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Abstract
We present a new approach to construct kernels used on sup-
port vector machines for speaker verification. The idea is to
learn new kernels by taking linear combination of many ker-
nels such as the Generalized Linear Discriminant Sequence ker-
nels (GLDS) and Gaussian Mixture Models (GMM) supervec-
tor kernels. In this new linear kernel combination, the weights
are speaker dependent rather than universal weights on score
level fusion and there is no need to extra-data to estimate them.
An experiment on the NIST 2006 speaker recognition evalu-
ation dataset (all trials) was done using three different kernel
functions (GLDS kernel, Gaussian and linear GMM supervec-
tor kernels). We compared our kernel combination to the opti-
mal linear score fusion obtained using logistic regression. The
optimal weights was trained on all 1conv4w-1conv4w trials of
NIST-SRE 2005. Testing on NIST-SRE 2006 database, we had
an equal error rate of ' 5.9% using the kernel combination
method which is better than the optimal score fusion system
(' 6.1%).

1. Introduction
In current speaker verification systems, the best results are ob-
tained by fusing the scores of several subsystems. Many score
fusion techniques are proposed: naive Bayes [1], Neural Net-
work (NN) [1], Support Vector Machines (SVM) [2] and, logis-
tic regression [3, 4]. A problem with all of these techniques,
except for naive Bayes, is that held-out data is needed to prop-
erly weight the contributions of the individual subsystems. It is
well known that the performance of the fused system can de-
grade drastically if there is a mismatch between the held-out
data which serves to estimate the fusion weights and the data on
which the system is tested. Another weakness of score-level fu-
sion is that it is based on a single set of fusion weights, common
to all target speakers. Clearly, it would be desirable to allow the
fusion weights to vary from one speaker to another if speaker-
dependent fusion weights could be reliably estimated.

Speaker verification systems based on support vector ma-
chines lend themselves to another type of “fusion”, namely
combination at the kernel level, which does not suffer from ei-
ther of these drawbacks. Given a set of kernels, we can con-
struct a new kernel for each target speaker by taking a linear
combination of these kernels. There is no difficulty in principle
in making the coefficients in this linear combination speaker-
dependent. In fact, the coefficients can be estimated for each
target speaker using the same set of impostors as serve to esti-
mate the speaker-dependent hyperplane separator in SVM train-
ing. This also dispenses with the need for held-out data to esti-
mate score-level fusion weights.

The paper is organized as follows: Section 2 presents score
fusion methods. Section 3 presents the principal aspect of
SVM method. We describe the approach of kernel combination
method in section 4. The kernel functions used in our experi-
mentation are presented in Section 5 and the application of ker-
nel combination in speaker verification task in Section 6. Sec-
tion 7 presents our experiments on NIST-SRE 2005 and 2006
databases. We conclude the paper in Section 9.

2. Score Fusion Methods
The objective of score fusion method is to fuse multiple subsys-
tems into a single effective one. By score fusion, we mean that
the resulting output score of the fused system is obtained from
the combination of scores of the several subsystems. Many ap-
proaches have been used to deduce the resulting score. In [5],
the authors used a perceptron classifier, the fusion classifier is
trained to minimize the DCF. Kajarekar [6] used a linear com-
bination with equal weight of the scores of four different SVM
systems.

The most popular approach used during the last NIST
Speaker Recognition Evaluation (SRE)1 campaign was the lin-
ear score fusion with a logistic regression training method [4].
The resulting score of linear score fusion is computed as:

sf (x) = w0 +

MX

l=1

wlsl(x) (1)

where sl(x) is the lth subsystem score for test x, M is the num-
ber of subsystems which are fused, w = (w0, w1, ..., wM )t a
real vector of weights and sf (x) is the fused output score.

The optimal weights vector is obtained by logistic regres-
sion training on a fusion dataset. The goal of logistic regression
is to find the optimal weights vector such as the performance
of the fused system will be better than the subsystems perfor-
mance. The fusion dataset should not be used during the devel-
opment of the subsystems. If, for example, the training dataset
had been used to train NAP/eigenchannel, then it will not be
suitable for training the fusion weights because the scores pro-
duced by these subsystems would be over-optimistic [4]. As
a consequence, we need much more training data to develop a
fused system.

3. Support Vector Machines
An SVM [7] is a two-class classifier based on a hyperplane sep-
arators. It works by embedding the data into a Hilbert space
(feature space), and searching for a linear separator in this

1http://www.nist.gov/speech/tests/spk/2006/



space. Usually, the feature space F has high dimensionality
(potentially infinite), and is non linearly related with a mapping
function φ to the original input space X . The mapping is per-
formed implicitly, by specifying the inner product between each
pair of points (x1, x2) rather than giving their corresponding
coordinates φ(x1), φ(x2) in the feature space. Given an obser-
vation x ∈ X and a mapping function φ, an SVM discriminant
function is given by:

f(x) = 〈w , φ(x)〉+ b (2)

where 〈w , φ(x)〉 represents the scalar product of the two vec-
tors w and φ(x). (w, b) are the linear separator parameters.

Exploiting the kernel function k(xi, xj) = 〈φ(xi), φ(xj)〉
and the fact that the weight vector w can be expressed as a lin-
ear combination of a subset of training points ({(xi, yi) | i =
1...M} called support vectors):

w =

MX
i=1

yiαiφ(xi) (3)

where yi = ±1 and αi represent respectively the class and
the weight associated to the training vector xi, the discriminant
function f can be expressed as:

f(x) =

MX
i=1

αiyik(xi, x) + b (4)

The optimal linear separator, defined by (w∗, b∗), is cho-
sen in order to maximize the margin (γ = 1/‖w‖) defined by
the distance between the hyperplane and support vectors (xi,
i = 1...M in equation 4). The optimal parameters w∗ (or its
corresponding vector α∗ ) and b∗ represent the solution of the
primal optimization problem:

min
w,b

〈w, w〉 (5)

subject to yi (〈w, φ (xi)〉+ b) ≥ 1, i = 1, ..., n

Transforming this optimization problem to its dual form,
the optimal squared inverse margin ω(K) = 1/γ2 correspond-
ing to the Gram matrix K can be expressed as follows:

ω(K) = 〈w∗, w∗〉 (6)
= max

α

`
2αt1− αtG(K)α

´
(7)

subject to α ≥ 0, αty = 0

Here 1 is the n dimensional vector of ones, α ∈ Rn, K is the
n×n Gram matrix of the n training vectors (Kij = k(xi, xj)),
G(K) is defined by Gij(K) = Kijyiyj and α ≥ 0 means
αi ≥ 0, i = 1, ..., n.

In the case of non linearly separable data, a set of slack
variables is used to allow the margin constraints to be violated.
The primal optimization problem (5) becomes:

min
w,b

〈w, w〉+ C

nX
i=1

ξ2
i (8)

subject to yi (〈w, φ (xi)〉+ b) ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n

again by considering dual problem, the optimal solution of this
problem can be expressed as:

ωC(K) = 〈w∗, w∗〉+ C

nX
i=1

ξ2∗
i (9)

= max
α

„
2αt1− αtG(K)α− 1

C
αtα

«
(10)

subject to α ≥ 0, αty = 0

where C represents a penalty parameters. We note that when
C → +∞ this optimization problem is equivalent to the first
one (equation 7).

4. Combining Kernel Matrix
The most important step in SVM classification systems is to de-
fine the appropriate kernel function. This function is necessary
to build the Gram matrix used during training (equation 9) and
testing (equation 4) steps. Many kernel functions were used for
speaker verification tasks. As in score fusion approach, it will
be better to combine all SVM kernel functions. We propose to
build a new kernel function kf which capitalize the informa-
tion brought by each kernel. The most straightforward solution
to this problem is to use a linear combination of the M base
kernels:

kf (xi, xj) =

MX

l=1

λlkl(xi, yj) (11)

This problem has been addressed in [8] and consists in find-
ing the parameter λi that maximize the optimal margin (mini-
mize ωC(K)) over the convex cone K of symmetric, positive
definite matrices K =

˘
X ∈ Rn×n|X = Xt, X º 0

¯
:

min
K∈K

max
α∈Rn

„
2αt1− αtG(K)α− 1

C
αtα

«
(12)

subject to: trace(K) = c

K =

MX

l=1

λlKl

where Kl is the Gram matrix corresponding to the lth kernel
function, M is the number of base kernels, c ≥ 0 fixes the trace
of the resulting Gram matrix. The interest of this program is that
it involves in the same optimization problem the discriminant
boundary (αi, i = 1..n) and the weight parameters (λl, l =
1, ..., M ). The output is a set of weights (λl, l = 1..M ) and a
discriminant function that combine information from multiple
kernel space.

If we pick (λl ≥ 0, i = l..M ), we can omit the condition
K ∈ K, because this is derived from K =

PM
l=1 λlKl. The

optimization problem (12) can be expressed as:

min
λ∈R+M

max
α∈Rn

 
2αt1−

MX

l=1

λlα
tG(Kl)α− 1

C
αtα

!
(13)

subject to:
MX

l=1

trace(Kl)λl = c

This problem can be transposed into the following quadrati-
cally constrained quadratic program [8], whose primal-dual so-
lution indicates the optimal weights (λl, l = 1...M ) and the



discriminant function (αi, i = 1..n):

max
α,ρ

2αt1− 1

C
αtα− cρ (14)

subject to: ρ ≥ 1

trace(Kl)
αtG(Kl)α, l = 1, ..., M

αty = 0

α ≥ 0

where the optimal weight λl corresponds to the dual variable
corresponding to the lth constraint in the optimization problem.
This problem can be solved efficiently with programs such as
SeDuMi [9] or Mosek [10].

5. SVM for Speaker Verification
An important problem of applying SVM approaches to speaker
verification task is related to the variable length sequence of
input speech data. They need to define a mapping of this input
data to a fixed dimension vector. Different mappings have been
proposed and we can distinguish two categories of methods:

The first group consists in applying SVMs using acoustic
data or a mapping of it. The approach implemented in [11]
trains SVMs directly on the acoustics vectors which character-
ize the client data and the impostors data. During testing, the
segment score is obtained by averaging the scores of the SVM
output for each frame. The Generalized Linear Discriminant
Sequence (GLDS) kernel [12, 13] is based on an explicit map-
ping of each sequence to a single vector in a feature space using
polynomial expansions.

The second class represents methods which use GMM
adaptation methods. The MAP adaptation can be seen as a map-
ping of the variable length sequence of acoustic features onto a
fixed vector length. All Gaussian means vectors are pooled to-
gether to get one GMM supervector. These GMM-SVM kernel
functions are derived from Kullback-Leibler distance. It was
proposed first in [14], and was applied for speaker verification
in [15, 16] to find a separator between the speaker models and
impostor models.

In our fusion experiment, we have used three different ker-
nel functions, the first one corresponds to the GLDS kernel pro-
posed by Campbell [12]. The last ones are the linear and non
linear GMM-SVM kernels[15, 16].

5.1. Generalized linear discriminant sequence kernels

This kernel function was proposed in [12]. Given a sequence
of cepstral features xl = (x1, x2, ...xl), the mapping function
φglds is expressed as:

φglds : xl −→ 1

l

lX
i=1

b(xi) (15)

Here b(xi) is the vector of polynomial basis terms of feature
vector xi, e.g., for two features xi = [xi1 xi2]

t and second
order, the vector is given by:

b(xi) =
ˆ
1 xi1 xi2 x2

i1 xi1xi2 x2
i2

˜t
(16)

The GLDS kernel function kglds is defined by:

kglds(sa, sb) = φglds(sa)t R−1 φglds(sb) (17)

where R = M tM and M is defined as :

M =

2
6666666664

b(xs1)
t

b(xs2)
t

...
b(xsNspk)
b(xz1)

t

b(xz2)
t

...
b(xzNimp)t

3
7777777775

(18)

where b(xsi) and b(xzi) represent respectively the expansion
of speaker and impostor data (see [12] for more details).

5.2. GMM-SVM Linear kernel

The linear kernel was proposed by Campbell et. al. [15]. The
authors used an upper bound D of Kullback-Leiber distance
[17, 18] between two GMMs to build the corresponding inner
product which is the kernel function as follows:

D2 (sa, sb) =

MX
i=1

wi

“
µa

i − µb
i

”
Σ−1

i

“
µa

i − µb
i

”t

(19)

Klin(sa, sb) =

MX
i=1

„√
wiΣ

− 1
2

i µa
i

«„√
wiΣ

− 1
2

i µb
i

«t

(20)

where wi, µs
i and Σi are the weight, mean and covariance of

each Gaussian in the s speaker GMM model.

5.3. GMM-SVM Non Linear kernel

The non linear kernel is a Gaussian kernel defined on the GMMs
supervector space. It was proposed by Dehak and Chollet in
[16]. The kernel function is expressed as an exponential func-
tion of distance D (equation 19):

Knonlin(sa, sb) = e−D
2(sa,sb) (21)

5.4. Nuisance Attribute Projection

Nuisance Attribute Projection (NAP) [19] is a method for im-
proving performance of SVM speaker recognition systems. The
principal interest is to reduce the impact of channel, handset,
session, language, etc. variations on system performances. It
uses an appropriate low corank projection matrix P in the fea-
ture space to remove subspaces that cause variability in kernel:

KNAP (xi, xj) = 〈Pφ(xi), Pφ(xj)〉 (22)

6. Combining Kernel In Speaker
Verification

The weight vector of linear kernel combination is computed
during target speaker models training. For each base kernel
function, the Gram matrix was computed using the same im-
postors list. The solution of the optimization problem (equation
14) provides, for each target speaker s, an optimal weight vector
(λs

l , l = 1..M ) and the SVM discriminant function parameters
(α, b). We have picked λs

i ≥ 0, l = 1..M to avoid the test
K º 0 (K is positive definite). In the other case, we need to
use test data to obtain the optimal weight that keep the kernel
matrix positive definite (refer to [8] for more details). This pro-
cedure is not conform with NIST protocol, so we didn’t explore
yet this solution, and we were limited to the case of λs

l ≥ 0,
i = 1..l.



This operation is different from score fusion methods: First,
we have a different weight vector for each target speaker model
rather than the unique score weights vector for score fusion.
The most important advantages here compared to score fusion
is that we don’t need extra dataset to compute the weight vector,
it was computed using only training dataset(client and impos-
tors data). In our kernel combination implementation, all kernel
matrices are centered and normalized as follows [7]:

Centering : Kij ← Kij +
1

n2

nX
m,o=1

Kmo

− 1

n

nX
m=1

(Kim + Kjm) (23)

Normalization : Kij ← Kijp
KiiKjj

(24)

This kernel combination can be seen as an adaptation of the
kernel function to the speaker data. During the training task,
we change the kernel function (by selecting the weight vector
λ) for each speaker and find the optimal one which gives the
maximal margin. The same method can be used in the case
of features selection when the Gram matrices were computed
on heterogeneous data. We can combine, with acoustic SVM
systems, others SVM systems based for example on high-level
characteristics [20] such as word usage, pronunciation, prosody,
etc.

7. Experiments
7.1. Development and test databases

We performed our test experiments on the core condition of
NIST 20062 SRE corpus (all trials). The train and test utter-
ances contain 2.5 minutes of speech on average. The whole
speaker detection task consists of 53966 tests (3612 target tests).
We use equal error rate (EER) and the minimum decision cost
value (minDCF) as metrics for performance evaluation.

We have used NIST 2005 3 SRE corpus (all trials) database
to train score fusion method and for tuning systems parameters.
The NAP was training using a corpus extracted from NIST-SRE
2004 database.

7.2. Cepstral features

We extracted 16-dimensional Linear Frequency Cepstral Coef-
ficients (LFCC) from speech signal every 10ms using a 20ms
Hamming window. First order deltas and delta-energy are ap-
pended to the cepstral vector. Cepstral mean subtraction and
variance normalization were then applied to each feature of the
33-dimensional final vector.

7.3. SVM systems

We used three SVM kernel functions in our combination. The
first one is the GLDS kernel. It was constructed using the 33-
dimensional vector with a 3rd degree polynomial. As in [12],
the R matrix (equation 17) was approximated by using only
diagonal elements to reduce the training time. The two last
GMM-SVM systems used in our combination are the optimal
linear and non-linear kernel obtained in [21]. In these two last

2See http://www.nist.gov/speech/tests/spk/
2006/ for more details

3See http://www.nist.gov/speech/tests/spk/
2005/ for more details

systems, we have used Nuisance Attribute Projection to reduce
the impact of channel and handset variations on system perfor-
mances.

All SVM systems used single positive example and the
same training impostors. A corpus of 449 male and 486 female
impostors extracted from NIST-SRE 2004 and Fisher databases
are used to train the SVM systems.

7.4. Combining kernels

We used CVX Matlab toolbox4 (Matlab Software for Disci-
plined Convex Programming) with SeDuMi to train kernel com-
bination(solve optimization problem 14). This code simultane-
ously solve the primal problem and its dual form. It thus returns
optimal values for primal variables (α) and dual variables nec-
essary to obtain the weight vector λ.

We performed different experiments: First, to test the influ-
ence of the parameter c (The trace of the fused Gram Matrix) on
the performance of combining kernel method, we run different
tests on NIST-SRE 2005 with different values of c.

Second, to compare our results with linear score fusion ap-
proaches, we have performed two different fusions: The first
one consists on naive Bayes fusion approach, all subsystems
scores had equal weight (wi = 1

M
, i = 1..M ). This fusion

strategy was used since it has proved robust and does not require
a cross validation training set. The second one is an optimal lin-
ear score fusion. In this case, the weight vector is optimized
using a logistic regression (using Brummer’s FOCAL toolkits5)
[3, 4] on all 1conv4w-1conv4w trials of the NIST 2005 SRE.
The resulting weight vector was used to fuse SVM systems
scores on test database (NIST-SRE 2006).

8. Results and Discussion
We start by giving the results obtained for the three SVM sub-
systems using the three kernels (GLDS kernel, linear and Gaus-
sian GMM supervector kernels). The Table 1 gives the EER and
MinDCF of these subsystems for NIST 2005 and 2006 SRE
core condition. The results show that both GMM supervector
kernels perform better than GLDS kernel. These results can be
explained by the fact that we apply channel compensation algo-
rithm (NAP) only for the GMM supervector kernel systems.

Table 1: The original subsystems performance. NIST 2005 and
2006 SRE core condition (all trials).

NIST 2005 NIST 2006
System EER MinDcf EER MinDcf

GLDS kernel 9.68% 0.036 9.77% 0.045
Linear kernel 7.38% 0.024 6.75% 0.032
Non linear kernel 7.43% 0.023 6.39% 0.030

The influence of the parameter c (trace(K) equation 12)
on kernel combination system performances is presented in Ta-
ble 2 and DET curves are plotted on figure 1. We remark first
that the combining kernel method has better performances than
all base kernel SVM systems for all tested values of c. So, the
combining kernel takes advantage advantage of the difference
between the three kernels for optimal performance. The perfor-
mances of this method vary slightly (See figure 1) depending
on the value of c and the best results are obtained when c = 2.

4http://www.stanford.edu/˜boyd/cvx/
5See http://www.dsp.sun.ac.za/˜nbrummer/focal
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Figure 1: DET curve of combined kernel system for different
values of c, NIST 2005 core condition (all trials)

Table 2: The influence of the c parameter on kernel combination
system performances. NIST 2005 and 2005 SRE core condition
(all trials).

NIST 2005 NIST 2006
System EER MinDcf EER MinDcf
0.5 6.82% 0.0226 6.24% 0.030
1 6.82% 0.0222 6.17% 0.031
2 6.66% 0.0221 5.90% 0.030
3 6.67% 0.0223 5.92% 0.031
4 6.80% 0.0222 5.98% 0.030
5 6.75% 0.0223 6.09% 0.031

There is no way to fix this parameter in advance. We use this
optimal value for next comparison.

We plot on Figure 2 the DET-curves of all SVM systems
and fusion systems tested on all 1conv4w-1conv4w trials of
NIST-SRE 2006. The kernel combination system DET-curve
are better than the three SVM systems and score fusion systems.

In Table 3, we present the performances of fusion systems.
As expected, the performances of naive Bayes linear score fu-
sion system are less than the optimal linear score fusion. The
optimal score fusion performs well because the NIST SRE 2005
and NIST SRE 2006 databases are extracted from the same cor-
pus, so there is no mismatch in data collection conditions. We
obtain a little improvement (0.30% absolute) in EER. This per-
formances are explained by the fact that all our systems used
the same feature parameters with different kernel functions, we
can obtain more improvements with different features.

The EER obtained using the kernel combination system is
a little bit better than the naive and optimal linear score fusion
systems. For MinDCF performance’s, the kernel combination
system is better than the naive fusion and equal to the optimal
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Figure 2: DET curve of combined kernel system, naive Bayes
and optimal linear score fusion. NIST 2006 core condition (all
trials)

Table 3: Comparison between linear score fusion and linear
kernel combination. NIST 2006 SRE core condition (all trials).

System EER MinDcf
Naive Bayes score fusion 6.28% 0.031
Optimal linear score fusion 6.09% 0.030
Combined kernels 5.93% 0.030

linear score fusion. These performances are explained by the
fact that the kernel combination system uses a statistical criteria
of maximal margin in the SVM modeling and had no prior in-
formation about the DCF function. This improvement could be
more important with more SVM systems and more features.

9. Conclusions
In this paper, we present a new method to combine SVM
speaker verification systems. This method performs a fusion in
kernel function space to obtain a new SVM kernel system and
we don’t require extra dataset to learn the combination weights.
This is an interesting advantage especially when there is a mis-
match between fusion training dataset and test data. We had
better performance in EER with this new method (∼ 0.50%
absolute improvement) than the optimal linear score fusion
(∼ 0.30% absolute improvement) which need a development
data to estimate the fusion weight parameters. Best result was
obtained with only three different kernel functions computed
on the same cepstral features. We can used any other kernel
function in the combination step without any modification, we
need only the Gram matrices to compute the new kernel func-
tion (new Gram matrix). As it was proved with score fusion
method, the performance of this approach will be even better



with more SVM systems and with different features.
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