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Abstract
In the task of automatic speaker verification (ASV) it is
well known that the duration of the speech signals is an
important factor in the ultimate accuracy of the system.
This paper deals with some of the aspects of adapting
systems to work with limited amounts of data. First we
highlight the importance of a well-tuned speech detec-
tion front-end when working with short durations. We
consider a well-established technique (GMM) as well as
a recent development (SVM on GMM mean supervec-
tors), showing their limitations and alternatives. In partic-
ular the benefit of eigenvoice modelling in the context of
short duration tasks is highlighted. Finally experiments
on standard NIST databases demonstrate fusion potential
between the presented techniques and significant gains
when compared to a single GMM.

1. Introduction
Interest in text-independent automatic speaker verifica-
tion (ASV) has grown significantly over the last sev-
eral years as evidenced by the annual speaker recogni-
tion evaluations (SREs) administered by the National In-
stitute of Standards and Technology (NIST) [1]. They
currently offer one of the most viable means by which re-
searchers can compare and contrast different approaches
on common and meaningfully sized databases. For each
SRE there are a number of different conditions spanning
a range of data quantities for training and testing scenar-
ios. Since the NIST SRE’04 the one condition in which
participants are required to participate relates to one side
of a five-minute-long telephone conversation. This gives
approximately 2.5 minutes of speech per person and with
a second such conversation 2.5 minutes are available for
both training and testing.

Given that this is a compulsory condition for NIST
entry, inevitably this condition has received by far the
greatest attention in the literature. In particular some
of the latest developments in the field which tackle the
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well known problem of intersession variability namely
factor analysis (FA) [2, 3] and nuisance attribute projec-
tion (NAP) [4,5] have led to meaningful improvements in
performance on tasks involving a few minutes of speech
or more, with error rates having roughly halved over the
last three campaigns [6].

However, commercial and practical situations call for
speaker verification using much shorter speech durations
and, perhaps surprisingly, these conditions have received
comparatively little attention within the research commu-
nity. For example, two sites who report state-of-the-art
performance on the NIST SRE’06 database [7, 8] do not
report any results on the shortest duration tasks involving
just 10 seconds each for both training and testing.

Aside from the obvious difficulties associated with
training or adapting accurate or reliable speaker models
using such limited data quantities one possible explana-
tion for this observation, in addition to that stemming
from NIST’s focus on the longer duration tasks, may be
attributed to the fact that, as we have shown in our recent
paper [9], some recently proposed channel compensation
techniques are not easily transposable to the shorter dura-
tion tasks. In [9] we show that a system based on Gaus-
sian mixture models (GMMs) and whose front-end is op-
timised for long duration tasks is very much suboptimal
when applied to the shorter duration tasks. We extend
this recently published work by illustrating in this paper
a sensitivity to speech activity detection (SAD), a prob-
lem only observed when dealing with limited amounts of
speech. We subsequently highlight the limits of the tra-
ditional maximum a posteriori (MAP) model adaptation
approach for the short duration scenario.

An original contribution in this paper is the applica-
tion of eigenvoice (EV) principles with improved perfor-
mance in the context of short duration task (10s10s). Im-
provements are particularly good when scores are fused
with those of a GMM-MAP system. We then propose
a series of changes for a support vector machine-based
system with a GMM supervector linear kernel (SVM-
GSL) [10]. Finally results and fusion potential are val-
idated on the latest NIST’06 database.



The remainder of the paper is organised as follows.
In Section 2 we introduce the protocol and systems used
throughout the paper. Section 3 deals with sensitivity to
SAD. Limits and alternatives of ASV systems are dis-
cussed in Section 4 for GMMs and in Section 5 for SVM-
GSL. In Section 6 we present fusion and validation re-
sults. Our conclusions are drawn in Section 7.

2. Protocol and systems
The NIST SRE’04, SRE’05 and SRE’06 databases are
used for all experimental work reported in this paper. Of
the different durations in the three databases we focus on
two durations specifically. They are: (i) 1conv4w, an av-
erage of 2.5 minutes of speech and (ii) 10sec4w with an
average of 10 seconds of speech. We refer to these two
durations from now on as 1c and 10s respectively.

We first consider the 1c1c task (∼2.5 minutes of
speech for both training and testing), the 1c10s task (∼2.5
minutes of speech for training but with now only ∼10
seconds of speech for testing), the complement condition
10s1c, and finally 10s10s. In the second part of the paper
we concentrate only on the 10s10s condition.

For all experiments reported in the paper the back-
ground data are as defined in our previous publication [6]
and all come from the NIST’04 database. For the system
optimisation stage we conduct development experiments
on the male part of the NIST’05 database and protocols,
leaving the entire NIST’06 database, male and female and
all languages, for final validation only. In all cases per-
formances are assessed with the minimum of the decision
cost function (minDCF) in accordance with NIST’s defi-
nition and in terms of equal error rates (EER).

The systems presented are developed using SPro1 and
ALIZE2 which are both open source toolkits. Full de-
scriptions of their use in this work and for NIST SREs
generally are available in [6,11]. Note that in all our sys-
tems involving GMMs, model warping [11] is used.

3. Sensitivity to speech activity detection
One of the first stages of processing in ASV is to deter-
mine intervals of speech along the time course. Simple,
effective and popular approaches are based on energy dis-
tributions. Here we consider a form proposed in [11].

3.1. Mean and Weight based approaches

We consider two model based speech activity detection
(SAD) variants. For both, a tri-Gaussian model is fitted
to the energy component of a speech sample. An energy
threshold is used to distinguish speech from non-speech
and only those frames whose energy component is above
the threshold are retained for speaker modelling and test-

1http://gforge.inria.fr/projects/spro
2http://www.lia.univ-avignon.fr/heberges/ALIZE/
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Figure 1: Graph of MinDCF against EER showing ASV
performance for range of data durations, 1c1c, 1c10s,
10s1c and 10s10s for a standard GMM configuration on
the male part of the NIST’05 database. The points for
SVM-GSL and SVM-GSL-NAP are also included for fur-
ther comparison on 1c1c.

ing. The threshold is determined according to one of two
characteristics corresponding to the highest energy Gaus-
sian. A weight-based SAD (wSAD) selects a threshold
according to the weight of the highest energy Gaussian
component, whereas a mean-based SAD (mSAD) selects
its threshold from the mean and standard deviation. Fur-
ther details of both approaches can be found in [11].

In both cases a parameter αSAD may be used to tune
the SAD varying the number of frames which remain af-
ter threshold application. In [9] we show the influence of
this parameter with mSAD. Our results suggest that the
highly selective value of αSAD derived to give state-of-
the-art performance on the 1c1c task proves to be overly
selective when applied to the shorter duration task. In
this paper, we present new experiments which compare
the two different approaches with different speaker veri-
fication systems and different task duration conditions.

3.2. Performance

Figure 1 shows performance in terms of minDCF against
EER for a basic GMM system for 1c1c, 1c10s, 10s1c
and 10s10s task and with SVM-GSL [10], SVM-GSL-
NAP [5] on the 1c1c task (SVM-GSL and SVM-GSL-
NAP results are not shown for the shorter durations as
they are suboptimal, a point we discuss further in Section
5). These results come from numerous optimisation ex-
periments varying the SAD threshold parameter. All tests
relate to the male part of the NIST’05 SRE protocol.

In each case two points are illustrated, one for weight-
based SAD (wSAD) and one for mean-based SAD
(mSAD). In all cases the points relate to individually opti-



mised settings of αSAD. There are two main observations
we can draw:

• wSAD is clearly suboptimal for the 3 short dura-
tion tasks (10s10s, 10s1c and 1c10s). We con-
ducted an extensive set of experiments (not re-
ported here) where the frame selection sensitivity
was varied according to the αSAD parameter of
wSAD for the 10s10s task. Even when GMM pa-
rameters (the number of Gaussians and relevance
factor in MAP adaptation) were optimised, in all
cases the performance fell short of that obtained
with mSAD.

• the difference in performance between the wSAD
and mSAD approaches diminishes for the longer
duration tasks for the basic GMM and also for
the two more recent approaches (SVM-GSL and
SVM-GSL-NAP).

This observation confirms the idea we highlighted in
[9], namely that GMM systems that exhibit state-of-the-
art performance on longer duration tasks can have subop-
timal performance when applied to shorter duration tasks.
In this case a system optimised with weight-based SAD
on longer durations may prove to be suboptimal when ap-
plied to shorter durations such as 10s10s.

An explanation may be found in the quality of the
SAD. Table 1 shows the mean and standard deviation of
the amount of speech, in seconds, which remain post-
SAD for 4 different SAD configurations. αSAD values
are chosen for illustration purposes, to present examples
for mSAD and wSAD providing a similar average of
frames (∼144s and ∼85s) in two quite different cases.
These numbers are obtained from 219 1c, male samples
from the NIST’04 database.

Table 1: Statistics (average and standard deviation) of
the amount of speech in seconds from 219 1c, male sam-
ples from the NIST’04 database according to ASR tran-
script (line 2), and amount found for 4 configurations of
SAD (lines 3-6).

Mean (s) Std (s) Ratio

ASR transcript 151 39 3.9

mSAD, αSAD=0.5 144.4 38.0 3.9
mSAD, αSAD=-0.5 83.2 20.0 4.2
wSAD, αSAD=0.75 147.1 48.9 3.0
wSAD, αSAD=0 86.8 15.5 5.4

Also illustrated (row 2) are similar statistics derived
from the ASR transcripts which are provided with the
NIST database. They are used here as a baseline with
which to compare the SAD derived values. The ASR
transcripts suggest that there is an average of 151 sec-
onds of speech per 1c file and a standard deviation of 39

seconds, the ratio between the mean and standard devia-
tion being 3.9. Turning now to the SAD derived statistics
we observe mSAD ratios of 3.9 and 4.2 and wSAD ratios
of 3.0 and 5.4 suggesting that, with the ratios better re-
flecting that of the ASR transcript, mSAD better reflects
the actual amount of speech available than does wSAD.

Taken together with the results presented in Figure 1
it therefore seems that the accuracy of the SAD is espe-
cially important for short duration tasks. For longer du-
rations the various averaging in the GMM modelling and
scoring attenuates the effects of a less well performing
SAD.

4. GMM adaptation and short durations
After this front-end consideration we now concentrate on
ASV systems, starting with the well-established GMM
systems.

4.1. Limitation of MAP approach

One of the key elements involves the maximum a pos-
teriori (MAP) adaptation of a UBM. A speaker-specific,
client model is adapted from the UBM using observed
data X by modifying the GMM mean parameters accord-
ing to:

mi(X) = αiEi(X) + (1− αi)mwi (1)

and

αi(X) =
ni(X)

ni(X) + r
(2)

where ni is the posterior probability, Ei is the expected
value of the observed data and mwi and mi(X) are re-
spectively the UBM and model GMM mean vectors, all
corresponding to the ith Gaussian. r is the relevance
factor which acts to control the degree of adaptation as
per [12].

Simply stated, ni corresponds to the number of
frames close to the ith component. For the shortest du-
ration tasks only a few Gaussian components will have
close enough frames to be significantly and accurately
adapted and overall miX might be a poor estimation of
the client GMM. To illustrate this point we report an ex-
periment where Equation 2 is not used and is instead re-
placed by a constant adaptation coefficient (CT) namely
αi(X) = α(X) = α. Results with this adaptation tech-
nique are reported in table 2 and compared to MAP. In
this case we obtained poorer performance on the 1c1c
task but similar or slightly better performance when us-
ing a constant α set to 0.3 (CT in table 2) on the 10s10s
task. When approaching the shortest duration tasks, i.e.
with a diminishing number of available frames (for ex-
ample an average of only 595 frames are used for model
training on the 10s10s task for NIST’05 database, male



part in our optimal configuration), we reach a potential
limit of the MAP adaptation algorithm.

Table 2: Performance comparison of MAP adaptation
technique to a uniform constant adaptation (CT) on de-
velopment set NIST’05 male only.

Task 1c1c 10s10s

Adaptation MAP CT MAP CT

EER(%) 8.25 9.07 25.6 24.7
minDCF(x100) 3.18 3.34 8.09 8.06

4.2. Assessment of eigenvoice modelling

An interesting technique that could deal with such ex-
treme conditions is eigenvoice (EV) modelling [13]. The
main idea behind this approach and its use for speaker
verification [14–16] is that the mean supervectors, m, of
the client model are constrained to follow:

m = mw + Vx, (3)

where V is a low rank matrix (of rank K), base of the
eigenvoice space. As K ¿ C × F (C being the num-
ber of components in the GMM and F the feature order)
the number of free parameters is drastically decreased;
this helps in parameter estimation. As this technique
seems especially well suited for conditions with limited
amounts of data we now report an experiment to assess
its potential. In this experiment the mean supervectors of
the client models are calculated as follows:

m = mw + VVT (mMAP −mw). (4)

mMAP is the speaker mean supervector derived from
MAP adaptation (Equation 1). V is the base of the eigen-
voice space, derived via principal components analysis
(PCA) on mean supervectors from a set of well-trained
speakers. It lies where differences between speaker mod-
els are found to be the most pronounced. To calculate the
speaker models, we project the mean supervectors onto
the eigenvoice subspace after MAP adaptation. It can be
viewed as a post process of the MAP adaptation that re-
moves poorly adapted dimensions. Our experiments us-
ing E(X) (unadapted mean, ‘Maximum Likelihood’ ver-
sion of the parameter estimation) instead of mMAP led to
poorer performance. The obtained mean parameters are
used for the speaker model. The scoring is the same as
for a traditional UBM-GMM approach.

Table 3 shows some results of such a technique com-
pared to the traditional MAP adaptation on both 1c1c and
10s10s task. Such a comparison has already been re-
ported in for example [16] but without distinguishing be-
tween task durations. By considering separately tasks by

their duration, we see that if eigenvoice modelling (GM-
Mev) proves to be suboptimal on the 1c1c task, results
in Table 3 highlight the benefit of eigenvoice modelling
when working with sparse training data.

Table 3: Performance in terms of EER for MAP and
eigenvoice modelling (GMMev) on 1c1c and 10s10s task
from development set NIST’05 male only.

EER(%) 1c1c 10s10s

GMMev 12.51 23.65
GMM-MAP 8.69 25.52

More details on the system setup and further results
including combinations with other systems are discussed
in Section 6.

5. SVM-GSL and short duration tasks
In Section 3 we present some results with SVM-GSL and
SVM-GSL-NAP on long duration tasks only. The reason
is that the performance of such systems are suboptimal
when compared to that of GMM when the available data
is limited.
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Figure 2: MinDCF against EER for GMM baseline and a
series of GSL systems on development set NIST’05 male
only.

This is illustrated on Figure 2, where a system as used
in [6] and referred to ‘GSL cohort 1c’ is clearly outper-
formed by a GMM system in terms of both minDCF and
EER. The NAP compensated version of such an SVM
system [4] (not plotted here) proved even more subopti-
mal (0.0998 for minDCF and 34.4% for EER). Our ef-
fort to utilise NAP on short durations have been unsuc-
cessful; however, in the following paragraphs we present
some improvements that can be made to the SVM-GSL
system.

A first modification is to match the duration of the
negative cohort examples with that of the data for the



model being trained (‘GSL cohort 10s’ in Figure 2). Such
a matching is also used in score normalisation techniques
and referred to for example as ‘targeted T-norm’. For
SVM-based speaker verification ‘targeted cohorts’ seem
to be beneficial.

Another change that brings further improvements is
to directly use E(X) (the adaptation coefficient αi in
Equation 1 is set to 1), in the speaker models. On Fig-
ure 2 this system is marked ‘GSL cohort 10s Relevance
Factor=0’ as with αi = 1 correspond to a null relevance
factor in MAP adaptation.

Model warping [11] is still applied. Model warping
assures that each feature dimension follows a global 0-
mean and unity variance distribution. This is a priori
information on the way the model should describe the
acoustic distribution. When applied on unadapted GMM
means (αi=1 in equation 1), it leads to better performance
with a SVM-GSL system on 10s10s. Note that such a
technique is suboptimal for longer durations or when ap-
plied in a traditional GMM framework. Also of interest,
using eigenvoice modelling as presented in Section 4 to
obtain the GMM supervector brings poorer performance
when used with an SVM classifier (results not presented
here).

The difficulties encountered in Section 4 and 5 to find
useful information to be exploited by GMM or SVM sys-
tems show the problem, when confronted with short du-
rations, to find reliable statistics from the limited amount
of available speech.

The series of modifications presented above brings an
overall relative improvement of 7.0% on the minDCF and
20.5% on the EER.

6. Results
In this section we present individual and combined results
on the 10s10s task from the previously described systems.

6.1. GMM, GMMev, GSLw and fusion

3 systems are presented here:

• GMM: our GMM baseline with 33 feature coeffi-
cients (16 LFCC, 16 ∆ and ∆ energy) with mSAD
and αSAD=0. The same front-end is used for all
other systems to ensure fusion results come from
system complementarity and not a front-end varia-
tion.

• GMMev: as described in Section 4. 124 males
speakers and 185 female speakers from NIST’04
are used to derive the gender dependent eigenvoice
spaces. The rank of the matrix V is K=100 for
male and K=140 for female (more female individ-
ual being available in NIST’04 database).

• GSLw: SVM-based system as described in Sec-
tion 5. The ‘w’ tag highlights the importance of

model warping in this approach.

Fusion is performed from an unweighed sum of T-
normalised scores. Our attempts to use a more sophisti-
cated fusion approach (logistic regression) did not bring
any meaningful improvement. An observation is that the
results on the development set translate well to the valida-
tion set, namely the NIST’06 both genders, all languages
(‘DET1’ as referred to by NIST).

Performances of the 3 single systems are shown in
Figure 3 and 4. The fusion of two or all systems further
demonstrates complementarity between the different ap-
proaches with significant improvements.
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Figure 3: MinDCF against EER for GMM, GMMev and
GSL systems and their combinations on development set
NIST’05 male only.
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Figure 4: MinDCF against EER for GMM, GMMev and
GSL systems and their combinations on validation set
NIST’06 both genders all languages (DET1). Results
with UWS submission to NIST’06 are also given.



Finally we also show fusion results with our submis-
sion to the NIST’06 SRE for the 10s10s task. UWSsub is
a linear fusion between 3 GMM systems using different
front-ends. It is interesting to see in Figure 4 that GM-
Mev and the optimised SVM-GSL show similar comple-
mentarity with this system as with the single GMM. This
final result shows a relative improvement of 7.1% on the
minDCF and 16.1% on the EER when compared to GMM
mSAD (whose front-end SAD has been optimised).

6.2. DET curves

Figure 5 shows 3 DET plots. The first is from our (UWS)
NIST’06 1c1c submission. It is a standard GMM system
and the plot here represents a typical example of perfor-
mance on the short duration task when no specific optimi-
sation to the length of the task is done. The middle curve
comes from a GMM-MAP system with tuned parameters
(frame selection, feature dimension, number of Gaussian
components) as reported in this paper and in [9]. Finally
we present the curve for the fusion results as described
in Section 6.1. This result includes two key elements for
short duration:

• new approaches beyond the traditional GMM-
MAP and

• fusion between many systems.

As the amount of speech data becomes sparse the combi-
nation of expert systems proves particularly beneficial.
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Figure 5: DET curves for a standard GMM optimised
on long duration, a similar GMM but tuned for short
durations and finally a combination of GMMs, eigen-
voice modelling GMM and SVM-GSLw approaches; all
on NIST’06 10s10s task.

7. Conclusions
This paper highlights the limitations of transposing state-
of-the-art techniques that have been used widely on
longer duration tasks to shorter duration tasks. We first
show the importance of accurate speech detection. Our
experiments demonstrate the high sensitivity to SAD pa-
rameters with short duration tasks. We then show the
limits of both GMM and SVM-GSL cases with MAP
adapted mean parameters and propose some novel alter-
native solutions. Finally the benefit of eigenvoice mod-
elling on the short duration task is highlighted. Meaning-
ful improvements are demonstrated on the standard NIST
databases; however, further work is needed to better un-
derstand and integrate all potential variabilities in ASV,
amounts of speech being an important one.
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[16] J. Mariéthoz and S. Bengio, “A comparative study
of adaptation methods for speaker verification,” in
Proc. ICSLP, September 2002, pp. 581–584.


