of this is the sharing of system scores with score-level
fusion. At the other extreme of such cooperation is open source
software, the potential of which is far more profound.

This paper presents open source software: the AL-
IZE/SpkDet packages. The realization has taken place in the
context of the open source ALIZE toolkit [2, 3] developed by
the LIA in the framework of the French Research Ministry
Technolangue1 programme. ALIZE comes from the collabo-
ration within the ELISA consortium [4], which grouped the ef-
forts of several European laboratories in order to participate in
NIST evaluation campaigns (mainly NIST-SRE and NIST Rich
Transcription evaluation) from 1998 to 2004. ALIZE/SpkDet
is a package within ALIZE tailored specifically to ASV; AL-
IZE/SpkDet was one of the chosen reference systems in the
framework of the BioSecure Network of Excellence2; it was

1http://www.technolangue.net/
2http://biosecure.info

also used by several institutions for the NIST’06 SRE. Feature
extraction comes from SPro [5]. All these systems are dis-
tributed through open source licences.
Recent key developments include support vector machines
(SVMs) [6], the associated Nuisance Attribute Projection com-
pensation (NAP) [7], and Factor Analysis (FA) [8, 9]. These de-
velopments stem mainly from a collaboration between the LIA
and the Swansea University.

This paper presents an overview of the ALIZE/SpkDet soft-
ware. After a short technical description in Section 2, Section 3
presents a demonstration of the toolkit performance, using the
latest NIST SRE database. In Section 4, some work concerning
unsupervised adaptation of the client models is described and
evaluated using the NIST’05 and ’06 SRE frameworks. Even
if the software is mainly designed for text-independent speaker
recognition, several other applications use ALIZE/SpkDet. Sec-
tion 5 presents some examples of these developments. Finally,
Section 6 concludes with ideas on the immediate future of the
project.

2. Overview of ALIZE/SpkDet
The ALIZE project was initiated by the ELISA consortium
under the responsibility of the LIA and initially funded by
the French Research Ministry Technolangue program during
2003/2004. The project was continued using LIA and BioSe-
cure funds. ALIZE was also retained for two French National
Research Agency (ANR) projects, BIOBIMO and MISTRAL,
allowing support until the end of 2008.

2.1. ALIZE main objectives

The main objectives of ALIZE are:

• to propose a toolkit facilitating the development of new
ideas, with a (proven) state-of-the-art level of perfor-
mance;

• to encourage laboratories to evaluate new proposals us-
ing the toolkit on both standard databases and protocols
such as the NIST SRE evaluations;

• to help the understanding of speaker recognition algo-
rithms (like EM training, MAP adaptation or Viterbi al-
gorithm), parameters and limits;

• to test new commercial applications;

• to facilitate the exchanges and knowledge transfer be-
tween the academic laboratories and between academic
laboratories and companies.



Through the MISTRAL and BIOBIMO projects, some new
functionalities are currently developed, like client/server or em-
bedded architectures, text dependent speaker recognition sys-
tems and multimodal user authentication systems.

2.2. An illustration of ALIZE specificities

ALIZE is open source software developed in C++ following
an object oriented UML method. The general architecture of
the toolkit is based on a split of the functionalities between
several software servers. The main servers are the feature
server, which manages acoustic data, the mixture server which
deals with models (storage, modification, tying of components,
saving/reading...), and the statistics server which implements
all the statistical computations (EM-based statistic estimations,
likelihood computation, viterbi alignment, etc.) This architec-
ture presents several advantages:

• Each server is accessible thanks to a very short list of
high level functions and the low level functions such as
memory management are usually hidden from the user;

• Each server is optimized and updated separately (thanks
to this relative independence, developing new function-
alities inside a new server is also very easy);

• Several instances of the same server could be launched
at the same time (particularly useful for multi-stream or
multimedia systems);

• The user-code presents the same structure, organized be-
tween the main servers, helping the source code devel-
opment and understanding;

• Finally, the software architecture allows easily to dis-
tribute the servers on different threads or computers.

2.2.1. Data reading and synchronization

All the acoustic data management is delegated to the feature
server. It relies on a two step procedure: feature server ini-
tialization and a reading call for accessing each feature vector.
The reading of an acoustic stream is performed frame by frame
following a feature loop as illustrated in figure 1. The user syn-
chronizes the reading process thanks to the reading calls. There-
fore, the same source code is employed for off-line (file based)
processing and for on-line (open microphone) processing (the
only difference occurs in the server configuration). Accessing
at different time instants in the audio stream (go backward or
forward, go to frame x) is also allowed. Memory management
is achieved according to two simple rules:

• the user defines the size of the data buffer, in time, from
unlimited to one frame. If the buffer shows a limited
size, while the user requests a frame out of the buffer,
the server will return a ’frame non available message’
(the same message is sent if no frame is available in an
open microphone mode).

• the user defines the memory footprint for the data server.
An integrated buffering service is provided for accessing
very large datasets (several hundred hours of speech).

2.2.2. EM/ML world model training

For training a GMM world model, the user has to initialize three
servers, the feature server for the data, the mixture server for
managing the Gaussian components (and mixture models) and
the statistics server for estimating the statistics. Figure 2 shows

FeatureServer fs(config); (1)
fs.reset(); (2)
Feature f;
while (fs.readFeature(f)){ (3)
....
}

Figure 1: Acoustic data management in ALIZE. (1) Server init.,
(2) Server reset, (3) Reading call in the reading loop.

FeatureServer fs(config); (1)
MixtureServer ms(config); (1)
StatServer ss(config); (1)
MixtureGD &world=ms.createMixtureGD(); (2)
Feature f;
for(int i=0;i<nbIt;i++){ (3)
  MixtureStat &emAcc=ss.createAndStoreMixtureStat(world); (4)
  fs.reset();
  while (fs.readFeature(f)) emAcc.computeAndAccumulateEM(f); (5)
  world=emAcc.getEM(); (6)
}
world.save(filename); (7)

Figure 2: EM based world model training. (1) Servers init., (2)
Init. the world model, (3) EM it. loop, (4) Reset the stat. ac-
cumulator, (5) Feature reading loop and statistcics accuulation,
(6) Get the stat and copy it into the world model, (7) Save the
model.

the skeleton of an example EM training procedure, beginning
from scratch (the model is randomly initialized by default but
the initialization could be easily modified).

2.2.3. EM/MAP speaker model estimation

For deriving a speaker model from the world model using a
MAP adaptation algorithm, the user builds exactly the same
program as the previous one. Only two differences have to
be highlighted: the client model is initialized as a copy of the
world model and the final model (at each iteration) is the result
of MAP(), a function involving both the world model (the a pri-
ori knowledge) and the statistics estimated on the client training
data. Implementing some variants of the MAP algorithm will
only take place in this MAP() function. This process is illus-
trated Figure 3.

2.2.4. Score computation

The score computation follows the same structure as the
two previous programs. Figure 4 shows an example of the
(log) likelihood computation for several client models, us-
ing a n-top Gaussian computing. For top Gaussian com-
puting, the user needs only to set an optional flag (DE-
TERMINE TOP DISTRIBS) during the corresponding call for
memorizing the winning components and to set the flag to a dif-
ferent value (USES TOP DISTRIBS) for using it for the other
calls. An implicit component tying is also implemented and
helps to save both computational time and memory.



server initialization (1)
MixtureGD &world=ms.loadMixtureGD(filename); (2)
MixtureGD &client=ms.dupplicateMixtureGD(world); (3)
Feature f;
for(int i=0;i<nbIt;i++){
  MixtureStat &emAcc=ss.createAndStoreMixtureStat(client); (4)
  fs.reset();
  while (fs.readFeature(f)) emAcc.computeAndAccumulateEM(f); (5)
  client=emAcc.getEM();
  client=MAP(world,client); (6)
}

Figure 3: Client model estimation by MAP algorithm. (1)
Servers initialization, (2) Load the world model, (3) Create
the client model by world duplication, (4) Create the statis-
tics accumulator, (5) Compute the stat on the client training
data, (6) Estimate the resulting model as a function between
the apriori knowledge (world) and the current stat, copy it into
client model.

2.2.5. Discriminant classifiers

Discriminant classifiers like the SVM were proposed during the
past years in several works as in [10, 11, 12, 13]. These classi-
fiers are usually applied to GMM supervectors. A GMM super-
vector is composed of the means of a classical GMM system, as
initially proposed by [13]. Libsvm library3 is used for the basic
SVM functionalities.

2.2.6. Session variability modeling

Some of the most important developments in ASV over recent
years relate to strategies that address the ”mismatch factor”.
ALIZE/SpkDet includes a set of functionalities related to the
Factor Analysis proposed by [8] and the Nuisance Attribute Pro-
jection proposed by [7]. In these approaches the goal is to di-
rectly model the mismatch rather than to compensate for their
effects as it was done with H-norm and T-norm. This involves
estimating the variabilities from a large database in which each
speaker is recorded in multiple sessions. The underlying hy-
pothesis is that a low dimensional ”session variability” subspace
exists with only limited overlap on speaker specific information.
Both Factor Analysis and NAP were developed inside AL-
IZE/SpkDet, using the SVDLIBC4 toolkit for the singular value
decomposition.

2.2.7. Factor Analysis implementation inside ALIZE/SpkDet

This section describes more precisely the Factor Analysis
approach and its basic implementation in ALIZE/SpkDet.
A speaker model can be decomposed into three different com-
ponents: a speaker-session-independent component, a speaker
dependent component and a session dependent component. A
GMM mean supervector is defined as the concatenation of the
GMM component means. LetD be the dimension of the feature
space, the dimension of a supervector mean is MD where M
is the number of Gaussian in the GMM. A speaker and session
independent model is usually estimated in speaker verification
to represent the inverse hypothesis: the UBM model. Let this
model being parameterized by θ = {m,Σ, α}. In the follow-

3http://www.csie.ntu.edu.tw/∼cjlin/libsvm
4http://tedlab.mit.edu/∼dr/SVDLIBC/

server initialization (1)
world model loading and client model loading (in client[] array) (2)
Statistic accumulator declarations for world (accWorld) and 
client array (accClient[]) (3)
worldAcc.resetLLK(); (4)
for (int cl=0;cl<nbCl;cl++) accClient[cl].resteLLK(); (4)
Feature f;
fs.reset();
while (fs.readFeature(f)){
  worldAcc.computeAndAccumulateLLK(f,DETERMINE_TOP_DISTRIBS); (5)
  for (int cl=0;cl<nbCl;cl++)

clientAcc[i].computeAndAccumulateLLK(f,USE_TOP_DISTRIBS); (6)
}
double worldLLK=worldAcc.getMeanLLK(); (7)
for (int cl=0;cl<nbCl;cl++) score[cl]=clientAcc[cl].getMeanLLK()worldLLK; (7)

Figure 4: LLR score computation with n top Gaussian comput-
ing. (1) Servers intialization, (2) Load the models, (3) Create
the statistic acc. (4) Reset the LLK accumulators for the world
model and for each client model, (5) For a given frame and us-
ing the world model, determine the top Gaussian, memorize the
individual component likelihood and compute/accumulate the
world likelihood, (6) For the same frame, using the top compo-
nents and the memorized values, compute and accumulate the
likelihood for each client, (7) Get the mean log likelihood and
compute the LLR per client.

MixtureGD & clientMixture= ms.duplicateMixture(world,DUPL_DISTRIB);  (1)
FactorAnalysisStat FA(XList_name,fs,config);  (2)
FA.estimateXY(fs,config);  (3)
FA.getSpeakerModel(clientMixture,featureFileName); (4)

Figure 5: FA model training process. (1) Duplicate world model
in clientMixture, (2) FA is the factor analysis object containing
all decomposition parameters, (3) Estimate speakers and chan-
nels components given U, (4) Put the model m + Dys in client-
Mixture, featureFileName is the name of one session.

ing, (h, s) will indicate the session h of the speaker s. The
factor analysis model, in our case the eigenchannel MAP esti-
mator, can be written as:

m(h,s) = m + Dys + Ux(h,s), (1)

where m(h,s) is the session-speaker dependent supervector
mean, D is MD ×MD diagonal matrix, ys the speaker vector
(a MD vector), U is the session variability matrix of low rank
R (a MD × R matrix) and x(h,s) are the channel factors, a R
vector (theoretically x(h,s) does not dependent on s). Both ys

and x(h,s) are normally distributed among N (0, I). D satisfies
the following equation I = τDtΣ−1D where τ is the relevance
factor required in the standard MAP adaptation (DDt represents
the a priori covariance matrix of ys).

The process of FA decomposition is illustrated Figure 5 for
the model training step. A same process is used for the other
steps like the llk computation.

3. Performance of the software
3.1. Experimental protocol

The male part of the NIST’05 primary task (1conv4w-1conv4w)
is used for development (DevSet). For this condition, one side



of a 5-minute long conversation is available for testing and the
same amount for training. All background training data, for the
universal background model (UBM), T-norm [14], NAP, and
FA come from the NIST’04 database. This procedure leaves the
NIST’06 free for validation. The final comparisons are made on
the NIST’06 core (required) condition which includes multiple
languages (rather than the English only common condition).

Performance is assessed using DET plots and measured in
terms of Equal Error Rate (EER) and the minimum of the deci-
sion cost (minDCF). The cost function is calculated according
to the NIST criteria [15].

3.2. Description of the systems

This paragraph presents several systems in order to illustrate the
large scale of techniques embedded in the software as well as
the level of performance achieved using ALIZE/SpkDet (more
details on the different systems are in [16]):
• GMM baseline (GMM). A classical GMM system is

developed using ALIZE/SpeakerDet. The features are
based on 19 linear filter-bank derived cepstra (computed
using the open source SPro toolkit[5]). The feature vec-
tor is composed of 50 coefficients, 19 static coefficients,
19 delta and 11 delta-delta and the delta energy. A classi-
cal energy-based frame pruning system is applied before
normalizing the recordings, file-by-file (cepstral mean
subtraction and variance normalization). Feature map-
ping is also applied. The UBM model size is composed
of 512 Gaussian components (with diagonal covariance
matrices) and is involved in the speaker model estimation
via a MAP adaptation procedure. This GMM baseline
system is also used for the other systems;

• GMM Supervector Linear kernel (GSL). The GSL sys-
tem uses a SVM classifier applied on GMM supervec-
tors. The supervectors are taken directly from the GMM
baseline system, giving in our case a vector size of
512*50;

• GMM Supervector Linear kernel + Nuisance Attribute
Projection (GSL-NAP). GSL-NAP corresponds to a GSL
system using the Nuisance Attribute Projection tech-
nique [7] in order to deal with intersession variabilities;

• Symmetrical latent Factor Analysis (SFA). Recently new
approaches have been proposed by Kenny [8] with Fac-
tor Analysis (FA) in a generative framework. This ap-
proach was implemented into our software using an orig-
inal symmetrical approach presented in [17].

3.3. Performance on NIST SRE 2006 database

male 05 male 06 all 06
DCF EER DCF EER DCF EER

GMM 3.37 8.67 3.94 8.47 4.04 9.14
GSL 2.79 8.02 3.37 6.88 3.35 7.20

GSL-NAP 1.62 5.28 2.07 4.33 2.26 5.02
SFA 1.94 4.38 2.17 4.78 - -

Table 1: Performance in EER(%) and minDCF(x100) for the
GMM, GSL, GSL-NAP and latent factor analysis GMM (SFA)
on 05 development set, male’06 and male and female combined
’06 validation sets

Performance is presented in Table 1 for all the independent
systems, for the development set and for the different validation
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Figure 6: Det plots for GSL-NAP, SFA and their unweighted
linear fusion, rank=40, T-norm (devSet)

sets (issued from NIST-SRE 2006). The results confirm that
NAP and SFA techniques bring a significant improvement com-
pared to the classical GMM system. Compared to the official
results of NIST SRE 2006, available in [18], it is clear that AL-
IZE/SpkDet systems are among the few systems able to achieve
an EER in the region of 5%.

Figure 6 shows the results of an unweighted linear fusion
between the 2 best systems namely SFA and GSL-NAP5. The
improvement shows their complementarity, even if the two sys-
tems share the same acoustical representation, the same GMM
parameters (UBM) and the same session variability parameters.

4. Unsupervised adaptation
A classical solution in order to improve the performance of a
speaker recognition system is to increase the amount of infor-
mation used to train the client model. However, this solution
depends on the availability of such training data.
Unsupervised adaptation of the client models is a good solution
to this data availability problem. In unsupervised adaptation,
the client model is updated online, using data gathered from
the test trials. The different approaches to unsupervised adap-
tation proposed in the literature rely mainly on a decision step
to decide if a test trial belongs to the claimed speaker identity
[19, 20, 21, 22, 23]. If the test trial is considered as client, it is
used to either retrain the corresponding client model or to adapt
it. The main drawback of such techniques remains the difficulty
to set a decision threshold for selecting the trials: the perfor-
mance gain relies on the number of client test trials detected, a
false acceptance (an impostor trial is accepted as a client one)
degrades the speaker model.
The work presented in this Section was done in collaboration
with Thales Communications and is presented in details in [24].
The proposed approach addresses the threshold based decision
step problem as no hard decision is used. The speaker model
adaptation is applied to each test trial, even if it does not belong
to the client but to an impostor. This “continuous adaptation”

5Tnorm is applied on both system scores before the fusion



method relies on a confidence measure on the tying between the
test trial and the target speaker, used to weight each test infor-
mation during the speaker model adaptation process.

4.1. Confidence measure estimation

The confidence measure is the estimation of the a posteriori
probability of a test trial belonging to a given target speaker.
This a posteriori probability is computed using two score mod-
els, one for the client scores and one for the impostor scores.
Each score distribution is modelled by a 12 component GMM
learned on a development set. The confidence measure is then
computed using the WMAP approach [22, 25]. To avoid the
problem of the re-estimation of the WMAP function after each
adaptation step, we use only the initial target model, learned on
a single session recording, to compute the score of the test trials.

4.2. Proposed adaptation function

The proposed adaptation function relies on the classical MAP
algorithm [26], where only the mean parameters are updated.
The empirical statistics are gathered from all the available data
using the EM algorithm (initialized with the background model
and maximizing the ML criterion). The statistics are then com-
bined using the following rules:

• The statistics gathered from the initial voice excerpt used
to train the target speaker model is associated with a con-
fidence measure equal to 1;

• The statistics gathered from the different test trials are
associated with the corresponding confidence measure;

• The empirical means and the corresponding occupan-
cies are computed for each Gaussian component of the
GMM, using all the EM statistics weighted by the corre-
sponding confidence measures.

Finally, the adapted means (µi
map) for each Gaussian compo-

nent (i) are computed using the background means (µi
ubm), the

empirical means (µi
emp) and the occupancy values (ni) using

the classical MAP formula.

4.3. Experiments and results

All the experiments presented here are performed based upon
the NIST’05 and ’06 databases, all trials (det 1), 1conv-4w
1conv-4w, restricted to male speakers only. The baseline GMM
system is the one described in Section 3. In addition, a version
of the Latent Factor Analysis (LFA) is used at the feature level:
in this case, the channel compensation is applied to each fea-
ture sets instead of the feature mapping. Figure 7 presents the
results for the adapted system and the baseline on the NIST’05
database, for feature mapping and the LFA channel compensa-
tion techniques.

The results demonstrate the potential of the proposed
method as it reaches a significant 27% DCF relative gain (and
37% in terms of EER) with the feature mapping (FM). When
the LFA-normalized features are used, the DCF gain is about
20% (and 12.5% for the EER). The gain is smaller in this case,
as expected because LFA is known to perform better channel
compensation than FM, reducing the influence of the unsuper-
vised adaptation on the channel effects.

In Figure 8, we attempt to analyze more precisely the be-
havior of our method. This figure shows the performance in
terms of min DCF of the adapted system for each newly added
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test trial (n denotes the number of test trials added to the sys-
tem)6.

Results for the adapted system and the baseline are pro-
vided in Figure 9, for the NIST’06 database and using both FM
and LFA. The results are disappointing compared to those of
NIST’05. On this database, the unsupervised adaptation method
introduces a significant loss. Different factors could explain this
unexpected result with the most relevant thought to be:

• The percentage of impostor trials versus target trials
differs between the databases. Whilst 9.0% of target
tests are proposed in NIST’05, only 7.1% are present
in NIST’06. Even if the difference seems quite small,
it corresponds to 21% less target data for the 2006
database. Moreover, the number of test trials by target
speaker is also smaller for NIST’06.

• When looking at the target and impostor score distribu-

6When the target models are updated using a new test trial, the entire
test is recomputed, which differs from the NIST protocol where only
the current trial and the next trials scores are computed using the new
models.
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Figure 9: Results for the adapted/baseline systems, NIST’06

tions of the baseline system we observe that a large part
of the errors comes from a small percentage of the im-
postor trials which obtained a very high score. This phe-
nomena is significantly higher for the NIST’06 than for
the NIST’05 database. It shows the obvious dependence
between the baseline system and the adaptation process
behavior.

5. Other applications
5.1. Embedded password dependent speaker verification

For embedded speaker recognition, the main issues are usu-
ally the memory and computational constraints. But realistic
embedded applications generally require short utterances, few
training data and very noisy environments, giving degraded
speech quality. In order to deal with these application con-
straints, we moved from a text-independent speaker recogni-
tion scenario to a text-dependent authentication using pass-
words that were chosen by the clients. This section presents
the LIA EBD package based on ALIZE and dedicated to such
embedded applications.

5.1.1. Description

Our approach merges a state of the art GMM/UBM system and
a semi-continuous HMM architecture, following the ideas de-
veloped in [27] with a DTW algorithm. Hierarchical three-step
models are created where a lower level model takes some of
the parameters from the immediate upper level model. The top
model is a classical UBM while the second one is a quite classi-
cal text-independent speaker model. The latter is adapted from
the UBM, updating only the mean parameters using a MAP pro-
cedure. In LIA EBD, only few UBM components are adapted
and saved, in order to save both memory and computation time
(non adapted mean parameters as well as weight and variance
parameters are taken from the UBM model). In the lower level,
a semi-continuous HMM (SCHMM) is built in order to take into
account both phonetic and duration information. Each state of
the SCHMM is linked to a GMM distribution. The SCHMM

state-dependent distributions are adapted from the correspond-
ing speaker model, moving only the weights. As for the second
level model, only a few weights are adapted, the other param-
eters are taken from the upper level models (the corresponding
speaker model and the UBM).

5.1.2. Database and Experiments

The system, currently in development, is evaluated using the
Valid database [28] (as the final objective is to build a bimodal
system: audio+video). This audio-video Database consists of
five recording sessions composed of two sentences (the pho-
netic content is identical to that of the XM2VTS database7).
Four of these sessions were recorded in variable and uncon-
trolled environments, the fifth session in a clean environment.
76 male speakers are used for the experiments.

GMM LIA EBD
Passwords 1,81 3,09

Passwords &
Wrong Sentences

2,50 3,00

Wrong Sentences 1,17 0,19

Table 2: Performance in EER (%) for the GMM and LIA EBD
on the Valid database with different test sets, male only. The
experiments are performed by computing 100 client tests, 3275
impostor tests with the same password pronounced by the im-
postor cohort (the tests are referred to as Passwords) and 3275
tests with the second sentence pronounced by the impostor co-
hort (referred to as Wrong Sentences)

5.1.3. Comments

The results are promising as the system seems able to exploit
both speaker dependent information and password dependent
information (the EER decreases from 3.09% to 0.19% when
the impostors pronounce a wrong password for the embedded
system. The GMM system stays at 1.17% with the wrong sen-
tences). The level of resources (memory and computation) re-
mains very small for the LIA EBD system. Of course, the pre-
sented results are preliminary as the database is very small (76
speakers, two sentences) but only a few system parameters have
been optimized and much room remains for improvements.

5.2. Speaker diarization

The design of efficient indexing algorithms to facilitate the re-
trieval of relevant information is vital to provide easy access
to multimedia documents. Acoustic-based information such as
speaker turns, the number of speakers, speaker gender, speaker
identity, other sounds (music, laughs) as well as speech band-
width or characteristics (studio quality or telephone speech,
clean speech or speech over music) has become mandatory
for indexing algorithms. This section is dedicated to speaker-
related tasks, also denoted speaker diarization in the NIST-RT
evaluation terminology. The speaker diarization task consists in
segmenting a conversation involving multiple speakers into ho-
mogeneous parts which contain the voice of only one speaker,
and grouping together all the segments that correspond to the
same speaker. The first part of the process is also called speaker

7www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/



Corpus Teleph. BN Meeting Meeting
Year News head mic. table mic.

2002 5.7 30.3 34.7 36.9
spring 2003 X 12.9 X X
spring 2004 X X X 22.4

Table 3: 2002-2004 NIST evaluations results in diarization error
rates for various corpora

change detection while the second one is known as the cluster-
ing process. Generally, no prior information is available regard-
ing the number of speakers involved or their identities. Estimat-
ing the number of speakers is one of the main difficulties for
the speaker diarization task. An original approach, denoted the
integrated approach, in which all the steps involved in speaker
diarization are performed simultaneously, was developed by the
LIA, using ALIZE/SpkDet software. This work was done in the
framework of the ELISA consortium and both classical step-by-
step and integrated diarization approaches are proposed in the
software, with a lot of functionalities in order to deal with differ-
rent natures of audio files (conversational recordings, broadcast
news or meeting information). This work is detailed in [29]. Ta-
ble 3 presents a summary of the results obtained between 2002
and 2004 on different types of data, in the framework of the
NIST evaluations (mainly on Rich Transcription). More recent
results on meeting data were reported in [30][31].

5.3. Pathological voice assessment

In the medical domain, assessment of the pathological voice
quality is a sensitive topic, involving multi-disciplinary do-
mains. This task is usually realized perceputally by a jury com-
posed of experts. The work presented in this paragraph pro-
poses an automatic system derived from the ALIZE/SpkDet au-
tomatic speaker recognition technology to assess pathological
voices, and more precisely on phonation disorders due to dys-
phonia.
Basically, the task consists in classifying a speech recording ac-
cording to the G parameter of the Hirano’s GRBAS8 scale[32]),
for which a normal voice is rated as grade 0, a slight dysphonia
as 1, a moderate dysphonia as 2 and, finally, a severe dysphonia
as 3. Table 4 presents the general classification results (given
that a strict classification protocol was used, with a clear sep-
aration between training and testing set). The obtained results
demonstrate the possibilities of this approach, even if the task
is very difficult, due to its medical nature, the variability of the
data (and the small number of data available) and the difficulty
in obtaining a ground truth (done here by an expert jury).

6. Conclusion and future
This paper presents the ALIZE/SpkDet open-source software.
The ALIZE project began in 2003 within the ELISA consor-
tium and under the direction of the LIA speaker recognition
group. The basics of the project (open source, easy to under-
stand, assessment during the NIST international evaluation
campaigns) remain unchanged over the years.
The latest discriminant approaches and channel compensation

8The GRBAS scale is composed of 5 parameters: G-Global grade,
R-Roughness, B-Breathiness, A-Astheny, S-Strain. The G parameter is
often used for perceptual evaluation since it is one of the most reliable
(followed by R and B) in terms of assessment variability.

G=0 G=1 G=2 G=3
Speakers with a G=0 19 1 0 0
Speakers with a G=1 2 12 4 2
Speakers with a G=2 2 5 11 2
Speakers with a G=3 0 1 4 15

Table 4: Pathological voice assessment results. The rows separate the
voice depending on the G values given by the expert jury; the columns
represent the G values determined by the system

functionalities have been added to the toolkit for the past year
leading to state-of-the-art speaker recognition performance.
The software is now regularly used by about 20 laboratories in
the world, and support is provided to all the developers.
The software is dedicated to text-independent speaker recog-
nition but it can also be used for a large range of applications.
In addition to the applications presented in this paper, AL-
IZE/SpkDet software is also used for several other areas of
research within the LIA laboratory (face and fingerprint recog-
nition, emotion detection, topic detection for text processing,
etc.) or by other users (for example signature/multimodal
recognition [33]).
The main part of the development was done by the LIA team
(thanks to several French Research Ministry funds) until
2005/2006. Recently, several external (not from the LIA)
contributions have been proposed. In order to respond to
the requests of the ALIZE/SpkDet developer community, the
project has been migrated from a quite closed software engi-
neering platform to a classical open-source open architecture.
An important effort will also be dedicated to the documentation.

The main challenge to the ALIZE project is not at the tech-
nical level but is to propose a new concept inside the evaluation
paradigm: the participation to the international evaluation cam-
paign is viewed as a competition and quite in opposition to the
open source idea. Regarding this challenge, it seems that the
ALIZE project is a success. In order to emphasize this aspect,
we wish to propose inside the ALIZE project some physical
or virtual evaluation campaign specific tutorials, brainstorming
and practical sessions.
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