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Abstract 
This paper describes a new feature vector classification method 
for speaker identification. Purpose of this paper is constructing 
robust speaker models which only use meaningful feature 
vectors and discard confusing feature vectors. To construct 
robust speaker model, proposed method classifies feature 
vectors using log-likelihood estimation. Experimental results, 
with various segments ranging from 0.5 to 5 s, showed that our 
method outperforms previous method.  

1. Introduction 
Speaker identification is one of the major research area which 
uses speaker recognition technology. Speaker identification 
system selects the speaker who has the highest likelihood when 
the test utterance is given [1]. In text-independent speaker 
identification system, Gaussian Mixture Model (GMM) is the 
most frequently used likelihood function for speaker modeling. 
Conventional GMM based system is composed of two phases, 
the training phase and the test phase. The purpose of the 
training phase is constructing one speaker model for every 
speaker with feature vectors from each speaker’s training data. 
In the test phase, maximum likelihood estimation is performed 
with constructed speaker models [2]. In general, feature vectors 
from different speakers sometimes contain similar 
characteristics because of acoustic similarity between speakers, 
background silence, and environment noises [4]. Because of the 
similar feature vectors, overlap of speaker models which lowers 
the system accuracy is created. 
Recently, a feature vector classification method for robust 

speaker identification was proposed [4]. The proposed method 
classifies feature vectors from each speaker into two categories, 
overlapped and non-overlapped. Then, separated feature 
vectors are used to reconstruct two speaker models, an 
overlapped model and a non-overlapped model, for each 
speaker. In the test phase, only the feature vectors which have 
the maximum probability with non-overlapped speaker model 
are used to identify a speaker and others are discarded. As a 
result, the influence of overlapped feature vectors is decreased 
and fairly high accuracy is guaranteed when speaker models are 
heavily overlapped.* 

However, this method has some drawbacks. In the training 
phase, they didn’t consider the reason why feature vectors are 
overlapped when they classifying them into two categories. If 
there are more overlapped feature vectors than non-overlapped 
ones and most of them are caused by the acoustic similarity 
between speakers, the accuracy will be lowered than 
conventional method due to the lack of feature vectors. In this 
paper, a new feature vector classification method is proposed to 
classify useful overlapped feature vectors from overlapped 
feature vector pool using log-likelihood estimation. 
                                                           
* This work was partially supported by Defense Acquisition Program 
Administration and Agency for Defense Development under the 
contract. 

This paper is organized as follows : Section 2 explains the 
conventional GMM based speaker identification. Section 3 
describes the speaker identification system based on selective 
use of feature vectors and proposes the new feature vector 
classification method. Experiments and results are showed in 
Section 4. Section 5 concludes this work and gives some future 
research works. 

2. Conventional speaker identification 
Speaker identification is a part of pattern recognition area. 
Like other pattern recognition works, speaker identification is 
composed of two phase, the training phase and the test phase. 
The purpose of the training phase is constructing one speaker 

model for every speaker. First, feature vectors are extracted 
from training data. Mel-Frequency Cepstral Coefficient 
(MFCC) is one of the widely used speech spectral features. 
Second, maximum likelihood model parameters are estimated 
using the iterative expectation-maximization (EM) algorithm. 
GMM is known to be the most successful likely-hood function 
for text-independent speaker identification. In general, GMM 
for each speaker is constructed in training phase [2,3]. 
In the test phase, constructed models are used to identify test 

utterances. Under the assumption of independent feature 
vectors, the log likelihood of a model λi, (i =1,… ,S where 
there are S speakers) for a sequence of feature vectors X = 
 which are extracted from test data, is computed , {܂ሬԦܠ ,…,ሬԦ૚ܠ }
as follows: 

ሻܑૃ|܆ሺܘ ܏ܗܔ ൌ  ૚
܂

∑ ܜሺܘ܏ܗܔ
૚  ሻ        (1)ܑૃ|ܜሬԦܠ

Then, model ଍̂ which has the maximum probability with the 
given test utterance is chosen. 
In this approach, the decision is critically depends on the 

interrelation between speaker models. Specially, overlapped 
regions of probability density functions (or speaker models) 
contribute to decision errors. Usually, the more speakers are in 
speaker identification system, the bigger overlapped regions 
get. Hence it is important to mitigate the overlap effects. 

3. Feature vector classification by threshold for 
speaker identification 

Background silence, environment noise, and acoustically 
similar features among speakers are known to the causes of 
overlapped regions between speaker models. Background 
silence and environmental noises are common features which 
are generally contained in a data stream of every speaker. 
Because of the influence of such common features, each 
feature vector set from different speakers may contain similar 
feature vectors. As a result, the discrimination power is 
lowered. Hence it is important to reduce the effect of the 
overlapped regions caused by common features. 
However, overlapped features caused by acoustically similar 

feature between speakers should not be dumped. As mentioned 
above, common features are presented in every speaker’s 



feature space. But acoustically similar features would be 
presented in the feature space of some speakers who have the 
similar voice characteristics. Because those features can 
contribute to make right decision, they should be classified 
from other overlapped features. In this paper, we focus on 
classifying overlapped features into two categories, which are 
common features and acoustically similar features, not to drop 
useful features.  

3.1 Robust speaker identification based on selective use of 
feature vectors 

Recently, a new method which classifies feature vectors into 
two categories was proposed [4]. Feature vectors are classified 
into overlapped and non-overlapped categories in that system. 
First, they construct a speaker model for every speaker just like 
conventional speaker identification. With the constructed 
speaker models, maximum likelihood calculation is performed 
for every feature vector from training utterances. There could 
be some feature vectors falsely recognized if competing 
speaker models are overlapped. These misrecognized feature 
vectors are classified into overlapped category and the others 
are classified into non-overlapped category. After feature 
vector classification, the system constructs two models for each 
speaker. Non-overlapped speaker models are constructed with 
non-overlapped feature vectors and overlapped speaker models 
are constructed with overlapped feature vectors. 
In the test phase, a sequence of feature vectors is extracted 

from test utterance. Then maximum likelihood calculation is 
performed for every feature vectors with reconstructed models. 
There will be some feature vectors which have the maximum 
probability with non-overlapped speaker model and the others 
will not. The system dumps the latter feature vectors and 
performs maximum likelihood calculation with feature vectors 
which were identified non-overlapped feature vectors. 
This method can be useful for sequentially identifying 

speakers when speaker models are heavily overlapped. The 
more overlap gets bigger, the more feature vectors may 
contribute to decision error. By using this method, the speaker 
identification system can use only robust feature vectors to 
make right decision. 
However, the accuracy of this system can be lowered than 

conventional method in some cases. It is because that this 
method dumps every overlapped feature vectors without 
regarding to the cause of overlap. In case of short utterance 
identification, we can get only limited number of feature 
vectors. When there are more overlap feature vectors than non-
overlapped ones and most of them are caused by acoustic 
similarity, we can use only a few number of feature vectors to 
select a speaker. When more speakers are enrolled, this 
problem can significantly lower the system performance. In this 
paper, we try to overcome this problem to use the meaningful 
overlapped feature vectors. 

3.2 Feature vector classification by threshold for speaker 
identification 

In this chapter, we propose our feature vector classification 
method to use the overlapped feature vectors which can 
contribute to discrimination power. Fig. 1 shows the diagram of 
the feature space. Each circle represents one speaker’s feature 
space. Gray colored area represents non-overlapped region, 
dark-gray colored area represents overlapped region caused by 
acoustic similarity and black colored are represents overlap 
region caused by common features. 
Assume that a feature vector xj is laid on the overlapped 

region caused by acoustically similar feature between two 
conventional speaker models. We made hypotheses as follows. 

 

Figure 1: Diagram of feature space 

First, the difference between two likelihood values with each 
competing model will be small. Second, the probability with 
the correct speaker model will be quite higher than the average 
probability of every speaker model. If an overlapped feature 
vector doesn’t satisfy these two conditions, it may be laid on 
the overlapped region caused by common features. 
Assume there are S conventional speaker models Mi (where i 

= 1,…,S). A feature vector xj was used to construct speaker 
model Ms, and has the maximum probability with speaker 
model ܯ௦̂, where ̂ݏ = argmax ݈݃݋  .௜൯ܯ௝หݔ൫݌
If xj is on the overlapped region caused by acoustically similar 

features between speakers, then following expression should be 
true when T1 is a threshold: 

௦̂൯ܯ௝หݔ൫݌ ݃݋݈ െ ௦ሻܯ│௝ݔሺ݌ ݃݋݈    ൏  T1           (2) 

In the case of ݈݌ ݃݋൫ݔ௝หܯ௦̂൯  െ  ௦ሻ = 0, it meansܯ│௝ݔሺ݌ ݃݋݈ 
that xj is non-overlapped feature vectors because it is correctly 
recognized. Among the feature vectors which were classified 
into the overlapped category by previous method, if 
௦൯ܯ௝หݔ൫݌ ݃݋݈ െ -௦̂ሻ  < T, xj should go to the nonܯ│௝ݔሺ݌ ݃݋݈
overlapped category, because it might be a feature vector laid 
on the overlapped region caused by acoustically similar feature 
between speakers. 
Although xj doesn’t satisfy equation (2), it may be a 

meaningful feature vectors when it satisfies following equation: 

௦ܲ െ ௔ܲ௩௚ ൐   ଶܶ,             (3) 

where  ܲܽ݃ݒ ൌ  ∑ ݋݈ ݃ ൯ܵ݅ܯห݆ݔ൫݌
݅ൌ1 ܵ⁄ , ݏܲ ൌ ݃݋݈    ൯ݏܯห݆ݔ൫݌

It is because that if xj is a common overlapped feature vector, 
average likelihood will be almost same to likelihood of correct 
speaker model. While determining the threshold T2, we found 
that T2 should be changed along with the probability Ps. Ps can 
be regarded as a distance from the center of a speaker model Ms 
to xj. When Ps increases, it means that xj gets closer to Ms. In 
this case, although difference between Ps and Pavg is small, xj 
should be classified into non-overlapped category. When Ps 
decreases, it means that xj gets far from Ms. In this case, 
regardless of the difference between Ps and Pavg, xj should be 
classified into overlapped category. To change the threshold T2 
related with the Ps, we divided right side of the equation (3) by 
Ps. As a result, equation (4) is derived as follow: 

௦൯ܯ௝หݔ൫݌ ݃݋݈ כ ሺ݈݌ ݃݋൫ݔ௝หܯ௦൯ െ ௔ܲ௩௚ሻ ൐  T2            (4) 

Based on our hypothesis, we classify feature vectors from 
each speaker’s training data into two categories as follows: 

 xj : jth input vector,  j = 1,…,N. 



 .௜ሻ, i = 1,…,S, j = 1,…,Nܯ|௝ݔሺ݌ ݃݋݈ argmax = ݏ̂ 
 If ݈݌ ݃݋൫ݔ௝หܯ௦̂൯ െ ௦ሻܯ│௝ݔሺ݌ ݃݋݈   ൏  T1,  xj → P ( a 
vector set of a non-overlap category ) , where s is a correct 
speaker index, T1is a threshold. 
 Else if ݈݌ ݃݋൫ݔ௝หܯ௦൯ כ ሺ݈݌ ݃݋൫ݔ௝หܯ௦൯ െ ௔ܲ௩௚ ሻ ൐  T2, 
 xj → P where ܲܽ݃ݒ ൌ  ∑ ݋݈ ݃ ൯ܵ݅ܯห݆ݔ൫݌

݅ൌ1 ܵ⁄   . 
 Else xj → Q ( a vector set of an overlap category). 

After feature vector classification, we reconstruct two speaker 
models (overlapped and non-overlapped) for each speaker. The 
test phase is exactly same as system in 3.1. 
By using our method, we can use more feature vectors, which 
can contribute to discrimination power, than baseline system. 
And we still discard confusing features at the same time. Hence, 
proposed approach can have better performance. 

4. Experiments and results 
We performed experiments on a 544-speaker data subset (314 
females and 230 males) obtained from the Speaker 
Recognition Benchmark NIST Speech (1999) corpus. We 
made three different test cases (8 speakers, 16 speakers, 24 
speakers) to show the performance changes related with the 
number of enrolled speakers. We made 50 test sets for each 
test case. We used 50s spontaneous speech for each speaker. 
The front 40s was used for training speaker models and later 
10s for testing. Gaussian mixture models (with 16 mixtures) 
were used for speaker modeling. We extracted 24 dimensional 
MFCCs from the 8000 Hz sampled signal. We used 30 ms 
hamming window which was shifted by 10ms. 

It is known that utterances should be longer than 2s to 
achieve adequate accuracy in speaker identification [5]. To 
study the error rates changes related with the test utterances 
length, we performed experiments on various lengths of 
speech data (0.5, 1, 2, and 5s spontaneous utterances). To 
compare with the existing method, we conducted same 
experiments for three speaker-identification methods (GMM, 
Baseline system and our proposed method). GMM is the 
speaker identification system based on the conventional GMM 
method and baseline system, which is described in section 3.1, 
means the system based on selective use of feature vectors. For 
each case, 10s test utterances were divided into short 
utterances for testing. For example, to identify 8 speakers with 
1s utterances, 8 ten-second utterances from 8 speakers were 
chopped into 80 one-second utterances. In the proposed system, 
we used threshold T1 = 2.0 and T2 = -180.0 which was found 
empirically. The error rate was calculated as follows: 

Error rate = Fu / Tu,               (5) 

where Fu is the number of falsely identified utterances, and Tu 
is the total number of utterances. 
Fig. 2 shows the experimental error rates for speaker 

identification test. We computed error rate of each input 
utterance length with different number of speakers. It is 
observed that the proposed method outperforms the two 
methods for all utterance length in 8 speaker test. In 16 and 24 
speaker tests, our method shows better accuracy in all 
utterance length than two methods except 0.5s test. In 0.5s 
utterance identification, we can get only a limited number of 
feature vectors after classification. Hence, the accuracy is 
lowered than conventional GMM method due to the lack of 
feature vectors.  
The baseline system shows better performance than 

conventional method for all utterance length except 0.5s test in 
8 speaker test. But in the 16 speaker and 24 speaker tests, error 
rates were higher than GMM for all utterance length. It’s 

because that the overlapped region caused by acoustic 
similarity between speakers has been bigger.  

 
(a) 8 speaker test 

 
(b) 16 speaker test 

 
(c) 24 speaker test 

Figure 2: Error rates with different number of speakers 

Because our method shows better performance than two other 
methods for longer than 1s tests, it is shown that the proposed 
method does well in selecting meaningful feature vectors. 
There are several issues to be researched. First, results for 

0.5s utterances tests with 16 and 24 speakers tell that our 
method still dumps meaningful feature vectors. Hence, we 
need to find additional method to improve the feature vector 
classification performance. Second, we used threshold T1 as a 
fixed value. If we can change the threshold automatically by 
utilizing actual log-likelihood value, number of speakers, and 
other given information, the discrimination power of the 
system can be improved. We will perform experiment after 
changing equation (2) like equation (4). Third, we should do 
experiments with heavily overlapped data. The baseline system 
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was known to have better performance than GMM when the 
speaker models were heavily overlapped [4]. Hence, to prove 
our method works well when the speaker models are heavily 
overlapped, we will do experiments with data which contains 
more background silence or environment noise. 

5. Conclusions 
The purpose of speaker identification is to select a person 
when the test utterance is given. Conventional speaker 
identification system constructs one speaker model for each 
speaker. In the test phase, overlap regions of speaker models 
lower the system accuracy.  
Recently, a feature vector classification method was proposed 

to overcome this problem. This method classifies feature 
vectors from each speaker’s training data into two categories: 
overlapped and non-overlapped, and the system constructs two 
speaker models for each speaker. In testing phase, the system 
uses only non-overlapped feature vectors and can get fairly 
high accuracy. However, this approach has a weak point that 
the system performance is lower than conventional GMM 
method when the number of enrolled speaker increases. We 
thought that this phenomenon was happened because they 
discard overlapped feature vectors regardless of overlap source. 
In spontaneous speech processing, there are three major 

overlap sources: acoustically similar features of speakers, 
background silence and environment noise. We made a 
hypothesis that overlapped feature vectors caused by the 
acoustic similarity will contribute to make a right decision. To 
distinguish useful overlapped feature vectors, we proposed a 
method which classifies feature vectors using log-likelihood 
ratio in training phase.  
Experimental results showed that the proposed method has 

better performance than baseline system for every utterance 
tests. Compared with conventional method, the new method 
showed better performance except 0.5s test. It means that we 
can use more meaningful feature vectors and discard confusing 
ones by using our method. In speaker indexing application, 
overlapped feature vectors caused by common features are the 
main reason which lowers the system performance. Hence, 
because our new method does well in classifying feature 
vectors, it can be used to solve the problem. Now, our ongoing 
research is focused on expending the proposed method to more 
general case. 
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