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Abstract

Real-world deployment of speaker verification systems of-
ten have to contend with degraded signal quality and erratic sta-
tistical behaviour of the speech data being modelled. We present
signal quality estimation techniques for extraction of additional
information about the speech data that can be used to improve
performance of speaker verification systems in degraded condi-
tions. We propose methods to perform objective evaluation of
these quality measures for the purpose of their comparison us-
ing benchmarking databases, and show why the class must be
taken into account when evaluating quality measures.

1. Introduction
Many factors conspire to cause verification errors in speaker
verification. Variability in acquisition conditions, as well as
variability of the users’ presentations entail a certain level of
uncertainty in the classifier’s decision. In order to address these
issues and improve classification performance, it is crucial to
be able to measure phenomena which may be indicative of vari-
ability.

A quality measureis a measurable indicator of a factor im-
pacting the classifier behaviour, which exhibits a dependency
relationship with the classifier output scores and/or classifier de-
cisions. It can be jointly modelled with the classifier’s scores or
decisions in order to improve the verification result or provide
estimates of the reliability of the verification result.

In pattern recognition terms, quality measures constitute
features. They are used in single-classifier systems, where they
are crucial because they provide additional information which
can help a meta-classifier to improve upon the results of both
the base classifier and a meta-classifier using only scores or de-
cisions. They are also used in multiple-classifier systems, where
they help explain the relationships between classifiers, leading
to classifier combination models that outperform combination
models using only the hard or soft output of classifiers.

In speaker verification, degraded acquisition conditions re-
sulting in additive noise or channel noise cause utterance-
dependent errors. There are many approaches to handle mis-
match and afford robustness to the classification, many inspired
by similar work in speeech recognition, at all level of the pattern
recognition chain:

One approach is feature compensation, whereby features
are transformed using some warping function to conform to an
expected distribution[1, 2].

The most commonly used approach consists in normalising
the score obtained on the user model by the score obtained on
the background model; the idea being that the condition mis-
match will affect both models and thus compensate for user
model score drift [3, 4].

Another possibility is to have explicit models of scores un-
der certain degraded conditions, possibly incorporating quality
measures [5, 6]. This is the approach we favour, as if offers
intepretability and it has been reported that filtering or compen-
sation approaches afford only limited robustness [7]. Further-
more, it is usable in conjunction with other robustness methods.

In all cases where the signal quality is explicitely modelled
(such as [8]), quality measures play an essential role. In or-
der to improve on verification results, it is important to develop
signal quality measures which have a dependency relationship
with the classifier output. This paper proposes to explore some
of the issues related to the use of quality measures in speaker
verification.

In Section 2, we propose a method for evaluation of quality
measures. We review speech quality measures in Section 3, and
conclude with experimental evaluation of quality measures in
Section 4.

2. Evaluating quality measures

2.1. Visual inspection

Since one possible use of quality measures is to predict veri-
fication errors, a way of evaluating quality measures is to plot
their distributions with respect to two classes: the class of cor-
rect classification decisions, and the class of incorrect classi-
fications, which we denote Decision Reliable:DR = 1, re-
spectivelyDR = 0. These densities can be obtained in several
ways, but we recommend kernel-based density estimation, his-
tograms or mixture models because many times these distribu-
tions will be asymmetrical and multimodal.

2.2. Assuming homoscedasticity of scores

A simplifying assumption that can be made is that the variance
of the score is equivalent throughout its range. While this does
not hold in practice, it allows for the definition of simple mea-
sures of performance for quality measures.

2.2.1. Assuming linearity of relationships with quality mea-
sures

Quality measures can be evaluated by measuring their statistical
dependence on the scores. Under the assumption of linearity
this dependence can be estimated by computing the correlation
coefficient between the quality measuresQM and scoresSc.
Additionally, the linear correlation coefficient between theDR
variable and the value of the quality measure gives an indication
of the ability of the quality measure to predict errors.



2.2.2. Not assuming linearity of relationships with quality mea-
sures

In real-world data, the relationship between quality measures
QM and scoresSc is not generally linear. This is also observed
in [9] for fingerprints. Therefore, we resort to a more sophisti-
cated measure of dependence between these two random vari-
ables: the mutual information between score and quality mea-
sureI(Sc; QM).

For ease of use in computations and easier interpretability
of the measure, we propose to make use a normalised variant of
the mutual information, defined by [10]:

Ī(Sc; QM)
△
=

I(Sc; QM)
√

H(Sc)H(QM)
, (1)

whereH(Sc) andH(QM) are the marginal entropies of scores
and quality measures.

2.3. Not assuming homoscedasticity of scores

In practice, it is often found that the variance of scores is largely
dependent upon the class. This is explained further in Sec-
tion 2.4. We amend our basic performance measures to account
for this fact.

2.3.1. Assuming linearity of relationships with quality mea-
sures

The partial correlation coefficient [11] is a modification of the
classical correlation coefficient in order to compute the correla-
tion between two random variables given knowledge of the state
of another random variable.

The (first-order) partial correlation coefficient is defined as:

ρxy·z =
ρxy − ρxzρyz

√

(1 − ρ2
xz)(1 − ρ2

yz)
, (2)

where the notation·z can be interpreted as “for a subsample
where random variableZ has valuez”. TheZ variable is called
the control or conditioning variable

To evaluate quality measures, we define two partial corre-
lation coefficients:

ρSc|Ω = ρSc QM ·Ω (3)

ρDR|Ω = ρDR QM ·Ω, (4)

whereΩ = {ω0, ω1} is the class variable representing either
clientsω1 or impostorsω0.

2.3.2. Not assuming linearity of relationships with quality mea-
sures

If the linearity assumption is not deemed to hold, as is often
the case in real-world data, the partial correlation coefficients
should be replaced by a (normalised) conditional mutual infor-
mation measure obtained on the joint densities of interest, either
(Sc, QM) or (DR, QM), defined as:

ISc|Ω = I(Sc; QM |Ω) (5)

IDR|Ω = I(DR; QM |Ω), (6)

whereΩ = {ω0, ω1} is the class variable representing either
clientsω1 or impostorsω0.

The contional mutual informationI(X; Y |Z) can be inter-
preted as the mutual information betweenX andY , with the

effects of the conditioning variableZ removed. We propose a
normalised version given by:

Ī(X; Y |Z)
△
=

I(X; Y )
√

H(X|Z)H(Y |Z)
. (7)

2.4. The need for class-conditional evaluation of quality
measures

While noise can be assumed to have an equivalent effect on im-
postor and clientlikelihoods, we remark that the relationship
between quality measures andscoresis different for clients and
impostors. An example is shown in Figure 1, where a qual-
ity measure related to the signal-to-noise ratio is plotted against
score distributions. It clearly appears that client scores are more
correlated with the quality measures than impostor scores.

In addition to our own experiments, evidence to support this
claim is found in numerous publications on speaker recognition.
For instance, in [12, Figure 5] it is apparent that the client score
distribution is much more affected by mismatched transmission
channels than the impostor score distribution. In [13, Figure 1],
the addition of artificial Gaussian noise on the speech modal-
ity affects the client distribution much more than the impostor
distribution. In [14, Figures 2-3], the client distribution is again
more perturbed than the impostor distribution when tested with
different handsets.
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Figure 1: Scatterplot of scores and a SNR-related quality mea-
sure showing different correlations depending on class. Crosses
indicate impostors and circles indicate clients

This effect is due to the fact that noise manifesting itself as
a linear shift in the likelihood domain can affect clients and im-
postor score distributions differently, because of the logarithmic
transform and the world model normalisation used to obtain a
log-likelihood ratio.

2.5. A feature selection perspective

An important point is that the ultimate evaluation for a quality
measure is to apply it to a biometric verification task dataset
and see if it leads to improvements in terms of final error rate
or rejection rate. While a quality measure may seem to poorly
separate the error-conditional distributions, there may still exist
a classifier which can make use of the quality data.

This is analogous to the situation in feature selection: filter
methods (functions indicative of the ultimate performance) are
generally found to provide inferior results to wrapper methods



[15], where the measure of performance is the use of a feature
with the classifier itself.

3. Signal quality measures in speaker
verification

Signal quality measures aim to account for degradation in signal
quality, which can come from different sources. We can use
both time-domain techniques and spectral-domain techniques
to obtain a quantity correlated with the amount of noise in the
signal.

While much research in speech processing has in the past
concentrated on how humansperceivespeech quality [16], in
the application of speaker recognition we are not necessarily
interested in trying to emulate human opinion (as represented
e.g. by a Mean Opinion Score). Rather, we are looking to de-
sign measures corresponding to real-world factors which bear
on recognition performance. These two approaches may not
yield similar measures.

3.1. Quality measures based on speech segmentation in the
time domain

Voice activity detection (VAD), also called speech/pause seg-
mentation, can be used to obtain an estimate of the signal-to-
noise ratio. This is done by assuming the average energy in
pauses represents the noise energy, and the energy in speech
represents the signal energy. In [6], we proposed two algorithms
to obtain the segmentation, one based on the energy of the sig-
nal, the other based on the spectral entropy. The SNR estimated
then yields two quality measures, respectivelyQMV ADE

and
QMV ADH

.

3.2. Quality measures based on higher-order statistics

Since clean speech has a very distinctive distribution (sharp
peak at sample value 0 - a large amount of a speech signal is ac-
tually silence), we can exploit this knowledge to infer when the
signal is noisy. The additive noise we are concerned about has
energy (if it does not then it does not impair the speech signal),
which means it will contribute to modifying the time-domain
distribution of amplitudes.

Higher order statistics can be used to summarise the shape
of unimodal distributions in a meaningful way. The skewness
(or Fisher skewness) measures the asymetry of a distribution
with respect to its mode. Any symetrical distribution (such as
Laplace, Gaussian, or uniform) has a skewness of 0. Negative
skewness indicates that the distribution has a longer tail on the
left of the mode, while positive skewness indicates the opposite.

QMskew =
1

T

T
∑

t=1

( st − µs

σs

)3

, (8)

Kurtosis (or Fisher kurtosis), defined in Eq. (9), corre-
sponds to the “peakiness” of the distribution. By definition, a
Gaussian distribution has a kurtosis of 31. A leptokurtic (or
supergaussian) distribution has a kurtosis higher than 3 and is
“peakier”, while a platykurtic (or subgaussian) distribution has
a kurtosis lower than 3 and is “flatter”, that is its probability
density is spread over a larger dynamic input range.

1Or 0, as some definitions of kurtosis subtract 3 to have kurtosis of
0 for the normal distribution

QMkurt =
1

T

T
∑

t=1

( st − µs

σs

)4

(9)

Unfortunately, kurtosis estimation is very sensitive to out-
liers. We therefore introduce a third related measure, called the
centre bin measure, to approximate kurtosis and estimate the
peakiness of the distribution. First, the signal sample ampli-
tudes are binned in 100 equally-spaced bins, then the measure
is defined as the ratio of the number of samples in the bin con-
taining the most samples to the total number of samples in the
other bins.

QMbin =
Nmax(s)

(
∑

B Nb(s)
)

− Nmax(s)
, (10)

whereNb(s) represents the number of samples in binb, and
Nmax(s) represents the number of samples in the bin that con-
tains the most samples.

4. Experiments and results
4.1. Systems and databases

The first database is the speech part of XM2VTS , which con-
tains 295 users. The protocol used is the Lausanne protocol,
configuration 1. Where applicable, the results are reported by
training the models on the evaluation set and testing them on
the testing set. We also use a noisy version of XM2VTS, which
is generated by adding babble-type noise in SNRs uniformly
distributed between 0 and 20 dB.

The second database is the speech part of the BANCA
database [17], which contains 2x26 users. The protocole fol-
lowed is the P protocol. Where applicable, the results are re-
ported by taking an average of measures when first training the
fusion model on G1 and testing on G2, then training on G2 and
testing on G1.

Additionally, to evaluate the performance of speech seg-
mentation, on which theQMV AD family of quality measures
is based, we use the CUAVE audio-visual database [18]. This
is a labelled database containing 36 individual users, both male
and female, each providing utterances of separated digits for
about 2 minutes.

The speaker verification system used for BANCA is based
on the Alize toolkit [19]. The Alize speech/pause detector is
run to remove silence portions of the input speech signal be-
fore feature extraction. Features used are 12 MFCCs with delta
and acceleration coefficients, and cepstral mean normalisation.
A world model is trained from the pooled clean training data
of all clients, using 200 diagonal covariance-matrix Gaussian
components. Each client’s model is then adapted (means only)
with their own recordings using MAP adaptation.

On XM2VTS, we use the 200-Gaussian components GMM
classifier from [20], which uses 16 spectral subband centroid
features.

4.2. Quality measures based on segmentation in the time
domain

4.2.1. Performance of speech segmentation

Since the SNR estimate depends on the speech/pause segmenta-
tion, we evaluated the performance of this VAD on the “individ-
uals” set of the CUAVE database. The performance is computed
in terms of four quantities [21]:front-end clipping(FEC),
indicating speech missclassified as noise due to the transition



from noise to speech.Mid-speech clipping(MSC) indicates
speech misclassified as noise during a speech period. Noise
classified as speech when the signal transitions from speech to
noise is denotedOV ER. Finally, noise that is classified as
speech during a noise period is denotedNDS. We simplify the
evaluation of performance by reporting 3 joint quantities: noise
classified as speech (NAS = OV ER + NDS), speech classi-
fied as noise (SAN = FEC + MSC), and total error rateR
which is the number of signal samples missclassified, no mat-
ter whether they were speech or noise. These three quantities
are evaluated for each file in the CUAVE database (36 files) and
the average is presented in Table 1. It should be noted that the
majority of errors are made on three particular files (subjects),
and that the files have a high signal-to-noise ratio. Therefore,
the VAD will be less accurate on noisy data. This confirms that
it could prove useful to combine quality measures derived from
this speech/pause segmentation with other quality measures, es-
pecially if they are robust to noise (see Section 4.2.2).

NASµ [%] SANµ [%] Rµ [%]

13.03 11.45 12.47

Table 1: percentage of noise samples classified as speech
(NASµ), percentage of speech samples classified as noise
(SANµ), and total classification error (Rµ). All results are av-
eraged over the utterances in the individuals set of the CUAVE
database.

4.2.2. Performance of SNR estimation

To evaluate the correlation of the energy-based quality mea-
sure QMV ADE

with a known signal-to-noise ratio, we run
the energy-based VAD algorithm against the noisy version of
XM2VTS, thus producing a set (real SNR, quality measure)
for each utterance. The results are shown in Fig. 2. Here it
can be seen that the energy-based measure is highly correlated
(ρ = 0.82) with the real signal-to-noise ratio. Thus, it can be
expected to be a good indicator of babble-type additive noise.
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Figure 2: Correlation between the energy-basedQMV ADE
sig-

nal quality measure and the entropy-based signal quality mea-
sureQMV ADH

and real signal-to-noise ratio on a noisy version
of the evaluation subset of XM2VTS. Each data point corre-
sponds to an utterance.

Secondly, we run the entropy-based VAD algorithm against
the same noisy database to extractQMV ADH

. The results are

shown in Fig. 2. The entropy-based measure is also highly cor-
related (ρ = 0.75) with the real signal-to-noise ratio. The su-
perior performance of this estimator in very noisy conditions
(SNR=5 dB or below) with respect to the energy-based quality
estimator is made clear from this figure, where it can be seen
that the spread of estimates for this SNR range is much lower
than that of the energy-based quality estimator2.

4.2.3. Numerical evaluation

As an example of visual inspection, the distribution of the
entropy-based quality measure on BANCA is shown in Fig. 3.
Here, in general, and according to intuition, higher values of
SNR mean higher signal quality and fewer errors. More precise
assessment can be obtained by using the numerical performance
indicators described in Section 2.3.
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Figure 3: Distributions of entropy-based quality measure
QMV ADH

for correct (DR=1) and erroneous (DR=0) classifier
decisions on BANCA G1 data.

Table 2 gives results for BANCA, while Table 3 shows
results on XM2VTS. The class-conditionality of the relation-
ship between scores and quality measures (pointed out in Sec-
tion 2.4) is clearly visible from these results: both partial corre-
lation coefficients and conditional mutual information are much
larger for clients than for impostors. The second result to point
out is that the relationship between scores and quality mea-
sures seems stronger than between the reliability indicatorDR
and quality measures. This can be explained by the fact that
the (DR, QM) joint feature space is less informative than the
(DR, Sc, QM) feature space, whereDR can actually be use-
ful in defining score clusters (erroneous and correct decisions).
That is, quality measures on their own, without scores, can not
predict errors as well as when used together with scores.

The dependence between scores and quality measures is
much less pronounced on the XM2VTS database than on the
BANCA database. This is a reflection of the good signal qual-
ity encountered in this database, and an indication that qual-
ity measures may not improve verification results much in this
case.

4.3. Higher order statistics measures of quality

4.3.1. Performance of SNR estimation

To evaluate the correlation of the quality measures with the real
signal-to-noise ratio, we again use the noisy XM2VTS. The re-
sults for kurtosis (Eq.(9)), skewness (Eq.(8)), and the centre bin

2numerically, the residuals for a least-square linear fit are much
smaller



measure (Eq.(10)) show that the centre-bin measure is highly
correlated (ρ = 0.54) with the real signal-to-noise ratio and
can be expected to be a good indicator of babble-type additive
noise. The Kurtosis is less correlated (ρ = 0.43), and the skew-
ness gives negligible correlation (ρ = 0.17).

However, good correlation with signal-to-noise ratio does
not guarantee that we will be able to predict errors, as the mod-
els or features may be somewhat robust to this kind of noise.
This is a fundamental point: quality measures must be assessed
jointly with specificclassifier output, and it cannot be said that
a particular quality measure is the best to use for all classifiers.
Also, it is probable that the best quality measure on a particular
database is not the same for other databases, where the noise
characteristics may be very different.

4.3.2. Numerical evaluation

We obtain numerical values of the performance of these quality
measures; the results are shown in Table 2 for BANCA, and in
Table 3 for XM2VTS.

For the BANCA data, it seems that skewness is the most
promising of the measures based on higher-order statistics, but
that these measures have a weaker dependency relationship
with the classifier output than the VAD-based quality measures.
However, an advantage is that the distributions of higher-order
statistics can be well approximated by a low-order mixture of
Gaussians.

For the XM2VTS data, quality measures based on higher-
order statistics exhibit higher dependency with classifier output
than do VAD-based measures. This is an indication that these
quality measures might be favoured for this database.

4.4. Using quality measure in single-classifier speaker veri-
fication systems

As a brief example of using quality measures in a speaker ver-
ification system, we use a scheme by which a meta-classifier
is trained on the score output of the base classifier (see Sec-
tion 4.1), and this second-level feature space is augmented with
a quality measure.

The meta-classifier can be based on generative probabilistic
models (as in [6]), on discriminative approaches, or any other
classifier. In the current case we use boosting on a C4.5 tree.

The 10-fold cross-valudation results in Table 4 show that
all quality measure allow to improve upon the base classifier in
terms of Half-Total Error Rate (HTER), even if only slightly.
For higher-order statistics, the skewness and center bin mea-
sures perform best, as hinted by the generally higher correla-
tions observed in Table 2.

Quality measure ∆HTER[%]

QMV ADE
27.7

QMV ADH
34.2

QMkurt 11.0
QMskew 34.2
QMbin 26.0

Table 4: Improvement in HTER by using different quality mea-
sures on BANCA G2 data. The baseline classifier yields 8.4%
HTER on this dataset.

5. Discussion
The results of these experiments point out two important facts.
First, that quality measures indeed must be evaluated by tak-
ing class-conditionality into account. If not, it might spuriously
seem that scores and quality measures are independent. This
seems to hold for both well-controlled (XM2VTS) and non-
constrained acquisition environments (BANCA). Second, that
quality measures really must be evaluated in a classifier and
database-dependent fashion. The best quality measure for one
classifier might yield very different results on another.

Furthermore, while the evaluation metrics proposed in Sec-
tion 2 give approximate figures for estimating the usefulness of
a quality measure, the ultimate improvement that can be ob-
tained by the use of quality measure depends on the final use of
the quality measures: it is not trivial to relate analytically these
evaluation metrics to an improved rejection-error tradeoff, or to
the final gain yielded by the introduction of quality measures in
multiple-classifier fusion.

All proposed quality measures can be used to obtain addi-
tional information about the classification problem at hand. It is
likely that their combination would bring improvements [6] in
terms of error rate.

Depending on the other robustness techniques applied (for
instance at the pre-processing stage), the evaluation metrics for
the quality measure proposed could yield very different results.
Again, the mapping between input signal and output score is
complicated analytically by the non-linear transforms interven-
ing in the processing chain, and data-dependent approaches to
evaluation of quality measures such as proposed in this paper
can be useful additions to the practioner’s toolbox.
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