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Abstract
This paper examines combining both relevance MAP and sub-
space speaker adaptation processes to train GMM speaker mod-
els for use in speaker verification systems with a particular fo-
cus on short utterance lengths. The subspace speaker adaptation
method involves developing a speaker GMM mean supervec-
tor as the sum of a speaker-independent prior distribution and
a speaker dependent offset constrained to lie within a low-rank
subspace, and has been shown to provide improvements in accu-
racy over ordinary relevance MAP when the amount of training
data is limited.

It is shown through testing on NIST SRE data that com-
bining the two processes provides speaker models which lead
to modest improvements in verification accuracy for limited
data situations, in addition to improving the performance of the
speaker verification system when a larger amount of available
training data is available.
Index Terms: speaker verification, factor analysis, probabilistic
PCA.

1. Introduction
The introduction of the GMM-UBM verification framework [1]
and particularly maximum a posteriori (MAP) estimation of
GMM speaker models was a significant step forward in text-
independent speaker verification performance. Compared to
maximum likelihood (ML) estimation, MAP incorporates prior
knowledge in the model estimation criterion, in the form of a
universal background model (UBM) trained on a large and di-
verse range of speech, to constrain the GMM parameter esti-
mates [2]. The MAP approach allowed for significantly more
complex speaker models to be trained with limited data that are
not adversely affected by acoustic events that were unseen in
the training data [1].

While the GMM-UBM approach has proven to be very suc-
cessful at training speaker models with around 2 to 3 minutes
of active speech, there are many applications of speaker ver-
ification technology which require the formation of accurate
speaker models with far more limited durations of training and
testing data. This problem has been addressed by introducing
the concept of MAP adaptation in a low-dimensional speaker
subspace, know as Probabilistic PCA, in order to train speaker
models with a greatly reduced number of free parameters [3].
This method has been shown to produce more accurate speaker
models than the full relevance MAP process when the amount
of training data is very limited in a small vocabulary (digits),
text-independent speaker verification task. Unfortunately, when
there is a large amount of training data, the full relevance MAP
process produces speaker models of a higher quality than those
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produced by the speaker subspace adaptation method due to the
constrained nature of the subspace representation of the speaker.

Ideally, a speaker verification training system would pro-
duce accurate models when training data is limited, while also
producing the best possible models when there is a large amount
of training data and a finer detailed representation is possible.
This paper outlines a method of combining both the relevance
MAP and speaker subspace adaptation approaches in order to
produce a more flexible system which provides accurate mod-
els with limited training data, while also producing high quality
models as the amount of training data becomes large. The ap-
proach taken is to combine the relevance and subspace MAP
methods with a simultaneous optimisation in a manner similar
to the factor analysis approach of Kenny, et al. [4].

The following section briefly outlines the GMM-UBM
framework and relevance MAP as the basis for this work with
a description of the extended factor analysis model provided in
Section 3. Experimental results on the NIST SRE 2005 data us-
ing a range of utterance lengths is then presented in Section 4.

2. GMM-UBM Verification System
The Gaussian mixture model (GMM) is a flexible probabilistic
model commonly used for speaker modelling and consists of a
weighted sum of normal distributions in the feature space [1].
A GMM is fully described by the set of mixture component
distribution weights ωc, means µc and covariances Σc for each
component c = 1, . . . , C.

The GMM-UBM structure first proposed by Reynolds [1]
has become the standard approach to text-independent speaker
verification. The central advance introduced in the GMM-UBM
approach is the extensive use of a universal background model
(UBM) as both the basis of speaker model adaptation and to rep-
resent the null hypothesis in a likelihood ratio test. The UBM
is a high-order GMM trained on a large quantity of speech ob-
tained from a wide sample of the speaker population of interest
and is desigend to capture the general form of a speaker model.

Under the GMM-UBM approach, a speaker model is esti-
mated through maximum a posteriori (MAP) estimation allow-
ing for prior knowledge in the form of a prior distribution to be
incorporated into the estimation process. In the form proposed
by Reynolds, known as relevance MAP [3], the prior distribu-
tion for this estimation is determined by the UBM parameters
and a factor τ governing the influence or relevance of the UBM
on the final speaker model.

The relevance MAP solution can be conveniently expressed
in terms of the concatenated GMM component mean vectors. In
this way, a speaker dependent model for speaker s, is fully de-
fined as µ =

[
µT

1 . . . µT
C

]T
which is a CF × 1 supervector

containing the means of each mixture component in the speaker
GMM, where F represents the dimensionality of the feature
vectors used in the model and C denotes the total number of



mixture components used to represent the GMM. The relevance
MAP model then takes the form

µ(s) = m + Dz(s) (1)

where, m represents the prior distribution in mean supervector
space, while D is set to be a CF × CF diagonal matrix, and
z(s) takes the form of a speaker-dependent offset vector from
the UBM mean. z(s) is estimated by optimising a MAP crite-
rion [5] with the standard normal distribution, N (0, I), as the
prior.

To match Reynolds’ formulation, D is constrained to sat-
isfy I = τDT Σ−1D. Here τ is the relevance factor and Σ is a
diagonal matrix consisting of the UBM component covariance
matrices Σc.

Due to the large number of parameters that need to be es-
timated in the relevance MAP process, the speaker model re-
quires a large amount of training data in order to take full advan-
tage of the technique. When limited training data is available,
the model is unable to saturate, and the ability of the speaker
model produced by the process to accurately model the speaker
is limited.

3. Factor Analysis for Speaker Verification
The factor analysis techniques outlined by Kenny, et al. [4] are
based on the decomposition of the GMM mean supervectors
into speaker- and session-dependent parts. As such, a GMM su-
pervector representation of a given utterance may be expressed
as the sum of a speaker-dependent contribution and a speaker-
independent session contribution. The motivation behind factor
analysis is to explicitly model each of these contributions in a
low-dimensional subspace of the GMM mean supervector space
in order to form a more accurate speaker GMM for speaker ver-
ification purposes.

3.1. Speaker Variability

Speaker subspace adaptation, first proposed for speaker recog-
nition by Lucey and Chen [3], is a process in which it is as-
sumed that the majority of speaker variation is contained within
a low-rank subspace of the full supervector space, as opposed
to the full space. In this situation, the speaker model may be
expressed as

µ(s) = m + V y(s). (2)

In this model, V is a low-rank transformation matrix which has
been trained on a variety of background speakers in order to
capture the main directions of speaker variation [3, 4] and vec-
tor y(s) represents the parameters of the speaker in the spec-
ified subspace. V is trained so that y(s) follows a standard
normal distribution. To train a speaker model, y(s) is again
optimised according to a MAP criterion. This model enables a
speaker GMM to be estimated within the subspace that captures
the most salient characteristics with a low number of parame-
ters.

A significant advantage of using speaker subspace adapta-
tion is that it requires far fewer free parameters to be estimated
in order to train a GMM. Furthermore, the parameters which are
estimated give information about the speaker in the subspace
that contains the greatest variation between speakers, therefore
forming a model that captures the most important information
about the speaker while requiring less data than the full rele-
vance MAP. Unlike relevance MAP, adaptation constrained to
lie within the subspace also infers information about acoustic
events that may not have occurred in the training utterance as the

individual mixture component mean offsets are related through
the definition of the subspace transform V . This implies that the
speaker subspace adaptation process can produce more accu-
rate models with limited speech data than a full relevance MAP
training process, as demonstrated by Lucey and Chen [3].

Unfortunately, as the amount of available speaker data in-
creases a speaker model formed by the relevance MAP will be-
come more accurate than a speaker model constrained to lie
in the speaker subspace due to the fact that the speaker sub-
space becomes saturated [3]. As such, speaker models pro-
duced by the speaker subspace adaptation method will not con-
verge asymptotically to the maximum likelihood estimate as the
amount of training data increases as the relevance MAP ap-
proach will.

3.2. Session Variability

It is possible using a similar method to explicitly model mis-
match between different sessions of the same speaker. It is as-
sumed in this formulation of the speaker model that the most
significant session variability effects may also be described in a
low-dimensional subspace of the full mean supervector space.
This allows for a channel compensation supervector to be intro-
duced into the speaker model, in order to minimise the effect of
this inter-session variability. To achieve this, a speaker GMM
may be considered as the combination of a session-independent
speaker model with an additional offset of the model means rep-
resenting the recording conditions of the session h. This can be
expressed as

µh(s) = µ(s) + Uxh(s). (3)

In this representation, U is a low-rank transformation matrix
representing the main directions of session variation. The ma-
trix U is determined using a wide range of speakers, and com-
paring different sessions of the same speakers in order to deter-
mine the subspace which contains the most significant session
variability effects [4, 6]. Similarly to the speaker factor adapta-
tion, the vector xh(s) is an estimate of the session conditions
with the session subspace, and follows a standard normal distri-
bution.

By explicitly modelling the session conditions in this way
it is possible to remove the most significant linear effects of
session variability and generate a more reliable estimate of the
true characteristics of the speaker mean, µ(s). This approach
has been demonstrated to provide significant improvements in
the verification accuracy of speaker verification systems [6, 4]
when sufficient data is available to estimate the session condi-
tions.

3.3. Combining Relevance and Subspace MAP

A significant limitation of the speaker subspace adaptation ap-
proach is the assumption that all speaker variation lies in a low-
dimensional subspace of the full speaker space. While this sub-
space is enough to provide a speaker model of reasonable qual-
ity when the amount of available training data is limited, it be-
comes insufficient to provide the most accurate model when the
amount of data increases.

It is therefore useful to assume that the speaker model takes
a form which combines both relevance MAP and speaker sub-
space adaptation [4]. This form is able to provide accurate
speaker models with limited available training data, while also
converging asymptotically to the maximum likelihood estimate
as the amount of training data increases. In this case, the



System 1 conv 60 sec 20 sec 10 sec
Baseline .0442 .0456 .0608 .0752
Ry = 50 .0437 .0451 .0598 .0732
Ry = 100 .0434 .0452 .0592 .0736
Ry = 200 .0422 .0434 .0571 .0727

Table 1: DCF on the female subset of the 2005 NIST SRE com-
mon evaluation condition.

speaker GMM takes the form expressed as

µ(s) = m + V y(s) + Dz(s). (4)

In addition to this, a joint speaker model may be formed by
combining the relevance MAP method and speaker subspace
training with session variability training by using the formula-
tion (4) in (3). This enables the combined model to compensate
for channel effects in addition to modelling the speaker vari-
ation and retaining the property of asymptotic convergence to
the maximum likelihood estimate with large amounts of train-
ing data.

To optimise the full model described in (4) it is necessary
to simultaneously optimise the variables y(s) and z(s) as well
as the set xh(s) in the case of session variability modelling.
This is a non-trivial task requiring the decomposition of a very
large matrix [4]. A direct solution to this optimisation problem
is possible, however, this work employs an efficient, iterative
algorithm based on the Gauss-Seidel approximation method [6].

4. Experiments
The baseline recognition system used in this study utilises
fully coupled GMM-UBM modelling using MAP adaptation
and feature-warped MFCC features with appended delta co-
efficients [7]. An adaptation relevance factor of τ = 8 and
512-component models are used throughout and a session vari-
ability subspace of dimension Rx = 50 is used when session
variability modelling is applied. The transforms for both the
speaker and session subspaces were trained on a combination of
Switchboard-2 and Mixer data drawn from earlier NIST SRE’s.

A modified version of the NIST 2005 Speaker Recognition
Evaluation [8] corpus and protocol was used for the presented
experiments. This data is drawn from the recent Mixer conver-
sational telephony corpus which includes a wide variety of mis-
matched conditions with speakers using both landline and mo-
bile handsets and channels. To investigate the trends of the eval-
uated techniques, a range of shortened utterance lengths was
tested. The shortened utterances were obtained by truncating
the utterances of the 1conv4w-1conv4w condition to the spec-
ified length of active speech data for both training and testing.
Utterance lengths of 10, 20 and 60 seconds were examined, as
well as the full available conversation side for comparison pur-
poses (typically with 100–120 seconds of active speech).

4.1. Results

The results presented in Tables 1 and 2 demonstrate a consistent
but small advantage in combining relevance MAP adaptation
with speaker adaptation when training speaker models for the
purpose of speaker verification. It can be seen that the accuracy
of the verification system is an improvement on the ordinary
relevance MAP process over all tested utterance lengths.

The improvements shown in the results of the shorter tests
demonstrate that this approach has merit when limited utterance

System 1 conv 60 sec 20 sec 10 sec
Baseline 9.51% 9.93% 14.73% 20.88%
Ry = 50 9.34% 9.76% 14.31% 20.79%
Ry = 100 9.26% 9.60% 14.14% 20.62%
Ry = 200 9.09% 9.51% 13.80% 19.87%

Table 2: EER on the female subset of the 2005 NIST SRE com-
mon evaluation condition.

System 1 conv 60 sec 20 sec 10 sec
Baseline .0442 .0456 .0608 .0752
Ry = 200 .0422 .0434 .0571 .0727
Channel .0305 .0373 .0702 .0857
Chan Ry = 200 .0295 .0350 .0671 .0880

Table 3: DCF on the female subset of the 2005 NIST SRE com-
mon evaluation condition for systems with and without channel
compensation.

System 1 conv 60 sec 20 sec 10 sec
Baseline 9.51% 9.93% 14.73% 20.88%
Ry = 200 9.09% 9.51% 13.80% 19.87%
Channel 7.24% 8.67% 19.11% 28.87%
Chan Ry = 200 6.90% 8.33% 18.01% 26.35%

Table 4: EER on the female subset of the 2005 NIST SRE com-
mon evaluation condition for systems with and without channel
compensation.

data is available for training speaker models. There is an im-
provement in the resultant DCF and EER scores of the tests us-
ing both 10 seconds and 20 seconds of training data when both
speaker adaptation and relevance MAP are incorporated into the
speaker training process, with the best relative improvement ob-
served for the 20 sec condition showing 6% relative improve-
ments in both DCF and EER.

It is noted that using 200 speaker factors produced the low-
est DCF and EER scores for the entire range of utterance du-
rations tested. These results, particularly when the 10 sec con-
dition in considered, indicate that an increase in speaker factors
could well be supported even with these short utterance lengths.
Of course, increasing the number of speaker factors will also
require an increase in the size of the corpus used to train the
transform V to a ensure sufficiently representative subspace.

It is also notable that the combined speaker subspace adap-
tation and relevance MAP process produces improved results
for longer training utterances in addition to short-length training
utterances. This shows that combining speaker subspace adap-
tation and relevance MAP techniques to train speaker models
provides improvements in verification accuracy over a range of
training durations, therefore providing a more robust and flexi-
ble speaker verification system.

Tables 3 and 4 present the comparative performance of sys-
tems additionally incorporating session variability modelling
into the factor analysis model. Again, the best performance is
given by a system with combined speaker subspace and rele-
vance MAP for all utterance lengths, however, incorporating
channel factors appears to be effective only for longer utter-
ances. These results agree with previously published results
in [6] that demonstrated a testing utterance length of 10 to 20
seconds were needed to observe improved performance from
session variability modelling when the speaker models were
trained on a full conversation side.



System 1 conv 60 sec 20 sec 10 sec
Baseline .0429 .0449 .0589 .0748
Ry = 200 .0417 .0423 .0562 .0719
Channel .0280 .0348 .0668 .0854
Chan Ry = 200 .0274 .0337 .0648 .0862

Table 5: DCF on the female subset of the 2005 NIST SRE com-
mon evaluation condition for systems with Z-Norm applied.

System 1 conv 60 sec 20 sec 10 sec
Baseline 8.92% 9.93% 14.73% 20.79%
Ry = 200 8.59% 9.18% 13.89% 20.12%
Channel 6.48% 8.00% 18.43% 29.12%
Chan Ry = 200 6.48% 7.74% 17.59% 26.60%

Table 6: EER on the female subset of the 2005 NIST SRE com-
mon evaluation condition for systems with Z-Norm applied.

It is notable that the verification system trained on the 10
second condition was able to gain advantages through estimat-
ing 100 or 200 speaker factors, but was not able to estimate 50
channel factors effectively. It is hypothesised that this inconsis-
tency is due to the fact that information represented by the chan-
nel factors is effectively removed, therefore poorly estimated
channel factors may cause useful information to be discarded.
On the other hand, poorly estimated speaker factors may still of-
fer a useful representation of the data and correspondingly some
improvement in the verification system.

It is alos noted that these results were obtained using a rel-
evance factor of τ = 8 throughout, which may be suboptimal
for combining both relevance MAP and subspace adaptation.
Future work will investigate methods for determining the most
appropriate relevance factor for the combined model. It is not
clear at this stage whether the relevance factor should be ob-
tained through a tuning process using the combined model or
via a direct optimisation of the matrix D. Determining the
most appropriate relevance factor is expected to result in further
improvements for the combined relevance MAP and subspace
adaptation process.

Finally, results are presented in Tables 5 and 6 for the evalu-
ated systems incorporating Z-Norm score normalisation. Com-
paring to the results in Tables 3 and 4, the introduction of score
normalisation has not made significant changes to the observed
trends with a performance gain observed with Z-Norm in almost
all cases. It is worth noting, however, that Z-Norm has reduced
the advantage of incorporating the speaker subspace adaptation
for the systems with channel compensation and that Z-Norm is
not helpful for the EER in the 10-second condition.

5. Conclusions
It was proposed in this work that the factor analysis modelling
approach to GMM speaker verification is an ideal solution for
combining the benefits of speaker subspace MAP adaptation
for short utterances and standard relevance MAP adaptation for
longer utterances to provide a speaker modelling approach that
is optimal over a wide range of utterance lengths. MAP adapta-
tion within a low-dimensional subspace has been demonstrated
to capture the dominant characteristics of a speaker with very
short training but is limited by the subspace as the training
length increases. Conversely, relevance MAP asymptotically
approaches the optimal ML solution for large amounts of train-
ing but is unable to infer the characteristics of a speaker for

unseen acoustic events. These characteristics were combined
in the FA approach by simultaneously optimising a combined
subspace and relevance MAP criterion.

Experiments conducted on 2005 NIST SRE data using a
range of training and testing utterance lengths from 10 seconds
up to a conversation side of typically 2 to 3 minutes of active
speech demonstrate a consistent advantage to the combined sub-
space and relevance MAP criterion over relevance MAP alone.
Further, additionally including session factors in the model gave
improved performance for longer trials but degraded perfor-
mance as the utterance lengths dropped to 20 seconds and be-
low.
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