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Abstract 
Language Identification (LID) of speech can be split into two 
processes; phone recognition and language modelling. This 
two stage approach underlies some of the most successful LID 
systems. As phone recognizers become more accurate it is 
useful to simulate a very accurate phone recognizer to 
determine the effect on the overall LID accuracy. This can be 
done by using phone transcripts. In this paper LID is 
performed on phone transcripts from six different languages 
in the OGI multi-language telephone speech corpus. By 
simulating a phone recognizer that classifies phones into ten 
broad classes, a simple n-gram model gives low LID equal 
error rates (EER) of <1% on 30 seconds of test data. 
Language models based on these accurate phone transcripts 
can reveal insights into the phonology of different languages. 

1. Introduction 
Automatic Language Identification (LID) of speech has been 
a topic of research since the 1970s [1]. Although Language 
Identification can also refer to text classification, most 
research has been done on speech. In particular, the NIST 
Language Recognition Evaluation, currently held about once 
every two years, focuses on telephone speech. There has been 
a renewed interest in LID recently. At the NIST meeting in 
2005 the number of participating sites had doubled [2] and 
this trend appeared to continue in 2007. 

One type of system that has consistently performed well 
through all the evaluations is the phonotactic approach to LID 
[1, 4, 5]. This technique splits the problem into two stages; 
phone recognition, and then language modelling of the 
tokenized phones. This is known as PRLM (Phone 
Recognition followed by Language Modelling). Work by 
Matějka et al. [3, 4] demonstrates that improving the accuracy 
of the phone recognizers significantly increases the overall 
accuracy of the LID system. In the study reported in this 
paper a highly accurate phone recognizer is simulated using  

 
 

 
Figure 1: a) PRLM, b) This study: A perfect phone 
recognizer is simulated with phone transcripts 

hand annotated phone transcripts (Figure 1). This isolates the 
language model and gives an upper bound to the performance 
expected on a complete LID system. 

There have only been a few studies on the analysis of 
phone transcripts for LID. Interestingly, the most relevant 
paper on the subject was one of the earliest LID studies; 
House and Neuburg [6] hampered by the lack of accurate 
phone recognizers used phone transcripts instead. These 
transcripts were relatively short and many were derived from 
written text. Since then, a portion of the OGI Multi-language 
Telephone Speech Corpus [7] has been transcribed 
phonetically, giving a much richer source of transcripts. These 
transcripts have primarily been used to train phone 
recognizers. At OGI itself, there was interest in the statistics 
of the corpus and Muthusamy [8] looked at that distribution 
of broad phone classes – these were automatically segmented 
because the transcription effort was still taking place. As more 
transcripts became available, Berkling [9] was able to look at 
clustered phones and sequences of phones, picking out 
discriminative features for spoken LID between English and 
German. The corpus now contains over 600 verbatim 
phonetic transcripts. 

The study reported in this paper investigated LID purely 
on the OGI phonetic transcripts themselves. This corpus was 
used because it remains one of the most detailed phonetic 
transcriptions of multilingual spontaneous speech available. 
Using OGI also allows a loose comparison with previous 
NIST LID evaluations because the OGI corpus was used in 
the early workshops. The OGI transcripts provide a valuable 
resource for getting closer to the true phonology of a 
language. Unlike language models based on inaccurate phone 
recognizers, language models based on accurate transcripts 
provide a reliable representation of the phone patterns. 
Inspecting these language models can potentially give new 
insights into the differences between languages. This paper is 
therefore intended as an update to the work of House and 
Neuburg [6]. The main differences are that more data is used 
and n-grams rather than HMMs are used for language 
modelling.  

  

2. Method 
The OGI Multi-language Telephone Speech Corpus [10] 
includes phonetic transcriptions for six languages: English 
(208), German (101), Hindi (68), Japanese (64), Mandarin 
(70), and Spanish (108) with the number in parentheses 
giving the number of transcripts available. Each transcript is 
taken from the 'story' section of the recording - a spontaneous 
monologue just under a minute long. The last 20 transcripts of 
each language were used for testing and the rest were used for 
training. This number was chosen because the original OGI 
test set for audio files numbered 20 for each language. 

Phone 
Recognition 

Language 
is … 

Language 
Modelling 

Language 
is … 

Language 
Modelling 

(a) 

(b) 

mailto:t.kempton@dcs.shef.ac.uk
mailto:r.k.moore@dsc.shef.ac.uk


Table 1. The different phone sets 

‘CV3’ ‘SO3’ ‘House5’  ‘Expanded10’ 
Open vowel Vowel Vowel 
Close vowel 
Approximant 

Sonorant 

Sonorant 
Consonant Nasal 

Voiced 
Fricative 

Fricative 

Voiceless 
Fricative 
Voiced 
Plosive 
Voiceless 
Plosive 

Consonant 

Obstruent 

Plosive 

Closure 
Silence Silence Silence Silence 

 
The phones are clustered into language-independent 

broad phone classes. Language-dependant phones were not 
used despite their success in current LID systems [3] because 
phone mappings from one language to another for the 
common language models are not well defined for transcript 
LID. With language-independent phones it is generally more 
realistic to simulate an accurate broad phone recognizer with 
a few classes than an accurate, more finely grained phone 
recognizer. Using a fewer number of broad classes also 
reduces the data sparsity problem of longer n-grams.  

Four different sets of broad phone classes were 
investigated. These are shown in Table 1 and reflect different 
phonetic resolutions. CV3 refers to a consonant-vowel three-
class set (with silence being the third class). Similarly, SO3 
refers to a sonorant-obstruent three-class set. House5 refers to 
the same five-class set used by House and Neuburg [6] with 
Expanded10 adding slightly more detail. In this study 
diphthongs were interpreted as a sequence of two vowels. The 
table is loosely based on the sonority hierarchy with the most 
sonorant classes at the top.  Decisions on the different sets 
and how to cluster the phones were based on phonetic studies 
[11, 12], transcription guidance [13, 14] and previous 
experiments by other researchers [6, 16].  

The language model used here is the same one that 
underlies many current PRLM systems. It is a simple n-gram 
language model using Katz back-off with Good-Turing 
discounting. N-grams from unigrams to 5-grams were 
investigated. 

A language model was trained for each of the six 
languages. When testing on a transcript each model produced 
a log-likelihood score. A final score for each language was 
then calculated from a ratio of the best and second best log-
likelihood scores. A simple ratio was used at this stage to 
remain robust for the small amount of training data. 
 

3. Results  

3.1. Core results 
Experiments were conducted to investigate the effect of 
varying two different factors; phonetic resolution, and the size 
of the n-gram. As in the NIST evaluations, performance was 
tested on different lengths of test data; 3 seconds, 10 seconds, 
and 30 seconds. These different time lengths could be 
specified because the OGI transcripts were time-aligned for 

Table 2. EER percentages for the 3 class sets 

CV3 SO3  
3s 10s 30s 3s 10s 30s 

Unigram 45 43 36 43 35 29 
Bigram 36 26 14 33 25 17 
Trigram 31 20 10 33 23 13 
4-gram 28 19 8 33 23 13 
5-gram 28 18 8 33 23 16 

 

Table 3. EER percentages for the 5 and 10 class sets 

House5 Expanded10  
3s 10s 30s 3s 10s 30s 

Unigram 35 23 15 23 17 16 
Bigram 24 10 3 8 1 0 
Trigram 20 5 1 7 1 0 
4-gram 18 4 2 7 0 0 
5-gram 20 7 4 6 0 0 

 

 
Figure 2: DET plot for the Expanded-10 phone set 
using a trigram language model showing different 
lengths of test data 

 
each phone. The 3s utterances were contained within the 10s 
utterances which were in turn contained within the 30s 
utterances. This resulted in 20 test transcripts for each 
duration.  Results are shown in Tables 2 and 3. Table 2 shows 
the results for the three-class phone sets and Table 3 shows 
the results for the more detailed sets. An EER (Equal Error 
Rate) is shown for each experiment. 

There are some general trends for both factors which are 
not unexpected. As the phonetic resolution increases, LID 
accuracy also increases. As the n-gram size increases, LID 
accuracy generally increases up to trigrams but after that there 
is not much improvement.  An example that works well is the 
ten-class set with a trigram model.  A DET plot of this 
configuration is shown in Figure 2. There is no visible plot 
for 30s because there is 0% error on the test dataset of 120 
test files. A 0% error should be interpreted as < 1% error 
because of the relatively small number of test files. The three 
timings and their error rates are helpful in giving a full picture 
of the accuracy.  
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Figure 3: DET plot showing different phonetic 
resolutions for the 30s bigram task 

  
Figure 4: DET plot of the House5 system showing 
unigrams, bigrams and trigrams on the 30s task 

Even with low phonetic resolution, the scores show a 
respectable accuracy. The consonant-vowel set is not as 
accurate as the sonorant-obstruent set for unigrams, but 
overtakes it as the n-gram increases in size. The five-class set 
is consistently better than the three-class sets. There is a 
similar improvement in moving to the ten-class set. There 
appears to be one anomaly in the unigram scores for 30s 
where the ten-class EER is higher than the five-class EER. 
This is due to an unusual kink in the DET curve at the EER 
point. Overall the ten-class set does perform better. This is 
confirmed by comparing the original six-way test errors (not 
shown on the table) which showed the ten-class set was 
indeed performing better for 30s overall. A comparison of the 
different phone resolutions are shown in Figure 3. 

As the size of n-grams increase, the accuracy also 
increases for all phonetic resolutions up to trigrams. A typical 
plot of the consistent improvement up to trigrams is shown in 
Figure 4 for the five-class set. After this point there is no 
improvement. For the consonant-vowel set and the ten-class 
set there is still some slight improvement up to 5-gram level.   

3.2. Comparisons with other studies 
Caution should be exercised when comparing these results 
with other studies because the test conditions vary slightly. 
However, the comparisons can still give a rough idea of how 
other LID systems compare with the upper bound 
performance of a broad phone recognizer. 

The results in this study for LID on phone transcripts 
compare favourably with recent published results on spoken 
LID [4]. It is not possible to make an exact like-for-like 
comparison with the recent results because the evaluation data 
has not been transcribed manually. The only evaluation data 
to be transcribed phonetically is OGI, so comparisons with 
earlier evaluations are needed. The most recent evaluation on 
OGI data was the 1995 NIST evaluation on nine different 
languages [1].  The best system gave an approximate error of 
23% on the 10 second nine-way test. The best bigram system 
in this paper gives an approximate error of 1% on a 10 second 
six-way test. In a pairwise comparison with English the best 
system showed a 4% error compared to <0.5% error in this 
study. Adding the three extra languages would increase the 
error rate slightly but extrapolating from the effect of 
gradually adding new languages indicates these error rates 
still compare favourably.  

At the time of the 1993 NIST evaluation there were a few 
LID systems that were explicitly reported as using broad 
phone class recognition. However these struggled to get much 
lower than a 50% error rate on the 1993 10s ten-way task. 
Muthusamy’s system [8] was one of these and he also reports 
a 33% error on a 10s four-way task. Both the ten-class and 
five-class systems investigated here score much better than 
this. Since the data was the same, this demonstrates it is 
possible to perform effective LID with the phone patterns 
alone using simple language models. It appears that the main 
limiting factor for these other LID systems is the accuracy of 
the phone recognition.  

Comparisons with the House and Neuburg study are more 
difficult. They suffered from a lack of data and, for some of 
the tests, training data was also used for testing. The most 
suitable experiment for comparison is LID of five American 
Indian languages because training and test data were kept 
separate. If the experiment was similar to the others in the 
House and Neuburg study it is likely to be based on read 
speech. Test files were equivalent to about 30 seconds to 1 
minute of speech; however, there was only one test file per 
language. Training was also based on an equally small 
amount of data. An HMM language model was used in their 
study. The result they give on a five-way test was 0% error on 
five test files. The closest comparison in this current study is a 
30s six-way test where the five-class trigram model gives 3% 
error on 120 test files. These could be viewed as similar 
results. One additional way of comparing the two studies is to 
look at test-set perplexity scores. For the House and Neuburg 
HMM the average test perplexity for this five-symbol 
alphabet was 3.1. For the five-class trigram model the average 
test perplexity is slightly worse at 3.4. These results are not 
conclusive because different tests conditions could affect the 
figures, e.g. amount of training data, whether the speech is 
spontaneous or read, and the difficulty in comparing 
perplexities across different languages. However it is not easy 
to dismiss the HMM language model for this broad phone 
class problem. A further study using an HMM language 
model on the OGI transcripts would clarify the difference in 
performance.   
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Figure 5: CV3 discriminative n-grams 

3.3. Inspecting the language models 
In some previous experiments on broad phone classes, 
language models and corpus statistics have been inspected to 
seek insights on the differences between languages [6, 8, 9]. 
This study has the advantage of working from a large number 
of accurate transcripts so that the patterns found do give a 
picture of the genuine differences between languages. On 
inspecting the unigrams and bigrams in this experiment, a 
number of them where found to show particularly good 
discrimination. The most prominent of these are highlighted 
below.  

Bigrams are only highlighted if they exhibit an effect 
independent of the unigram distributions. For example, 
although the distribution of consonants and vowels over the 
six languages are very similar for unigrams, there is much 
more variation among the bigrams. Some examples of the 
CV3 bigrams that appear to provide good discrimination 
between languages are shown in Figure 5. English and 
German have a high proportion of double consonants with 
Japanese having the least. This observation fits in well with 
the phonology of these languages; it is well known that 
English and German often have multiple consonant clusters 
whereas Japanese usually does not. It can also be seen that 
English and German are more likely to finish with a 
consonant before a silence (a pause or breath) whereas the 
other languages are more likely to finish with a vowel. 

Sonorants and obstruents (not shown) have similar 
distributions at the unigram level. There are slight differences 
in the ratio of sonorants to obstruents with Mandarin having 
the most number of sonorants and German having the least. 
At the bigram level Mandarin is the only language that sticks 
out. The biggest difference is that Mandarin very rarely has 
two obstruents together when compared to the other 
languages. 

The five-class phones show a large variation on the 
proportion of fricatives, with the European languages having 
about twice as many fricatives than the others in the group. 
This can be seen in Figure 6. It can also be seen that the 
vowel-plosive bigram is useful for discrimination.  

Figure 7 shows the ten-class phones. It can be seen that 
there are some voiced fricatives in the European languages, 
some in Hindi but apparently none in Japanese or Mandarin. 
Nasals also show good discrimination. The bigram of double 
close-vowels reveals that these don’t often occur in German 
and Hindi when compared to the other languages. 

These observations are consistent with the OGI transcripts 
and the broad phone classes, but they do raise some important  

 
Figure 6: House5 discriminative n-grams  

 
Figure 7: Expanded10 discriminative n-grams  

questions about the phone classes. For example, although 
Japanese has an apparent voiced fricative phoneme /z/ all the 
realizations in the OGI corpus are affricates and are therefore 
grouped with the plosives (this is consistent with the 
groupings in a number of phonetic studies e.g. [11, 12]). 
Another issue is the voicing of plosives. Some realizations of 
the Mandarin phoneme /p/ can be acoustically very close to 
some realizations of the English phoneme /b/. It may be 
unrealistic to expect a phone recognizer to discriminate 
between the two. A few changes may be needed to the ten-
class set if it is to realistically simulate an accurate phone 
recognizer. Even if an accurate phone recognizer can only 
produce up to five classes it has been shown that some 
interesting observations about the phonology of the language 
can be made.  
 

4. Conclusions and further work 
This paper has shown that high accuracy LID can be obtained 
on phonetic transcripts when using broad phone classes. 
Increasing the phonetic resolution of the broad classes 
increases the LID accuracy. Increasing the size of the n-grams 
up to tri-grams also leads to a greater LID accuracy. As 
expected these results compare favourably with published 
figures on spoken LID accuracy. The results can be viewed as 
defining an upper bound on the accuracy of a LID system that 
uses a broad class phone recognizer and an n-gram language 
model. The experiment here can be used as a baseline which 
other language models can be compared against.  

Inspecting the language models shows each phone 
resolution exhibits n-grams that provide good discrimination 
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across languages. The n-grams often reflect known 
phonological rules, and have the potential to discover new 
rules or patterns. Some of the patterns uncovered are not 
immediately apparent in the finer phone classes, and are better 
represented in the broad phone classes e.g. the simple 
restriction on double obstruents in Mandarin is not obvious 
from the ten-class phone n-grams. This indicates that the 
levels of phone resolution may be complementary for LID. 

Further work then, could include combining the different 
phone resolutions to see if they perform better together. Since 
some of the discriminative n-grams may be relatively easy to 
detect acoustically, such as estimating the proportion of 
voiced fricatives, these could also be tested on spoken LID 
systems. Combining these multiple streams of features is 
reminiscent of some previous work on LID with articulatory 
features [16], and it would be interesting to use articulatory 
features for transcript LID.  

Further work should also include trying an HMM 
language model on this test because the comparison with the 
House and Neuburg study indicated that it may compete well 
on this broad phone class problem.   
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