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Abstract 
Conventional subword based hidden Markov models (HMMs) 
have proven to be an effective approach for text-dependent 
speaker verification. The standard training method works by 
modeling the MAP adapted means of subword HMMs. In this 
paper, we propose the use of HMM supervectors from the 
speaker models as features in support vector machines (SVMs) 
classifier. An HMM supervector is constructed by stacking 
means of adapted mixture components from all states within 
HMMs. We present two SVM kernels: linear kernel and 
dynamic time alignment kernel (DTAK) based on the KL 
divergence to evaluate the system. In addition, another 
effective method is proposed to normalize SVM output scores 
using speaker independent HMM supervectors. Experimental 
results show that the SVM system with HMM supervectors 
achieves lower performance than conventional HMM 
verification system, but their fusion can give a significant 
improvement. 
Index Terms: SVM, HMM supervectors, DTAK, fusion 

1. Introduction 
Speaker recognition is an important, emerging technology 
with many potential applications. Due to the constraint that 
enrollment and testing utterance have the same content, text-
dependent speaker verification (TDSV) systems can achieve 
better performance than text-independent systems. Recently 
TDSV systems with user-customized password [1] have 
become a promising speaker authentication solution, where 
users can choose his/her own password from an unconstrained 
vocabulary. The standard approach to this problem is to use 
subword based hidden Markov models (HMMs) [2, 3, 4]. 
      Support vector machines (SVMs) have become popular 
these years. SVMs work on a high-dimensional expansion 
space which is gained by a nonlinear mapping from the input 
space. Many studies have shown that SVM based speaker 
verification can remarkably improve the performance [5, 6, 7]. 
SVMs with GMM supervectors have proven to be an effective 
method for text-independent tasks. This key innovation in this 
approach is to use a GMM supervector consisting of the 
stacked means of the mixture components [8, 9]. When 
migrating SVM to HMM based systems, there are some issues 
to solve, e.g. sparse data and mismatch between two dynamic 
patterns. DTAK [10] is evaluated to handle the latter problem 
for speech recognition task. 
      In this paper, we firstly borrow the concept from GMM 
supervectors [8] and expand the idea to subword based HMM 
models. We show the method for finding an approximation to 
KL divergence between two HMM supervectors. From our 
study, the distance correlates with the state transition matrix 
and multivariate Gaussian mixtures within the HMM states. 
To accord with the KL divergence, we use both linear kernel 

and DTAK to evaluate. Additionally, another normalization 
method is proposed for the lack of training data. Fusion with 
this new system with conventional HMM and GMM is also 
investigate in this study. 
      The remainder of this paper is organized as follows. In 
Section 2, we will review the conventional subword HMM 
based speaker verification. Section 3 will present the use of 
HMM supervectors in SVM based speaker verification. In 
Section 4, we propose the method to normalized SVM output 
scores. Finally the experimental results are given in Section 5 
at the end of this paper. 

2. HMM Baseline System 
This section describes the traditional text-dependent speaker 
verification system. It involves two kinds of sessions, 
enrollment and verification. In enrollment session, a speaker S 
is asked to repeat a pre-selected spoken pass-phrase P for 
several times. These enrollment data are then used to adapt the 
background speaker-independent (SI) HMM model bλ  using 
maximum a posteriori (MAP) adaptation. A speaker-
dependent (SD) HMM model sλ  is then constructed to 
represent both speaker S and pass-phrase P. 
      During verification session, we assume that P is compose 
of a sequence string of N  subwords, 1 2, ,..., NS S S , where 

N  is the total number of P. Given a test utterance 

{ }1 2, ,..., TO O O O= , speaker verification decides whether 

O  is produced by the claimed speaker. We need a decision 
rule to give reliable verification scores. Under the Neyman-
Pearson lemma, the log likelihood ratio (LLR) is given by: 
 

( ) ( ) ( )1 1;S log | log |T s T bO P O P Oλ λΛ = −         (1) 

 
      In subword based text-dependent speaker verification, the 
input utterance is firstly segmented into N  phones using 
speaker independent models. This process is called 'forced 
alignment'. Then the observation sequence can be regard as 
N  segments { }1 2

1 11 1 1, ,..., N

N

tt t
t tO O O O

−+ += , where frame 

1 1it − +  to frame it  are belonging to the ith phone. The LLR of 
ith segment can be denoted as: 
 

( ) ( ) ( )1 1 11 1 1; log | ; log | ;i i i

i i i

t t ts b
i t i t i t iO S P O S P O Sλ λ

− − −+ + +Λ = −  (2) 

 
As the result, the final verification score can be simply 
computed as follows: 

( ) ( )1 1
1

1;S ;
T

i

i
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t
t i

i

O O S
− +

=

Λ = Λ∑                   (3) 



3. SVM Based Speaker Verification Using 
HMM Supervectors 

3.1. HMM supervectors 

HMMs are generative models which can offer more flexibility 
for text-dependent speaker verification. One HMM model 
consists of several states. Each state can be denoted as 
multivariate Gaussian mixture functions, we have: 
 

( ) ( )
1

; ,
M

j jk jk jk
k

b x c N x m
=

= Σ∑                 (4) 

 
where ( ); ,jk jkN x m Σ  denotes a single Gaussian density 

function with mean vector jkm  and covariance matrix jkΣ  for 

state j , M  is the number of mixtures and jkc  is the mixture 

weight for kth component. 
 

 
Figure 1: The block diagram of HMM supervectors extraction 
 
      Fig. 1 illustrates the process of HMM supervector 
extraction. After the speaker claims the identity, the system 
can obtain the transcription and construct a concatenated 
subword string. Given an input utterance, SD HMMs training 
is performed by MAP adaptation of only the means jkm  to SI 

HMMs. SI HMM model plays the same role as the universal 
background model (UBM) [11] in text independent speaker 
verification. Then we form the supervectors 

{ }1 2, ,...,j j j jMm m m m=  of state j  from the adapted HMM 

model. Consequently the supervectors from the whole state 
sequence will form the concatenated HMM supervectors 

{ }1 2, ,..., Jm m m m= , where J  is the total number of 

states within a subword string. 
      The HMM supervector can be expressed as a mapping 
between an HMM model and a high-dimensional vector. For 
the case of linear kernel, the mapping is from an HMM model 

sλ to HMM supervectors sm . 

3.2. Support Vector Machines 

Support Vector Machines are state-of-the-art tools for 
classification tasks. In speaker verification, SVM can be 
treated as a two-class classifier given by: 
 

( ) ( )
1

,
L

i i i
i

f y K dν α ν ν
=

= +∑                (5) 

 
where ( ),i jK ν ν  is a kernel function, d  represents a possible 

bias. The { }1iy ∈ ±  is the actual targets, with respect to iα  

and subject to 
1

0
L

i i
j

yα
=

=∑ . All of the parameters can be 

obtained through the training set that maximizes the margin 
between two classes. 
      As a kernel function ( ),i jK ν ν , linear kernel is used in 

GMM supervectors as follows: 
 

( ) ( ) ( )1 2 1 2, TK ν ν φ ν φ ν=                (6) 

 

where ( )φ i  is a mapping function from input feature space 

to SVM dimensional expansion space. 

3.3. HMM Supervectors Linear Kernel 

Suppose we have two SD models aλ  and bλ  which are 
produced by speaker a and speaker b  respectively. With a 
given pass-phrase, the HMM supervectors can be extracted by 
the subword string and the SD HMMs. A commonly used 
measurement of the distance between two HMM models is the 
Kullback-Leibler divergence (KLD) which is defined as: 
 

( ) ( ) ( )
( )

a
a b a

blog
xR

x
D x dx

x
λ

λ λ λ
λ

= ∫&            (7) 

 
      To approximate the KLD for HMMs, the idea is to 
estimate the upper bound using the log-sum inequality. The 
result is given by [12]: 
 

( ) ( ) ( )( )a b a b a b

1

J

j j j j j
j

D D a a D b bλ λ ξ
=

≤ +∑& & &     (8) 

 
      The upper bound in (8) can be computed directly using the 
model parameters ( )A,B,λ = Π , where { }ijA= α  to be the 

state-transition probability matrix: ( ), 1|i j t tP S j S iα −= = = . 

Here we denote the discrete probability function of state j : 

{ },1 ,= ,...,j j j Ja α α . ( )jb i  can be a parameterized pdf which 

is defined in (4). There exists a distribution vector jξ  such 

that AT T
j jξ ξ= . 

      In text-dependent speaker verification, a constrained 
CDHMM model which has a time sequence structure is used. 
The constraints imposed on the model allow for transitions 



from one state to the following state and to itself. By assuming 
that ( ), 0 , 1j i i j i jα = ≠ ≠ + , , 1 ,1j j j jα α+ = − , we have 

jξ = Ι , and the KLD between two state-transition probability 

function becomes: 
 

( ) ( )
a a

a b a a
b b

1
log 1 log

1
jj jj

j j jj jj
jj jj
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Since a
jb  and b

jb  are mixtures of Gaussians, we can estimate 

their KLD between two M-component Gaussians: 
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& &
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      In HMM based speaker verification system, the influence 
of KLD between two state-transition probability function is 
much less than the influence of the KLD between two 
multivariate Gaussians. Therefore we obtain: 
 

( )
( )

a b
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D a a
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By applying (9) (10) (11), (8) becomes: 
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By taking (10), the approximate KL distance of these two 
HMMs can be formulated as: 
 

( ) ( ) ( )a b 1 a b

1 1

1a, b
2

J M

jk jk jk jk jk jk
j k

d c m m m m−

= =

= − Σ −∑∑   (13) 

 
      Using the concept of GMM supervector, we can convert 
inner products to distance. Therefore, from the distance given 
above, the kernel function can be denoted as the corresponding 
inner product between two supervectors constructed from their 
respective SD HMMs. Here we have: 
 

( )

( ) ( )

1 1
a b2 2

a b
1

a b

,
TJ M

g g g g g g
g

T

K c m c mν ν

φ ν φ ν

× − −

=

⎛ ⎞ ⎛ ⎞
= Σ Σ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

                =

∑    (14) 

 

where we discard the constant scaling factors. The subscript 
g  represents j M k⋅ +  which is mapping from the mean 
matrix { }jkm  to the mean vector { }gm . The kernel in (14) is 

linear and the expansion from HMM supervectors to SVM 
higher dimension space. 
      Considering (11) and the principle of MAP adaptation, we 
use supervectors only from jb  to construct linear kernel. 

Another reason why we didn't use full approximation in (8) 
instead of the simple one in (12) is that the sum of two KLDs 
in (8) can not be expressed as the symmetric form of inner 
product between two supervectors. For simplicity, we could 
only use concatenated supervectors from multivariate 
Gaussians of each state. However we might lose some 
information on state duration using SVM with linear kernel. 

3.4. HMM Supervectors Dynamic Time Alignment Kernel 

The remainder term ( )a b
j jD a a&  of (8) specifies the state 

transition which expresses the time dependency of HMM 
models. In order to exploit this information more efficiently, 
our attention was diverted by time normalizing kernels in 
SVMs. Therefore the standard solution based on dynamic time 
alignment kernel [10] is proposed to solve this issue. The basic 
idea of nonlinear time alignment is incorporated into the 
kernel function. 
      Assume we have two sequence vectors X  and Y . These 
two patterns have equal lengths. The inner product between 
X  and Y  can be calculated directly. We have: 

 

( )
1

1,
L

T
LIN j j

j

K X Y X Y x y
L =

= = ⋅∑D           (15) 

 
      Unlike the linear kernel, DTAK can be performed in such 
way that maximizes the accumulated similarity: 
 

( ) ( ) ( ) ( ), 1

1, max
I J

I J

L
T

DTA j j
j

K X Y X Y j x y
M ψ ψψ ψ

ψ

ω
=

= = ⋅∑: (16) 

Subject to              ( ) ( )1 1I Ij j Xψ ψ≤ ≤ + ≤             (17) 

( ) ( )1 1J Jj j Yψ ψ≤ ≤ + ≤             (18) 

 
where ( )jω  is a path weighting coefficient, and Mψ

 is a 

normalizing factor. In our study, M X Yψ = + . Then the 

optimization problem is solved using the following recursive 
equation by means of dynamic programming: 
 

( )
( )
( )
( )

, 1

, max 1, 1 2

1,

T
i j

T
i j

T
i j

D i j x y

D i j D i j x y

D i j x y

⎧ − + ⋅
⎪⎪=  − − + ⋅ ⋅⎨
⎪

 − + ⋅⎪⎩

         (19) 

 
      This form of recursive function is symmetric, so that the 
kernel can follow max-margin criterion. It is worth mentioning 
that in contrast with linear kernel, DTAK function requires 
about 2X  operations, while the linear kernel only needs X  

operations. This difference leads directly to much higher 



computational cost with DTAK kernel than the cost with linear 
kernel. 
      Applying the DTA kernel to SVM system using HMM 
supervectors, we have: 
 

( ) ( ) ( )( ) ( )( )a b
a b , ,

1, max
I J

I J

T

DTA j k j k
j k

K j
M ψ ψψ ψ

ψ
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              (21) 

 
      HMM supervectors with DTAK can be seen as a kind of 
kernel normalization technique which handles the problem of 
state alignment in HMM. In our MAP adaptation process, the 
phone segment can be fixed using Baum-Welsh algorithm 
until the convergence is obtained. In contrast to triphone 
model approach used in the hybrid HMM/SVM system [13], 
monophone based HMMs might not align the HMM states 
corresponding to the utterance segment so well. Therefore we 
use DTA kernel instead of linear kernel. 

4. Normalized SVM Scores using Speaker 
Independent HMM Supervector 

Using the HMM supervector introduced in the last section, the 
SVM discriminant function in (5) can be summarized as: 
 

( ) ( ) ( ) ( )
1

|
T

J
s s s T s

j j j
j

S f y d W dν α φ ν φ ν φ ν
=

⎛ ⎞
= Μ = + = +⎜ ⎟

⎝ ⎠
∑  (22) 

 
where W  denotes the optimum decision boundary from the 
training data, sΜ  is the SVM model of speaker s. 
      The concept of normalizing SVM score comes from zero 
normalization (Z-Norm) [14]. A speaker SVM model is tested 
against a background SI HMM supervector and the output 
SVM score is used to normalize the score from testing 
utterance. The normalization has the form: 
 

( ) ( )| |s s b sS f fν ν= Μ − Μ                (23) 

 

where the HMM supervector bν  derives from the background 
SI HMMs. The advantage of this form is that the 
normalization parameter ( )|b sf ν Μ  can be performed off-

line during training. Unlike Z-Norm techniques, the variance 
will not be applied. 
      The main reason why we used SI HMM supervector to 
normalize the SVM output score is the lack of training data to 
adapt. Generally speaking, we produced an HMM supervector 
on a per-utterance basis using MAP adaptation. Some 
Gaussian components might not be adapted. These dimensions 
remain the property of SI HMMs. Therefore, this part of the 
supervector has no discrimination. To explain the reason more 
precisely, we partition an HMM supervector into two parts: 
 

( ) ( ) ( )( ),s s bφ ν φ ν φ ν= �                     (24) 

 

where ( )sφ ν�  denotes the dimensions which are adapted, 

( )bφ ν  is the remaining part of SI HMM means. 

      The corresponding W  is also divided into 1
TW  for 

weighting ( )sφ ν� , and 2
TW  for weighting ( )bφ ν : 

( )1 2,T T TW W W=                            (25) 

Here we have: 
 

( )
( ) ( )1 2

T s

T s T b

S W d

W W d

φ ν

φ ν φ ν

= +

   = + +�
                                     (26) 

 

When we use normalized SVM scores S  instead of S , the 
form (23) becomes: 
 

( )( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 2

1

T s T b

T s b T b b

T s b

S W d W d

W W

W

φ ν φ ν

φ ν φ ν φ ν φ ν

φ ν φ ν

= + − +

   = − + −

   = −

�

�

           (27) 

 
      Comparing with these two forms, we can find that the part 
with a single underline has discriminative ability, while the 
one with double underline has no discrimination. From the 
SVM theory, the form ( ) ( )s bφ ν φ ν−�  can only shift the input 

feature space, but can't change the separating hyper-plane in 
such a high-dimensionality space. Therefore S  is more 
discriminative than S . Beside this main reason, SVM score 
normalization can provide more stable speaker specific 
threshold like Z-Norm. 

5. Experimental Results 

5.1. Corpora and Front-end 

We now present the results of SVM based text-dependent 
speaker verification using HMM supervectors. We evaluated 
the proposed algorithm here in the telephone based Mandarin 
speaker verification database which consists of 214 speakers 
(101 males and 113 females). 80 speakers form development 
set which was used to adjust the parameters. The rest 134 
speakers were used for evaluation. The evaluation data was 
divided into two groups. One group had 54 target speakers and 
the other group had 80 imposter speakers. The target trials 
were evaluated in the first group, while the imposter trials 
were performed using imposter group to impose against the 
target speakers. The lengths of selected 10 fixed passwords 
vary from 5 to 10 Chinese characters. The imposters were 
assumed to know the exact password of the target speaker. In 
the experiment, each target speaker was required to say the 
same passwords for 12 times over an interval of one week. 
Two utterances of the pass-phrase recorded from two separate 
sessions were used for enrollment. The remaining 10 sessions 
were used for verification. The latest session might be 
recorded three months after the enrollment session. So total 
54×10×10=5400 utterances made the set of target trials, and 
80×10×10=8000 selected phrases compose the imposter trials. 
 



 
Figure 2: Comparison of SVM systems with HMM systems in 
user customized password speaker verification 
 
      For all experiments in this paper, we first ran the 
recognizer using utterance verification [15] on the entire 
corpus. Then we removed 2% utterances that were 
contaminated from the telephone channel using utterance 
verifier. Finally in the resulting cut corpus, we had total 5292 
target trials and 7840 imposter trials. 
      The acoustic features used in our system are the first 12 
perceptual linear prediction (PLP) coefficients together with 
the log-energy of each frame which are calculated every 10 ms 
using a 25ms Hamming window. The features are processed 
through a RASTA channel equalization filter. By including the 
first and the second derivatives over ±2 frame span, 39-
dimensional feature vectors were finally used. 

5.2. Evaluations 

To evaluate the TDSV system, we use decision error tradeoff 
(DET) curves which have been widely used for representation 
of detection task performance. 
      Another important evaluation factor is minimum detection 
cost function (DCF) which is defined: 

( )1FR FR Target FA FA TargetDCF C P P C P P= ⋅ ⋅ + ⋅ ⋅ −        (28) 

where 
TargetP  is a priori probability of target tests with 

0.01TargetP = . And the specific cost factors 10FRC =  and 

1FAC = . So the interest is shifted to low FA rates. 

5.3. SVM Training 

An important issue that comes up with new HMM 
supervectors is how to train an SVM model using our 
proposed method. For any two utterances from two speakers, 
the same subword sequence may not be spoken. In our system 
framework, we could only assign the SI HMM supervector 
mean to evaluate the kernel. Another difficulty that arises 
when applying SVM in user-customized password speaker 
verification is the lack of imposter utterances. Therefore we 
must seek for other utterance segments which are belonging to 
the specific subwords to train the imposter SD HMM model. 
Then   the   supervectors   were   formed   using   SD   HMMs. 

 
Figure 3: Comparison of SVM systems with HMM systems in 
fixed phrase speaker verification 
 
Consequently we pool all the supervectors of imposters and 
the target speaker together to compose the training material. 
      We use a set of context-independent (CI) phone units as a 
universal phone set. There are 60 (21 initials, 38 finals and 1 
silence) CI phoneme models. The model was trained on about 
90 hours of data with 282 speakers. The optimal number of 
mixtures per state is determined to 16 empirically. For HMM 
MAP adaptation, the relevance factor was set to 1. The kernels 
in (14) and (20) were implemented with SVMTorch [16]. The 
background speakers came from the corpus of SI HMM 
training data. Each speaker in this corpus was required to 
speak 50 phrases. So the imposter SD HMMs can be 
constructed by adapting SI HMMs. For enrollment of target 
speakers, we produced two HMM supervectors from two 
separate sessions. We then trained an SVM model using the 
target HMM supervectors and the background supervectors. 
After the SVM training process, the weights and the support 
vectors can be obtained from the target speaker and the 
background speakers. 
      Considering the fixed-phrase speaker verification task, we 
can obtain the imposter utterances which have the same 
transcriptions as the target speakers. In this condition, SD 
HMMs are directly built from these imposter utterances. 

5.4. System Fusion 

The motivation for the system fusion is that a combined 
verification system can significantly outperform over the 
individual approaches. The baseline HMM score, ( );SOΛ , 

and the SVM score, ( );Sf O , are computed for all test 

utterances. Then the combined verification score is given by: 
 

( ) ( ) ( );S 1 ;SF O f Oη η= ⋅Λ + − ⋅            (29) 

 
where η  is a weighting factor determined as part of training 
phase. The weight is determined through a discriminant 
analysis procedure [17] like LDA which follows the Fisher's 
discrimination criterion. The weight was tuned from the 
development set. 
 



5.5. Experimental Results 

Text dependent speaker verification experiments were 
conducted, and the results are summarized in Fig.2 and Fig. 3 
for user-customized password speaker verification and fixed-
phrase speaker verification respectively. These results 
correspond to the same evaluation data but different imposter 
HMM supervectors when training the SVM model. Both 
figures show the fact that DTA kernel performs better than 
linear kernel, but no significant improvement. Additionally the 
computational cost of DTAK is much higher than linear kernel. 
Therefore we didn't adopt DTAK to perform with 
normalization. After applying normalization to SVM output 
scores, the performance of the proposed SVM based system 
can be improved, especially in fixed phrase speaker 
verification. 
        Results for the combination of HMM and SVM are 
shown in both figures, the fusion system of both HMM and 
SVM can remarkably improve the performance. The equal 
error rate (EER) drops from 4.01% for the HMM to 3.47% for 
the HMM/SVM fusion system in user-customized password 
speaker verification system. In addition, the EER is reduced to 
2.71% in fixed phrase speaker verification system, a 32% 
improvement. From these two figures, we can conclude that: 
 
1. The DTA kernel performs a little better than the linear 

kernel, but requires too much computational cost. This 
explains why we discard the KLD form ( )a b

j jD a a& . 

DTAK preserves the state duration information. But 
HMM can't provide a good model of duration. DTAK 
couldn't improve performance greatly. 

2. Normalized output score can remarkably improve the 
performance of the SVM system. In fixed phrase speaker 
verification system, the normalization function is more 
efficient. The reason can be explained that in such system, 
the training data is more insufficient. So the 
normalization function can outperform well when 
comparing to user-customized system. 

3. However, HMM baseline performs better than SVM 
system. When fusing both systems together to a 
combined one, we can achieve the best performance. 

5.6. Discussion with HMMs, GMMs and SVMs 

To further improve our system, we combined HMM, GMM 
and SVM systems together. We show comparison of the 
proposed SVM system with the traditional HMM and GMM 
based ones. In GMM based systems, the two enrollment 
utterances were treated as text-independent. 128 mixture 
components compose the UBM which were trained using EM. 
For GMM MAP training, we adapt only the means. So the 
testing utterance will be evaluated as text-independent. Fig. 4 
gives the performance of individual systems and their 
combinations. We can see from this figure, any two 
combinations can remarkably improve the performance. When 
we fuse all the three systems together, we can achieve the best 
result (EER=2.95%), 9.0% relative improvement than 
HMM/GMM combination (EER=3.24%) in terms of EER. 
      Fig. 5 illustrates the 2-dimensional distributions of the 
scores derived from HMM and SVM classifiers for target 
speakers and imposter speakers. We can see from this figure, 
the correlation of the two classifiers is very low making the 
target trails scores dispersed. That explains why the fusion 
system can improve the performance of individual systems. 

The 3-D score distribution is shown from Fig. 6 adding GMM 
systems to the third dimension. From the two figures, we can 
obtain more discriminative information from the three 
individual systems. Therefore we can achieve best fusion 
performance. 
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Figure 4: System fusions on HMMs, GMMs and SVMs 
 

 
Figure 5: 2-D distribution of the scores for target and imposter 
trials (HMM and SVM scores) 
 

 
Figure 6: 3-D distribution of the scores for target and imposter 
trials (HMM, GMM and SVM scores) 
 

E
ER

 D
CF



6. Conclusions 
HMM supervectors as features in SVM based text-dependent 
speaker verification are investigated in this paper. By adapting 
the mixture components to all states within HMMs, an HMM 
supervector is constructed. We have evaluated two kernels for 
SVMs with HMM supervectors. The normalized SVM output 
scores can achieve additional performance gains. 
      It was shown that SVM can be very effective in improving 
the performance of existing HMM based verification methods. 
Experimental results show that fusion of HMM and SVM 
systems yield excellent results. The equal error rate was 
reduced from 4.01% to 3.47%. When the GMM system was 
incorporated to the fusion system, the performance will be 
further reduced to 2.95%. 
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