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Abstract
We investigate the question of whether phone recognition
models trained on large English databases can be used for
speaker recognition in another language. Such a cross-
language use of recognition models is an attractive op-
tion when a speaker recognition system is to be ported
to a new language without the necessary data resources,
while retaining some of the advantages of phone mod-
eling and ASR-based feature extraction. We compare
the performance of such systems to a baseline cepstral
GMM system (which is inherently language indepen-
dent), and to a phone-recognition-based system trained
exclusively on Arabic data. Our results indicate that
cross-language models are highly competitive, and, at
least in our case, have a performance advantage over
within-language training and the language-independent
baseline. We also examine the effect of coverage of col-
loquial Arabic dialects in the training data.

1. Introduction

Recent years have seen advances in speaker recognition
through the use of phone recognition models. One popu-
lar approach is to decode (“tokenize”) the speech sample
by unconstrained phone recognition, and then to model
the phone sequences [1, 2, 3]. Another approach uses
maximum likelihood linear regression (MLLR) speaker
adaptation transforms computed against a phone-loop
model, followed by support vector machine (SVM) clas-
sification of the transform coefficient [4, 5]. Both types
of model achieve performance comparable or even ex-
ceeding that of standard cepstral Gaussian mixture mod-
els (GMMs), but they are based on language-specific
phone recognition models. In all cases one finds sig-
nificant gains from combining the phone-based systems
with the baseline GMM systems. This makes sense
since the phone-based systems capture longer-term fea-
tures of the speech signal (in the case ofphone sequences)
or represent the observations in a very different feature
space, thereby providing complementary information to
the speaker recognition system.

The standard approach for porting such speaker
recognition systems to a new language would require re-
designing the phone set and training phone models on tar-

get language data. However, such an approach would be
quite involved, and might not even be feasible if available
transcribed speech data is limited. Fortunately, uncon-
strained phone recognition is fast and flexible enough to
be run on mismatched languages; the recognizer will sim-
ply choose the phones providing the best acoustic match
to the foreign language. As a result, phone recognition
will generate an (imperfect) representation of the new
language in terms of the old phone set, a principle that
has long been explored for language recognition [6].

Our goal, then, is to leverage existing English phone
recognition models to extract features in a non-English
language, specifically for Arabic. In this study we inves-
tigate how well such a cross-language approach works
for speaker recognition, and how it compares to native
retraining of the phone models. We also compare phone-
recognition-based systems to a cepstral GMM baseline,
which is by its nature independent of language.

2. Data

We used data from three Arabic dialects to train the back-
ground (speaker-independent) model in the GMM and
MLLR-SVM systems. (Note that for background training
data, broadcast speech is included, to increase the dataset
size.) All experiments were conducted using an 8 kHz
sampling rate.

� Modern Standard Arabic (MSA) is the dialect used
in formal communication. The data was collected
from radio newscasts from various radio stations in
the Arabic-speaking world by the Foreign Broad-
cast Information Service (FBIS). It contains 145
recordings with an average length of 15 minutes.

� Levantine Arabic (LVA) is a group of dialects spo-
ken in the Levant (Syria, Palestine/Israel, western
Jordan and Lebanon). The data includes 544 tele-
phone conversations with an average length of 5
minutes.

� Egyptian Arabic (EGA) is widely understood in
Egypt and many other Arab countries. This data
contains 120 telephone conversations collected in



the Linguistic Data Consortium’s (LDC) Call-
Friend setup, with an average length of 5 minutes.

For the study exploring variation in background data
sets in Section 4.3, we also used data for the following
additional dialects:

� Iraqi Arabic (IA), comprising 478 conversation
sides from an LDC telephone collection. The aver-
age duration of a conversation is about 6 minutes.

� Gulf Arabic (GA), comprising 526 conversation
sides from an LDC telephone collection, with av-
erage duration of 5.7 minutes per call.

For testing we used all Arabic-language conversa-
tions (of unknown dialect) contained in the NIST SRE-
04 and SRE-05 evaluation corpora, a subset of the LDC
Mixer corpus [7]. This dataset contains speech from 43
speakers with an average of 5 conversations per speaker,
594 target trials, and 5940 impostor trials. Note that the
available data only allowed for trials using a single train-
ing conversation side per target speaker.

3. Systems

3.1. Cepstral GMM

A GMM system was used to model Mel-cepstral fea-
tures, including deltas and double-deltas. The system
was based on the GMM-UBM paradigm [8], where a
speaker model is adapted from a universal background
model (UBM). Maximum a posteriori (MAP) adapta-
tion was used to derive a speaker model from the UBM.
The GMM had 2048 Gaussian components. The cepstral
GMM system includes gender/handset normalization and
utterance-level mean and variance normalization. Two
background models were used, one trained with English
data from the Switchboard (landline and cellular) and
Fisher databases, and another with the Arabic data de-
scribed above.

3.2. Phone-loop MLLR SVM

The second model is a maximum likelihood linear re-
gression MLLR-SVM [4] system. It estimates adaptation
transforms for each speaker, using aphone-loop speech
model with three regression classes, for nonspeech, ob-
struents, and nonobstruents (the nonspeech transform is
not used). Such a system models speaker-specific trans-
lations of the Gaussian means of phone recognition mod-
els, and does not require running a word recognition sys-
tem. We used an English phone recognition system (with
an English phone set and trained on English Switchboard
telephone data), based on a 39-dimensional feature vector
derived from Mel-cepstra, voicing features, deltas, and
double-deltas. The phone models were trained on En-
glish conversational telephone speech (CTS) databases,

namely, the Switchboard-I corpus and a small subset of
the Switchboard-II cellular corpus.

Since the phone models were gender dependent, we
computed two sets of transforms, one for each gender
model. Transform coefficients from the two models
and the two phone classes are concatenated to form a
2 � 2 � 39 � 40-dimensional feature vector. Each fea-
ture dimension is rank normalized to the unit interval
using the Arabic background data as the reference dis-
tribution. Finally, a linear inner-product kernel SVM is
trained for each target speaker using the feature vectors
from the background training set as negative examples,
and the target speaker training data as positive examples.
The speaker verification score is the signed distance of
the test sample vector from the decision hyperplane.

3.3. Phone N-gram SVM

This is an SVM version of the widely used phone se-
quence modeling, based on phone lattices rather than 1-
best recognition output [3]. An open-loop phone recog-
nizer (trained on English Switchboard data) is run oneach
conversation side, generating lattices. We then extract ex-
pected frequencies for unigrams, bigrams, and trigrams,
(i.e., N-grams are weighted according to their posterior
probability of occurrence in the lattice). The 14k most
frequent N-grams (extracted from the background data)
are retained, giving the dimensionality of the feature vec-
tor. The N-gram frequencies are then scaled by the in-
verse square roots of the overall N-gram probabilities.
When combined with a linear SVM kernel, this gives the
log likelihood ratio kernel of [2].

4. Experiments and Results

4.1. Results with English phone models

Our first experiments establish the GMM baseline re-
sult and compare the phone-based systems to that base-
line. Note again that the phone recognition models were
trained on English data, but then applied to Arabic back-
ground, target speaker and test data. For the GMM we
trained two versions of the background model: one using
English CTS data, and one using the Arabic background
set. Table 1 summarizes the results, reported in terms of
equal error rate (EER).

We can characterize the results as follows. Using Ara-
bic versus English data for UBM training does make a
difference, albeit a surprisingly small one (11.5% rela-
tive). This can be rationalized by the unstructured nature
of the GMM, as well as the fact that the English back-
ground set, while mismatched, is much larger than the
Arabic one. The phone-recognition based systems per-
form roughly on par with the cepstral GMM. The phone
N-gram SVM is somewhat worse (22.2% relative), while
the MLLR-SVM is slightly better (7.5% relative).

Also shown in Table 1 are two simple combination re-



Table 1: Individual and combined system results on Ara-
bic test data

System Bkg. data %EER
Cepstral GMM English 10.27
Cepstral GMM Arabic 9.09
Phone N-gram SVM Arabic 11.11
Phone-loop MLLR SVM Arabic 8.41
Combined Systems
Phone N-gram + MLLR SVM Arabic 7.74
Same + GMM Arabic 7.45

Table 2: Comparison of speaker verification on Arabic
and English (SRE-06) data

Test data language
System Arabic English

% EER % EER
Cepstral GMM 9.09 7.16
Phone N-gram SVM 11.11 12.75
Phone-loop MLLR SVM 8.41 7.91

sults, obtained by averaging two and three system scores
with equal weight (the scarcity of data and comparable
performance of all three systems favored this approach
over a more elaborate trainable combiner, such as a neural
network). The two phone-based systems combined give
a 7.8% relative reduction in EER over the best single sys-
tem (MLLR-SVM), while adding the cepstral GMM into
the mix gives 11.4% relative reduction.

It is useful to compare the performance of all three
systems to similar systems when tested on an English
speaker recognition task. For this purpose we use the re-
sults obtained on the English-language subset (Common
Condition, 1-side training) of the NIST SRE-05 dataset.
Results are shown in Table 2. Remarkably, the pattern
of results differs substantially across languages. Rela-
tive to the other systems, the phone N-gram SVM per-
forms much better in Arabic, achieving an EER that is
better than its English counterpart. The other systems
have lower EERs in English, but the ordering is reversed,
with the the cepstral GMM being somewhat better than
the MLLR-SVM.

4.2. Results with Arabic phone models

Next we tested phone-based speaker recognition with
phone models trained on Arabic data. This raised some
issues since there was no additional CTS-like data avail-
able for training such models (training phone recognizer
and speaker models on the same data would lead to se-
vere bias in the models and mismatch with unseen train-
ing data). We decided to use Modern Standard Arabic
models trained on broadcast data with a telephone (band-

Table 3: Comparison of phone models trained on Arabic
and English

Phone models trained on
System Arabic English

% EER % EER
Phone N-gram SVM 19.70 11.11
Phone-loop MLLR SVM (m+f) n/a 8.41
Phone-loop MLLR SVM (f only) 10.44 9.60

Table 4: Comparison of systems differing in choice of
background data dialects

Background data MLLR Phone N-gram
% EER % EER

ECA+LVA 8.42 11.45
ECA+LVA+MM 8.42 11.11
ECA+LVA+MM+IA 8.24 10.94
ECA+LVA+MM+IA+GA 8.92 10.94

limited) front end configuration. While MSA is not nec-
essarily a perfect match to the conversational data found
in our training set, it should at least be closer to the target
language than English.

Another issue is that the English models were gen-
der dependent, giving us added leverage from combining
male- and female-specific MLLR transforms as features.
The MSA models we had available, by contrast, are gen-
der independent, yielding only half the number of feature
components. To compensate for this difference we also
tested an English MLLR-SVM based on only one gender
model.

Table 3 summarizes the results and compares to cor-
responding results obtained with the English phone mod-
els. We see that for both phone N-gram and MLLR
SVMs, the English-trained models perform better as
speaker feature extractors. This is true for MLLR SVM
even after equating the feature dimensions by using only
transforms based on female models.

4.3. Effect of background data

Finally, we wish to assess the effect of varying sources of
Arabic dialectal data in the background (impostor) train-
ing set for SVM training. It is to be expected that results
would improve the more different dialects are represented
in the background data. To test this conjecture we tested
a series of MLLR and phone N-gram SVM systems that
incorporated an increasing variety of dialects. Only En-
glish phone models were used in these experiments. Re-
sults are given in Table 4.

The experiments show that, up to a point, results do



improve modestly as more and more dialects are covered
in the background data. One exception to this pattern is
the Gulf Arabic (GA) corpus, which degrades results for
the MLLR-SVM system, and does not improve the phone
N-gram SVM results. Experiments with other subsets of
corpora including the GA data confirm this detrimental
effect, and suggest that there may be some mismatch be-
tween this data source and the training data. A more de-
tailed analysis of the data will be needed to pinpoint the
reasons for this anomaly.

5. Conclusions and Future Work

We have studied the performance of phone-recognition-
based speaker models on an Arabic speaker verification
task. Both a phone N-gram SVM and a phone-loop
MLLR SVM gave results comparable to or better than
a standard cepstral SVM, with even better results when
these models were combined with the GMM.

Remarkably, the English-trained phone models per-
formed better on Arabic data than similar models trained
on Modern Standard Arabic. This indicates that lan-
guage mismatch in the phone models is less important
than other factors, such as the amount of available data.
It could also be that the English phone set, being rela-
tively large (and larger than the Arabic phone set) gives
enough acoustic resolution to be generally useful across
languages. In any case, the cross-language use of English
phone models for speaker recognition suggests itself as a
viable strategy, especially where little matched-language
training data is available.

An important issue for future work is a detailed inves-
tigation of how the amount of training data affects per-
formance. For example, how would Arabic and English
models compare if they had been trained on equivalent
amounts of data? Another question is how matched and
mismatched language data could be combined for the best
effect.

Finally, the coverage of Arabic dialects merits further
study. For example, it is possible that sampling the vari-
ous dialectal data sources to better match the target pop-
ulation would improve results.
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