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Abstract
Open set speaker identification consists of deciding whether an
input utterance corresponds to a target speaker or to an impos-
tor. The most likely among a set of target speakers is hypoth-
esized and verified. Speaker verification is performed by com-
paring the likelihood score of the most likely speaker model to
the likelihood score of an impostor model, and then applying
a suitable threshold. The most common approach to modelling
impostors is the Universal Background Model (UBM). For the
UBM to be effective, it must be estimated from a large number
of speakers. However, it is not always possible to gather enough
data to estimate a robust UBM, and the verification performance
may degrade if impostors, or whatever sources that generate the
input signals, were not suitably modelled by the UBM. In this
paper, a simple approach is proposed which estimates a shal-
low source model (SSM) based on the input utterance, and then
uses this SSM to normalize the speaker score. Though the SSM
does not outperform the UBM, the combination of both models
improves the recognition performance and drastically increases
the robustness to signals not covered by the UBM.

1. Introduction
Closed-set speaker identification can be easily performed by
first training acoustic models for a set of target speakers and
then selecting the most likely speaker for each input utterance.
But open-set speaker identification involves speaker verifica-
tion, that is, deciding whether the input utterance was actually
produced by the most likely speaker or by an impostor. This
task may arise in smart non-intrusive environments which must
be permanently aware of the potential users, reacting in differ-
ent ways, with different allowed functionalities, depending on
the detected user. If an impostor was detected, the smart envi-
ronment may automatically block its functionalities or alert the
system supervisor. Another interesting application is speaker
tracking in broadcast news: the audio signal is segmented into
homogeneous sections (usually speaker turns), which must be
automatically labelled either with the name of a target speaker
or with the name of a default category corresponding to un-
known speakers and other sources (music, noise, etc.).

Whatever the application, speaker data are available for a
set of target speakers, and speaker models can be trained on
them. Though speaker characteristics are reflected at many
levels (acoustic, phonetic, phonological, prosodic, syntactic or
even pragmatic), and all of them may help the identification
task [1], most systems take into account only the physiologi-
cal information conveyed by the acoustic parameters, and use
an acoustic model to gather the statistics of the power spec-
trum specific to each speaker. Once the acoustic models λs

are estimated for the set of speakers s = 1, . . . , S, each in-
put utterance X , which consists of a sequence of acoustic vec-
tors X = {x1, x2, . . . , xT }, is classified by selecting the most
likely speaker ŝ. Applying the Bayes rule, assuming that all the
speakers have equal prior probabilities and the acoustic obser-
vations are independent, and taking logarithms, it follows:

ŝ = arg max
s=1,...,S

P (λs|X)

= arg max
s=1,...,S

P (X|λs)P (λs)

= arg max
s=1,...,S

log P (X|λs)

= arg max
s=1,...,S

T
X

t=1

log p(xt|λs) (1)

The acoustic pdf p(x|λ) is usually implemented by a Gaus-
sian Mixture Model (GMM) [2]. Once the most likely speaker ŝ
is determined, verification may be done by comparing the aver-
age log-likelihood score L(X|λŝ) = 1

T

PT

t=1
log p(xt|λŝ) to

a speaker-dependent threshold τ (ŝ). The normalizing term 1/T
is needed to allow applying a length-independent threshold. But
the likelihood score not only depends on the speaker but also on
many non-speaker utterance-specific variations, so defining a
threshold is not a solution, even if we define speaker-dependent
thresholds.

To compensate the effect of non-speaker utterance-specific
variability and, simultaneously, to allow applying a speaker-
independent threshold τ , speaker scores are normalized by the
likelihood score of an impostor model λŝ,I :

Λ(X, ŝ) = L(X|λŝ) − L(X|λŝ,I) (2)

In the framework of an open set speaker identification task,
the input utterance X is assigned the label ŝ if Λ(X, ŝ) > τ ;
otherwise, X is taken as an impostor utterance. The decision
threshold τ can be heuristically adjusted to trade-off the false
acceptance and the false rejection errors. In this case, a false ac-
ceptance error corresponds to accepting an impostor as a target
speaker, and false rejection errors correspond either to taking a
target speaker as an impostor or to taking a target speaker A as
the target speaker B (in brief, false rejection errors correspond
to missing target speakers).

Various alternatives have been proposed in the literature to
define a suitable model for impostors λs,I . A possible solution
consists of using a cohort of background speakers [3]. Back-
ground speakers are, in fact, known speakers selected according
to a given criterion of closeness, remoteness, competitiveness or
the like, with regard to the target speaker. A speaker model is
estimated for each background speaker, so that the likelihood



score of impostors is computed as a function (usually the arith-
metic mean) of the likelihood scores of background speakers.
Two issues arise with this approach: (1) a suitable cohort of
background speakers must be selected for each target speaker;
and (2) it is not easy to cover all the potential impostors with
just a few background speakers.

The most common approach to modelling impostors con-
sists of using a large and diverse (with regard to all the pos-
sible sources of variability: gender, age, dialect, etc.) pool
of speakers to train a single speaker-independent model, λB ,
called Universal Background Model (UBM), usually a GMM
with a large number of components [4], designed to match the
statistics of any potential input utterance. The UBM approach
has several advantages: (1) a single model is used to normalize
the likelihood scores of all the speakers; (2) it provides univer-
sal acoustic coverage; and (3) it can be used as prior to esti-
mate speaker models through Bayesian adaptation, thus yield-
ing more robust speaker models. However, it is not always pos-
sible to gather enough data to estimate such a robust UBM. On
the other hand, the verification performance would degrade if
impostors, or whatever sources that generate the input signals,
were not suitably modelled by the UBM.

If the input signal X was actually generated by the most
likely speaker ŝ, then the likelihood score yielded by λŝ should
be much higher than that yielded by λB , since λŝ models specif-
ically one source, whereas λB models all the potential sources
(both target speakers and impostors). On the other hand, if the
input signal X was generated by an impostor, close but different
to ŝ, then the likelihood score yielded by λŝ would probably be
slightly higher (or even lower) than that yielded by λB , because
the UBM provides universal acoustic coverage. However, if an
impostor utterance was not suitably modelled by the UBM, then
the likelihood score of λŝ could still be much higher than that
of λB , and the utterance could be mistakenly given the label ŝ.

In this paper we present a new approach to the issue of nor-
malizing speaker scores in speaker verification. Instead of tak-
ing as reference an estimation of what input signals should be
like (the UBM), we take as reference an estimation of the source
based on the input signal. We estimate the acoustic model of
the source that generates the input utterance, that we call Shal-
low Source Model (SSM), and then use this SSM to normalize
the speaker score, obtaining a measure of how well the speaker
model approximates the source model. This approach solves
the issue of coverage, since the SSM just attempts to model the
source that generates the input utterance. Additionally, it only
requires speech data from the target speakers (and obviously,
the input signals), but not those additional hours needed to train
the UBM. A primitive version of this idea has been successfully
applied to speaker tracking in broadcast news [5].

Few alternatives to background speaker models, such as the
one presented in this paper, can be found in the literature. It
is worth mentioning the work of Hsu, Yu and Yang [6], which
is somehow related to our work, since it estimates an acoustic
model from the input utterance and takes it as reference to make
the decision, but the verification procedure they propose, based
on the tolerance interval analysis, use speaker samples instead
of speaker models.

The rest of the paper is organized as follows. Section 2
briefly describes the SSM and suggests ways of combining the
UBM and the SSM to get a more robust source model. Section
3 gives details about the speaker database, the acoustic param-
eters and the baseline system used in the experiments. Results
are presented and discussed in Section 4, including a test set
not modelled by the UBM which reveals the usefulness of the

SSM. Finally, conclusions and guidelines for future work are
summarized in Section 5.

2. The Shallow Source Model
As explained in the previous section, state-of-the-art speaker
verification systems are based on a likelihood ratio, where the
likelihood of the claimed speaker is normalized by the likeli-
hood of impostors. Normalizing the speaker likelihood score
allows to minimize the effect of non-speaker utterance-specific
variability, and a single threshold can be set for all the speakers
[4]. However, whereas speaker models are well defined, it is
not clear what an impostor model should be and how it could be
estimated, since speech data from the actual impostors are not
available beforehand.

Both cohort models and the UBM aim to model unknown
sources, i.e. unknown speakers, by using known data. In par-
ticular, if a large and diverse speaker database is used to esti-
mate the UBM, input utterances (either from target or impos-
tor speakers) will be robustly modelled. But it is not always
possible to gather enough data to estimate a robust UBM. Also
note that, depending on the application (for example, speaker
tracking), the source could be non-human (music, noise, etc.).
Non-human utterances could be discarded by applying an ab-
solute threshold to the likelihood score. However, in this paper
we pursue an alternative for the case an impostor, or whatever
source that generates the input utterance, was not suitably mod-
elled by the UBM. In this case neither the speaker model nor the
UBM would cover the input utterance and the likelihood ratio
would not be reliable.

To improve the robustness to uncovered inputs, instead of
modelling all the potential sources by using lots of data, we pro-
pose to model just the source that generates the input utterance.
We estimate a GMM λX from the input utterance X . Since
X is usually short (2-10 seconds), a low-order GMM is used
to allow robust estimates and avoid overtraining. Note that we
do not aim to model the input utterance but the source (for in-
stance, the speaker, but also other kinds of sources). Here we
make the assumption that using too many mixture components
would model utterance-specific variations instead of source-
generic features (we show results in Section 4.1 that support this
assumption). In summary, a very simple and shallow GMM,
which we call Shallow Source Model (SSM), is estimated to
model the source.

If λX was a perfect source model, then it should be:

P (X|λX) > P (X|λs) ∀s (3)

In these conditions, the difference Λ(X, ŝ) = L(X|λŝ) −
L(X|λX) would be always negative or zero, and it would be
zero only in the case the speaker model λŝ perfectly matched
the source model λX . Clearly, in this latter case the speaker ŝ
should be positively verified, but the same decision should be
made if Λ(X, ŝ) was close enough to zero. Using the source
model score to normalize the speaker score gives a measure of
how well the speaker model approximates the source model.
If the log-likelihood ratio Λ(X, ŝ) was greater than a heuristic
threshold τ , then X would be assigned the label ŝ; otherwise, it
would be taken as an impostor utterance.

In practice, however, λX is not a perfect but a shallow
source model and the inequality 3 does not hold. Speaker mod-
els are trained on much more data than the SSM, so some of
them may cover the input utterance better than the SSM. Never-
theless, the likelihood score of the SSM may still be taken as a
reference to normalize speaker scores, and a heuristic threshold



applied to make a decision. The same interpretation given above
holds in this case: the SSM provides a reference to measure how
well the speaker model approximates the source. Moreover, if
the input utterance X was not suitably covered by speaker mod-
els, the SSM would still guarantee acoustic coverage to some
degree. The likelihood score of the SSM would be higher than
that of the most likely speaker model, and X would be reliably
classified as an impostor utterance.

2.1. Combining the UBM and the SSM
The SSM approach solves the issue of acoustic coverage and
does not need lots of data as the UBM does. Two issues arise,
however: (1) the SSM estimates may be highly influenced by
utterance-specific variations, so that they would not be robustly
modelling the source; and (2) during recognition a new SSM
must be estimated for each input utterance, whereas the UBM
is estimated beforehand.

To overcome the coverage issue of the UBM and the ro-
bustness issue of the SSM, a mixed background model may be
estimated by Bayesian adaptation of the UBM to the input ut-
terance. This would take more computation than simply esti-
mating the SSM, since all the parameters of the UBM should
be adapted to each input utterance. So, in this work a differ-
ent approach is proposed, which consists of computing the log-
likelihood of impostors as a suitable linear combination of the
log-likelihoods of UBM and SSM:

L(X|λI) = αL(X|λB) + (1 − α)L(X|λX) (4)

where α is a heuristically fixed mixing factor. A somehow sim-
ilar approach was previously proposed by Tran and Wagner [7],
where a constant value ε > 0 was added to the likelihood score
of the background model, which was shown to reduce false ac-
ceptances due to unmodelled inputs.

3. Experimental setup
3.1. Datasets
A phonetically balanced database in Spanish, called Albayzı́n
[8], was used in the experiments. Albayzı́n, recorded at 16 kHz
in laboratory conditions, was originally designed to train acous-
tic models for speech recognition and is somehow equivalent
to TIMIT. Albayzı́n contains 204 speakers, each speaker con-
tributing at least 25 read utterances and each utterance lasting
an average of 3.55 seconds.

For the experiments presented in this paper, a gender-
balanced set of 34 target speakers and a gender-balanced set of
68 impostors were considered, the remaining ones being used
as background speakers. Three disjoint sets of utterances were
considered: (1) the training set, consisting of 15 utterances from
each target speaker, was used to estimate speaker models; (2)
the background set, consisting of 25 utterances from each back-
ground speaker, was used to estimate the UBM; and (3) the test
set, consisting of 10 utterances from each target speaker and 10
utterances from each impostor, was used to evaluate the perfor-
mance of the open-set speaker identification systems.

Two different configurations were considered, with 68 and
102 background speakers. The first configuration, 34/68/68,
consists of 510 training utterances, 1700 background utterances
and 1020 test utterances (from which 340 correspond to tar-
get speakers and 680 to impostors). The second configuration,
34/102/68, only differs in the background dataset, which con-
sists of 2550 utterances.

Besides Albayzı́n, a separate database was created to check
the robustness to unmodelled inputs. This corpus, called Mis-
matched, is composed of three subcorpora: (1) Music, con-
sisting of 288 song fragments taken at random from a song
database; (2) Telephone, consisting of 340 spontaneous speech
fragments taken at random from Dihana [9], a database of
human-computer dialogues recorded at 8 kHz through tele-
phone lines; and (3) WWW, consisting of 332 audio fragments
(most of them including speech) taken at random from the in-
ternet. So, the whole dataset consists of 960 utterances, all of
them lasting 3 seconds, which makes it similar (in size) to the
test set of Albayzı́n.

3.2. Acoustic parameters
Albayzı́n was originally acquired at 16KHz, so the utterances
included in the Mismatched dataset were all resampled at 16
Khz. Each utterance was then analyzed in frames of 25 millisec-
onds (400 samples), at intervals of 10 milliseconds. A Ham-
ming window was applied and a 512-point FFT computed. The
FFT amplitudes were then averaged in 24 overlapped triangu-
lar filters, with central frequencies and bandwidths defined ac-
cording to the Mel scale. A Discrete Cosine Transform (DCT)
was finally applied to the logarithm of the filter amplitudes, ob-
taining 12 Mel Frequency Cepstral Coefficients (MFCC). To
increase robustness against channel distortion, Cepstral Mean
Normalization (CMN) [10] was applied on a utterance by ut-
terance basis. The frame energy was also computed, yielding a
13-dimensional feature vector.

3.3. The baseline system
The baseline system employs the state-of-the-art GMM/UBM
paradigm. Gaussian mixture speaker models are directly esti-
mated on the training set. Maximum Likelihood estimates of
the GMM parameters are computed using the EM algorithm,
starting from random values. Taking into account the size of
the training set (15 utterances/speaker, 3.55 seconds/utterance
on average), 32-component GMM have been used as speaker
models. Regarding the UBM, the optimal size of the GMM has
been determined in preliminary open-set speaker recognition
experiments (not shown here). For the 34/68/68 and 34/102/68
configurations, the best performance was obtained with 128 and
1024 mixture components, respectively.

3.4. Performance evaluation
To compare the performance of open-set speaker recognition
systems, results are presented in the form of DET (Detection
Error Trade-off ) curves. DET curves are generated by using
the DET-Curve Plotting software provided by NIST [11], with
some modifications that take into account not only speaker ver-
ification but also speaker recognition errors, as explained in
Section 1. In brief, if an input utterance corresponding to the
target speaker A is recognized and verified as corresponding
to the target speaker B, then a false rejection error is counted.
Sometimes, an optimal operation point in the DET curve is re-
quired, such as the EER (Equal Error Rate, the point where
Pmiss|target = Pfa|non−target). Here we use the well-known
detection cost function used in the NIST speaker recognition
evaluations [12]:

Cdet = Cmiss · Pmiss|target · Ptarget +

Cfa · Pfa|non−target · (1 − Ptarget) (5)

where Cmiss and Cfa are the task-dependent costs of misses



(false rejection errors) and false alarms (false acceptance er-
rors), respectively; Ptarget is the prior probability of detect-
ing a target speaker; and Pmiss|target and Pfa|non−target are
experimental values taken from the DET curve. Given the task-
dependent costs and the prior probability of detecting a target
speaker, the point of the DET curve that minimizes Cdet is
considered optimal. In the experiments presentd in this paper,
Cmiss = Cfa = 1 and Ptarget = 0.33 (which is the proportion
of target speakers in the test set).
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Figure 1: DET curves for six different open-set speaker identi-
fication systems using 32-component GMM as speaker models
and SSM with 1, 2, 4, 8, 16 and 32 mixture components to nor-
malize speaker scores.

4. Results and discussion
4.1. Tuning the SSM
A first series of experiments was run to determine the optimal
size of the GMM used to represent the source in the SSM ap-
proach. It is expected to be a low value, since —as was hy-
pothesized in Section 2— a large GMM would be too focused
on utterance-specific features. Figure 1 shows DET curves for
six different open-set speaker identification systems using 32-
component GMM as speaker models and SSM with 1, 2, 4,
8, 16 and 32 mixture components to normalize speaker scores.
The best performance was obtained for the SSM with 4 mix-
ture components, which supports our claim for a shallow source
model. Note that a 5% EER is obtained without any background
information, just the input utterance used to estimate the SSM.

4.2. Improving the UBM with the SSM
Two GMM/UBM systems, UBM1 and UBM2, were developed,
corresponding to the configurations 34/68/68 and 34/102/68
described in Section 3.1. Both systems used 32-component
GMM as speaker models, and differed in the size of the GMM
used as UBM: 128 mixture components (trained on around
6000 seconds of speech) for UBM1, and 1024 mixture compo-
nents (trained on around 9000 seconds of speech) for UBM2.
As shown in Figures 2 and 3, UBM2 clearly outperformed
UBM1, which reveals that the performance of UBM is closely
related to the acoustic coverage it provides: the larger the train-
ing database the better the performance, since a more detailed
GMM can be trained and a higher number of potential impos-
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Figure 2: DET curves for three open-set speaker identifica-
tion systems using 32-component GMM as speaker models
and three different likelihood normalization methods: UBM1,
a 128-component mixture trained on 68 background speakers;
SSM, a 4-component GMM trained on the input utterance; and
the optimal combination of the two latter, found for α = 0.5.

tors are covered. Note also that both UBM1 and UBM2 outper-
formed SSM, though UBM1 was only a little better than SSM.
At the point that minimizes the detection cost (marked with cir-
cles) UBM1 and SSM show the same miss probability (around
6%), but SSM yields around two times the false alarm probabil-
ity of UBM1. This suggests that the SSM could be considered
as an alternative to the UBM only when not enough data were
available to train this latter.

As proposed in Section 2.1, UBM and SSM could be com-
bined to overcome their respective limitations. UBM1 and
UBM2 have been combined with SSM according to Equation
4, for α = 0.1, 0.2, . . . , 0.9, and the performance of the re-
sulting systems has been evaluated. DET curves for the best
combinations are shown in Figures 2 and 3. It is worth noting
that combining SSM with UBM improves the performance of
UBM even in the case of a large 1024-component UBM which
clearly outperformed SSM. As could be expected, the improve-
ment was relatively greater for the case of UBM1. As shown in
Figure 2, the EER falls from around 5% for SSM and around
4% for UBM1 to less than 2% for the optimal combination of
them. The optimal mixing factor can be interpreted as the confi-
dence of the likelihoods provided by the UBM. So, when using
a large-mixture UBM, we get α = 0.9, whereas for a less robust
UBM we get α = 0.5.

4.3. Increasing the robustness to unmodelled inputs

Finally, a series of experiments was run to evaluate the ro-
bustness of speaker recognition systems to unmodelled inputs.
The test set of Albayzı́n was augmented with the Mismatched
dataset. The extended test set comprised 1980 utterances, 340
coming from target speakers, 680 from impostors in matched
conditions and 960 from impostors in mismatched/unmodelled
conditions (see Section 3.1 for details). This way we tried to
simulate the situation where a relatively large amount of un-
modelled impostor signals must be processed. This is the case
of speaker tracking applications, where an input signal is seg-
mented into acoustically homogeneous regions that must be fur-
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Figure 3: DET curves for three open-set speaker identifica-
tion systems using 32-component GMM as speaker models and
three different likelihood normalization methods: UBM2, a
1024-component mixture trained on 102 background speakers;
SSM, a 4-component GMM trained on the input utterance; and
the optimal combination of the two latter, found for α = 0.9.

ther assigned to a target speaker or to a generic unknown source.
Note that only the test set is changed; the speaker and back-
ground models are the same used for the experiments in Fig-
ure 3 (UBM2, SSM and the optimal combination of UBM2 and
SSM).

Figure 4 shows the resulting DET curves. In this case, the
circles do not mark the points (i.e. the thresholds) that minimize
the detection cost for the extended test set, but those that min-
imized the detection cost for the original test set (see Table 1).
This way, by comparing Figures 3 and 4, the movement of the
optimally tuned systems can be followed, providing a meaning-
ful interpretation of the DET curves.

Table 1: Miss and false alarm probabilities and log-likelihood
ratio threshold minimizing detection cost for UBM2, SSM and
the optimal combination UBM2-SSM (see Figure 3).

Pfa Pmiss Threshold
UBM2 0.0045 0.024 -0.01252
SSM 0.025 0.071 -0.77262

UBM2-SSM 0.0015 0.025 -0.06704

A very important result regards the rejection rate of the un-
modelled/mismatched impostor utterances: the SSM system re-
jects all of them, whereas the UBM system accepts 20.5% as
target utterances (see Table 2 for details). This makes the DET
curve of SSM to improve its false alarm rate with regard to the
DET curve shown in Figure 3, while keeping the miss rate, since
the 340 target utterances are classified the same way. On the
other hand, the false alarm rate of UBM2 degrades so much that
the DET curve moves rightwards in around 15 absolute points.
As a result, SSM clearly outperforms UBM2 when dealing with
the extended test set.

However, the most relevant result from Figure 4 is that the
combination of UBM2 and SSM further improves the perfor-
mance of SSM, yielding the best DET curve. This means that,
though the performance of UBM2 was strongly degraded when
dealing with unmodelled/mismatched impostor utterances, the
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Figure 4: DET curves for three open-set speaker identification
systems (UBM2, SSM and the optimal combination of UBM2
and SSM), computed over an extended test set which includes
signals not covered by the UBM. Circles mark the optimal
thresholds for the original test set.

Table 2: False alarm probabilities over the whole Mismatched
dataset and the subsets Music, Telephone and WWW, computed
at the points minimizing detection cost for the original test set
(see Table 1), for UBM2, SSM and the optimal combination
UBM2-SSM.

Pfa

Mismatched Music Telephone WWW
UBM2 0.205 0.475 0.047 0.130
SSM 0.000 0.000 0.000 0.000

UBM2-SSM 0.003 0.000 0.006 0.003

SSM helped reject them and the performance of the combina-
tion suffered little degradation with regard to that of Figure 3.
Table 2 shows the false alarm probabilities for the whole Mis-
matched dataset and for the three subsets Music, Telephone and
WWW. In the case of UBM2, the highest false alarm probabil-
ity was found for the Music subset (0.475), whereas the Tele-
phone subset (consisting of speech through telephone channel)
yielded the smallest value (0.047). On the other hand, the SSM
approach yielded zero false alarm probability for all the subsets.
In any case, when balancing results for both modelled and un-
modelled inputs, the combination UBM-SSM provided the best
speaker recognition performance.

5. Conclusions
Using a background model to normalize speaker likelihood
scores is a common practice in speaker verification. Most sys-
tems use a large pool of speaker data to estimate a single back-
ground model, called Universal Background Model (UBM),
usually a GMM with a large number of components, which is
used to normalize the likelihoods of all the target speakers. The
UBM attempts to cover the acoustics of all the potential impos-
tors. However, it is not always possible to gather enough data
to estimate such a robust UBM. On the other hand, the verifi-
cation performance would degrade if the input signals were not
suitably modelled by the UBM.



In this paper we have presented a new approach to the is-
sue of normalizing speaker scores in speaker verification which
aims to improve the robustness to uncovered sources. Instead
of modelling all the potential sources by using lots of data, we
estimate a low-order GMM from the input utterance, which we
call Shallow Source Model (SSM), and then use this SSM to
normalize the speaker score. This approach solves the issue of
coverage, since it just attempts to model the source that gener-
ates the input utterance. Additionally, it only requires speech
data from the target speakers (and obviously, the input signals),
but not those additional hours needed to train the UBM.

Open-set speaker recognition experiments have been pre-
sented which evaluate the performance of SSM and compare it
to UBM. Though SSM did not outperform UBM, it was found
that a suitable combination of the SSM and the UBM likeli-
hoods improved the performance of UBM even in the case of
a large UBM. Finally, a series of experiments was run to eval-
uate the robustness of speaker recognition systems to unmod-
elled inputs. In this case, SSM clearly outperformed UBM, but
the most relevant result was that the combination of UBM and
SSM further improved the performance of SSM. This means
that, though the performance of UBM was strongly degraded
when dealing with unmodelled impostor utterances, the SSM
helped reject them and the performance of the combination suf-
fered a little degradation. In any case, the combination UBM-
SSM provided the best speaker recognition performance either
with modelled or with unmodelled signals.

Future work includes comparing the weighted combination
of UBM and SSM to the estimation of a single source model by
Bayesian adaptation of the UBM to the input utterance. Also,
more exhaustive experimentation is planned by rotating target
speakers, background speakers and impostors. Finally, the SSM
approach will be tested in more realistic conditions, by using
speaker databases recorded over telephone channels.

6. Acknowledgements
This work has been partially funded by the Government of
the Basque Country, under program SAIOTEK, projects S-
PE05IK06, S-PE05UN32 and S-PE06UN48, and the University
of the Basque Country, under project EHU06/96.

7. References
[1] Reynolds, D., Andrews, W., Campbell, J., Navratil, J., Pe-

skin, B., Adami, A., Jin, Q., Klusacek, D., Abramson,
J., Mihaescu, R., Godfrey, J., Jones, D., and Xiang, B.,
”The SuperSID Project: Exploiting High-Level Informa-
tion for High-Accuracy Speaker Recognition”, Proceedings
of ICASSP 2003, Vol. IV, pp. 784–787.

[2] Reynolds, D. A. and Rose, R. C., ”Robust Text-
Independent Speaker Identification Using Gaussian Mix-
ture Speaker Models”, IEEE Transactions on Speech and
Audio Processing, 3(1):72–83, January 1995.

[3] Rosenberg, A. E., DeLong, J., Lee, C.-H., Juang, B.-H.,
and Soong, F. K., ”The Use of Cohort Normalized Scores
for Speaker Verification”, Proceedings of ICSLP 1992, pp.
599–602.

[4] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B.,
”Speaker Verification Using Adapted Gaussian Mixture
Models”, Digital Signal Processing, 10(1-3):19–41, Jan-
uary/April/July 2000.
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