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Abstract
Nuisance Attribute Projection (NAP) provides an effec-
tive method of removing the unwanted session variability
in a Support Vector Machine (SVM) based speaker recog-
nition system by removing the principal components of
this variability. There is no guarantee with the methods
proposed, however, that desired speaker variability is re-
tained.

This paper investigates the possibility of training
NAP discriminatively to remove session variability while
maintaining desirable speaker variability through an ap-
proach which is a variation on Scatter Difference Analy-
sis (SDA). Experiments on NIST SRE tasks with a GMM
mean supervector SVM system demonstrate a modest im-
provement by using SDA for NAP training by adding
some speaker scatter.
Index Terms: NAP, session variability, SVM, Null-space
linear discriminant analysis, scatter difference analysis

1. Introduction
The area of automatic speaker verification has seen a
marked increase in research interest due to a number of
factors both technological and from commercial and po-
litical perspectives, as evidenced by recent participation
in NIST Speaker Recognition Evaluations (SRE). Note-
worthy is the technological advances brought about by
the widespread success and adoption of support vector
machine (SVM) approaches based on a variety of fea-
tures extracted from the audio signal including cepstral
polynomials [1], MLLR transform coefficients [2], recog-
nised phonetic sequences [3] and adapted GMM mean
vectors [4].

The development of nuisance attribute projection
(NAP) by Solomonoff, et al. [5, 6] has played an im-
portant role in the success of SVM approaches in the
speaker verification domain particularly by introducing
an effective method of reducing the performance degra-
dation caused by the mismatch between the training and
testing utterances of a speaker. NAP is a general approach
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that modifies the kernel function of an SVM classifier to
remove the dimensions of the feature space that are dom-
inated by nuisance variation through a reduced rank pro-
jection.

The dimensions to remove by NAP are generally de-
termined through a data-driven approach over a large
background population database. The most common
form of NAP seeks to remove within-class variation
which can be observed through the differences between
examples of the same speaker in the background popula-
tion. There is no mechanism in this training to prevent the
desirable speaker information from also being removed
along with the session variability.

In contrast, this work seeks to introduce a discrimina-
tive approach to training the NAP projection matrix that
explicitly avoids incorporating speaker information in the
discarded dimensions.

The following section describes the modified NAP
kernel function proposed in [5] as well as the standard ap-
proach to training the projection, concluding with a brief
comparison of the speaker and session variability actu-
ally captured by the projection on GMM mean supervec-
tor data. Section 3 proposes a discriminative approach to
NAP projection training using a scatter difference crite-
rion. Experimental results for a GMM mean supervector
SVM system are presented and analysed for NIST SRE
protocols in Section 4.

2. Nuisance Attribute Projection

NAP attempts to remove the unwanted within-class vari-
ation of the observed feature vectors [5, 6]. This is
achieved by applying the transform

y′ = P ny =
(
I − V nV T

n

)
y (1)

where I is the identity matrix and V n is an Rz × Ry

orthogonal projection matrix. P n therefore introduces a
null space of dimension Rz into the transformed features
that corresponds to the range of V n.

As the purpose of NAP is to remove unwanted vari-
ability, V n is trained to capture the principal directions
of within-class variability of a training dataset, that is, it
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Figure 1: Session and speaker variability magnitude of
the SRE 2004 training data captured by the first 100 di-
mensions of the NAP projection.

finds the vectors v that maximise the criterion

J(v) = vT Swv (2)

where Sw is the within-class scatter of the training data.
This is equivalent to finding the eigenvectors correspond-
ing to the largest eigenvalues satisfying

Swv = λv. (3)

As the dimension of the input space is very large (the
dimension of the GMM mean supervectors is approxi-
mately 100 000) and the number of background data sam-
ples is relatively small (approximately 2 800 utterances
from 309 speakers extracted from 2004 NIST SRE data),
the correlation matrix method [7] is used to determine the
principal components. Determining the eigenvalues and
eigenvectors of the 2 800×2 800 correlation matrix is ev-
idently more practical and efficient than the direct eigen
decomposition of the covariance matrix Sw. This method
is today more fashionably known as kernel PCA.

2.1. Speaker Information Removed with NAP

In the form proposed in [5], NAP does not explicitly
avoid removing between-class variability, while it’s as-
sumed that it is this variability that is useful for discrim-
inating between speakers. The amount of this variabil-
ity captured in the NAP subspace was investigated for a
GMM supervector SVM system. The variability captured
in the leading NAP dimensions is plotted in Figure 1 by
measuring the variance of the supervector observations
projected onto these dimensions. This is the information
removed by the NAP kernel.

From Figure 1, there is evidently a considerable
amount of speaker variability removed along with the ses-
sion variability using the NAP method and, in fact, for
many of the first 20 dimensions the speaker variability is
greater than the amount of session variability removed.
This observation certainly motivates a NAP training al-
gorithm that is more selective in the variability captured.

3. Discriminant NAP Training
The idea of the proposed discriminant NAP training ap-
proach is to minimise the speaker variability removed
through the application of NAP by incorporating the be-
tween class scatter information in the projection matrix
optmisation criterion.

The most obvious way to achieve this is by adopting
the inverse of the traditional linear discriminant analysis
(LDA) criterion, providing the greatest ratio of session to
speaker variability in the training data. Thus we want the
projection matrix V consisting of the vectors that max-
imise

J(v) =
vT Swv

vT Sbv
(4)

where Sw is the within-class scatter matrix and Sb is the
between-class scatter matrix. This criterion is the inverse
of the traditional LDA objective of maximising this ratio
of between- to within-class variability. As with LDA, this
criterion is optimised by solving the generalised eigen-
value problem

Sbv = λSwv (5)

except the vectors with the smallest eigenvalues, as op-
posed to the largest, are retained. This approach does not
produce a suitable NAP projection matrix, however, as it
is not orthogonal.

It is possible to determine an orthonormal basis that
spans the same space as the LDA projection. This meets
the requirement of orthogonality for the projection ma-
trix however initial experimentation encountered a num-
ber of further numerical issues with the LDA approach.
Notably, due to the very large supervector space and lim-
ited observations, the ranges of Sb and Sw are almost
disjoint. This lead to extreme ranges of variability ratios
(the eigenvalues) that tended to be dominated by accumu-
lated rounding errors and offering very little useful infor-
mation.

An alternative method of adding discrimination to
NAP training is therefore considered in this work that is
based on scatter difference analysis (SDA). This SDA ap-
proach swaps the variability ratio criterion of LDA for
variability differences to avoid the issue of scaling in the
whitening step of LDA. This is simply achieved by deter-
mining the principal directions of a weighted difference
between the within and between scatter matrices.

3.1. Scatter Difference Analysis

Another approach is to avoid the ratio of the LDA crite-
rion by instead using the difference between the scatter
matrices such as in [8]. The criterion with this approach
is

J(v) = vT (Sw −mSb)v (6)

where m controls the influence of the between-class scat-
ter statistics. Using such a criterion avoids many of
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Figure 2: Session and speaker variability magnitude of
the SRE 2004 training data captured by the first 100 di-
mensions of the scatter difference NAP projection with
different values of m.

the issues associated with the LDA criterion such as
dealing with singular scatter matrices, scaling by very
small eigenvalues, and the resulting projection being non-
orthogonal. This approach does, however, introduce a
database-dependent tuning parameter to weight the rel-
ative importance of Sb and Sw.

The scatter difference criterion is optimised in the
same manner as the standard NAP method, that is, by
solving the eigenvalue problem. As with standard NAP,
correlation matrices are used to avoid the issues caused
by the very high dimensionality of the supervector fea-
tures.

To suppress the speaker information in the resulting
transform, m is assumed to be greater than 0. There are
also some interesting special-case values of m with this
approach. Specifically, in the case of m = 0, the cri-
terion in (6) reverts to standard NAP training. Negative
values of m will explicitly inculde more speaker variabil-
ity and with m = −1 this approach is equivalent to PCA
and finds the principal directions of variability in the total
scatter matrix, St = Sw + Sb.

Figure 2 shows the session and speaker variance in the
leading dimensions of the projection trained with m = 1,
that is weighting the within- and between-class scatter
statistics evenly, as well as with m = 0.5 and m = 0.25,
corresponding to a reduced influence of the between-
class scatter statistic.

Comparing these results to Figure 1, it can be seen
that the scatter difference criterion has significantly re-
duced the speaker variability captured by the NAP trans-
form, as desired, with only a small drop in the session
variance magnitude. Furthermore, as m increases the
reduction in captured speaker variability becomes more
pronounced, as expected.

NIST SRE 06 EER Min. DCF
Baseline 5.07% .0259
SD-NAP m = 1.0 4.53% .0239
SD-NAP m = 0.5 4.48% .0230
SD-NAP m = 0.25 4.48% .0221
SD-NAP m = 0.125 4.42% .0221
Standard NAP (m = 0) 4.37% .0217
SD-NAP m = −0.125 4.26% .0204
SD-NAP m = −0.25 4.21% .0198
SD-NAP m = −0.5 4.26% .0198
SD-NAP m = −1.0 4.32% .0203

Table 1: System performance on the common evaluation
condition of the 2006 NIST SRE. For all NAP systems,
128 dimensions of session variability were removed.

4. Results and Discussion
4.1. GMM Mean Supervector SVM System

The mean of a MAP adapted GMM [9] in the form of a
supervector provides a suitable representation of an ut-
terance for modelling with an SVM classifier [4]. A
GMM mean supervector is formed by concatenated the
component mean vectors of a MAP-adapted GMM that
is µ(s) =

[
µ1(s)T . . .µC(s)T

]T
where µc(s) are the

component means. The GMM-UBM system used in this
work is described in [10] with the resulting supervec-
tors have a dimension of 52 × 2 048 = 106 496. Sim-
ilarly to Campbell, et al. [4], the supervectors are fur-
ther normalised to be centred around the UBM mean
and scaled by the UBM covariance such that the Eu-
clidean norm of the resulting supervector is related to
the Kullback-Leibler distance between the UBM and the
adapted GMM. The resulting supervectors are modelled
with a linear kernel SVM.

For these experiments, the background data (negative
examples) for the SVM training consisted of an English-
only subset of approximately 2 100 utterances drawn
from a combination of the 2004 NIST SRE, Switchboard
2 and Fisher corpora. Another set of approximately 2 800
utterances from the 2004 SRE were used for training the
NAP projection matrices, corresponding to 309 unique
speakers.

4.2. Comparison of NAP and SD-NAP

Table 1 presents results of the proposed SD-NAP method
in comparison to conventional NAP and a baseline system
without compensation for session variability on the 2006
NIST SRE protocol. From these results it can be seen
that NAP as proposed by Solomonoff, et al. imparts a
significant performance improvement over the baseline
system, as expected. Results for the scatter difference
approach to NAP matrix training are also presented for a
range of both positive and negative values of m.



NIST SRE ’05 EER Min. DCF
Baseline 5.66% .0243
SD-NAP m = 1.0 5.21% .0210
SD-NAP m = 0.5 5.13% .0201
SD-NAP m = 0.25 4.92% .0193
SD-NAP m = 0.125 4.92% .0187
Standard NAP (m = 0) 4.80% .0182
SD-NAP m = −0.125 4.92% .0179
SD-NAP m = −0.25 5.05% .0179
SD-NAP m = −0.5 5.29% .0184
SD-NAP m = −1.0 5.49% .0190

Table 2: System performance on the common evaluation
condition of the 2005 NIST SRE. For all NAP systems,
128 dimensions of session variability were removed.

These results indicate that positive values of m, cor-
responding to reducing the the speaker information re-
moved by NAP, produce results that are inferior to the
standard NAP transform but ahead of the baseline sys-
tem excluding NAP. Furthermore, an obvious trend of de-
grading performance can be observed as the value of m
increases.

The results with m < 0 are more interesting: Con-
trary to expectations, all the negative values of m that
were tested produced improved performance over stan-
dard NAP (m = 0) according to both the equal error rate
and minimum detection cost criteria with the best results
given by m = −0.25. These systems correspond to ex-
plicitly adding speaker variability to the NAP projection.

Results on the 2005 NIST SRE protocol are presented
in Table 2. Results similar to the 2006 SRE are observed
for the positive range of values for m, that is, no posi-
tive value of m provides results equivalent to the standard
NAP approach but do improve substantially on the base-
line system. The negative values m on the other hand
are not consistent with the 2006 SRE results: While the
DCF is marginally ahead for small negative values of m
(m = −0.125 and m = −0.25), the rest of the results
are inferior to standard NAP. This is particularly evident
for the EER with m = −1.0, which falls close to the
performance of the baseline system.

The improved performance with m < 0 for the 2006
SRE is an interesting outcome, however, the poor per-
formance with positive values — the intended approach
— warrants further analysis. Under the hypothesis that
the degraded performance for these conditions was due to
worse generalisation across databases of the SD-NAP ap-
proach compared to NAP, the amount of variability cap-
tured by the respective transform was measured for the
2006 SRE test data. A plot of between- and within-class
variance captured by the leading dimensions of both the
standard NAP projection and the proposed SD-NAP pro-
jection for this data is depicted in Figure 3.

It can be seen by comparing Figure 3 to Figure 2
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Figure 3: Session and speaker variability magnitude of
the SRE 2006 evaluation corpus captured by the first 100
dimensions of the proposed SD-NAP projection compared
to standard NAP training.

that the speaker variability captured by the SD-NAP pro-
jection has been significantly reduced for the projection
training data, but the same cannot be said for the 2006
SRE data.

Interestingly, comparing the variability captured with
the standard NAP training in Figures 3 and 1, the speaker
variability captured by the projection appears very similar
but the session variability is reduced. In fact, for most of
the dimensions the speaker variability is greater than the
session variability.

Furthermore, the introduction of the discriminative
criterion for SD-NAP has not produced the same results
as for the 2004 SRE data used for training the projections.
There is a reduction in the speaker information captured
by the SD-NAP transform as desired, however, this re-
duction is not as pronounced as for the training data. Un-
like the results for 2004 SRE data, the corresponding re-
duction in captured session variability is also significant.
These results indicate that the SD-NAP projection has
not generalised particularly well to the 2006 SRE data,
but, does in fact appear to improve the ratio of session to
speaker variability captured by the transform.

Finally, an analysis of the variability captured by the
SD-NAP transform with m = −0.25, which is the best
configuration for the 2006 SRE, reveals almost identical
results as for m = 1.

The results of this analysis are inconclusive: While
the SD-NAP approach appears to have achieved the ob-
jective of reducing the speaker variability relative to the
session variability for the test data, it did not produce
improved performance. Furthermore, explicitly adding
speaker variability with m < 0 did produce improved
performance but only for the 2006 SRE. It is possible
that there is some characteristic of the 2006 SRE data col-
lection that is causing these results; SVM systems using
other features such as MLLR coefficients will be used to
explore this phenomenon further.



System EER Min. DCF
Speaker LDA 5.82% .0307
Standard NAP 4.37% .0217
Fused 3.88% .0204

Table 3: System performance on the common evaluation
condition of the 2006 NIST SRE utilising the speaker-
dominant LDA projection.

4.3. Using Speaker-Discriminating Features Directly

An alternative approach was investigated for exploiting
a discriminative approach to preparing features for SVM
modelling in a similar vein to previous work in [11]. The
main idea of this approach was to combine a system using
standard LDA with low dimension with a system capable
of representing the entire supervector space.

Firstly, a traditional LDA transform was trained on
GMM supervector features to produce a low-dimensional
space maximising the ratio of speaker to session variabil-
ity. The LDA analysis was achieved through a simulta-
neous diagonalisation approach [7] where St — the total
scatter matrix — is first whitened and the transformed
version of Sb is then diagonalised. As with the previ-
ous techniques, the size of the supervector space requires
this analysis to be performed on correlation matrices due
to practical computational limits. As the purpose of this
transform was to performing modelling and recognition
in this space, rather than remove it, the orthogonality con-
straint of NAP was not a concern.

The 2006 SRE results for a system using 300 most
discriminative LDA dimensions are presented in the first
row of Table 3. Comparing to Table 1, this system using
only 300-dimensional features shows a relatively small
drop in performance compared to the Baseline system
that uses a feature space of over 100 000 dimensions.

A simple linear combination of this system with the
standard NAP system (repeated from the fifth row of Ta-
ble 1) provided both a slight improvement in DCF and
a substantial improvement in the EER operating point (as
indicated in the final row of Table 3). This result seems to
indicate that there is some value to investigating more dis-
criminatory methods of preparing features for modelling
with an SVM approach.

4.4. Discussion

Although it appears that there is merit in preparing more
discriminatory features for SVM modelling as evidenced
by the limited performance gains demonstrated above,
further work is required to realise these potential gains.
The reliance of the proposed techniques on traditional
variance analysis and F -ratio-maximising approaches,
such as LDA, may not be appropriate for optimising SVM
classification; unlike traditional generative approaches
that model the full distribution, SVM’s are only interested

in training observations on or within the separating mar-
gin. It is hypothesised that optimising the feature space to
maximise the resulting margin will provide more reliable
gains in performance.

5. Conclusions
This paper investigates incorporating a discriminative
training approach to NAP transform training to avoid re-
moving important speaker information while suppressing
the session information. A criterion based on scatter dif-
ference analysis was proposed for this purpose where the
between-class scatter, as well as the within-class scatter,
statistic is exploited.

Results for a GMM mean supervector SVM system
demonstrated generally inferior performance for both the
2005 and 2006 SRE’s, however, adding speaker variation
showed modest gains for the 2006 SRE. Further experi-
ments with a more traditional LDA approach also demon-
strated an improved EER when fused with a standard
NAP system. These results lend some support to inves-
tigating more discriminatory approaches to SVM feature
preparation.
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