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Abstract
Detecting whether a talker is speaking his native language
is useful for speaker recognition, speech recognition, and
intelligence applications. We study the problem of de-
tecting nonnative speakers of American English, using
two standard speech corpora. We apply approaches effec-
tive in speaker verification to this task, including systems
based on MLLR, phone N-gram, prosodic, and word N-
gram features. Results show equal error rates between
12% and 20%, depending on the system, test data, and
choice of training data. Asymmetries in performance are
most likely explained by differences in native language
distributions in the corpora. Model combination yields
substantial improvements over individual models, with
the best result being around 8.6% EER. While phone N-
grams are widely used in related tasks (e.g., language and
dialect ID), we find that it is the least effective model in
combination; MLLR, prosody, and word N-gram systems
play stronger roles. Overall, results suggest that individ-
ual systems and system combinations found useful for
speaker ID also offer promise for nonnativeness detec-
tion, and that further efforts are warranted in this area.

1. Introduction

Automatic detection of nonnative speech is both theoret-
ically interesting and practically important. Theoretical
interest derives from the question of how speakers’ na-
tive (first) language (L1) influences a second language
in which they are not native (L2). For the present pa-
per, however, our main motivation comes from prior work
in speech and speaker recognition. It is well-known that
nonnative speakers pose problems for speech recognition,
typically degrading performance because of mismatch to
the (largely native) training speakers. Similarly, we found
that nonnatives adversely affect speaker verification per-
formance, as a result of systematic shifts in score distribu-
tions relative to native speakers. In both cases, knowing
the nativeness status of a test speaker would enable adap-
tation techniques to mitigate the mismatch between train-
ing and test data. Finally, identifying nonnative speech
has utility in its own right in many scenarios, such as au-
tomated customer service and intelligence applications.

Previous work most closely related to nonnativeness
detection has been done under the label of “accent iden-
tification”, usually defined as the task of classifying a
speech sample as belonging to one of several (typically
3 to 6) native and/or nonnative accents. A special case
involving native varieties of a language also goes under
the name of “dialect identification”. Features used for
these tasks include cepstral vectors (typically modeled
by Gaussian mixture models or hidden Markov models),
phone strings (typically modeled by language models),
and a variety of prosodic features [1, 2, 3, 4, 5, 6]. The
work of Schultzet al. [7] comes closest to our notion of
nonnativeness detection; however, their work examines
only a single L1 (Japanese), rather than an open set.

The work presented here differs in both task and
method from previous work. First, we look at the bi-
nary classification of native/nonnative identification, as
opposed to multiclass “accent” or “dialect” identifica-
tion. Also, prior work has typically relied on small,
home-grown databases. In this study we examine two
large speech corpora that are widely used for speech and
speaker recognition research. (As noted below, this also
meant having to hand-label a substantial subset of data
ourselves.) We focus on features and models that were
found to be effective in speaker recognition, and that
are designed to capture a range of phenomena from low-
level, acoustic to high-level, stylistic features. The mod-
els used can be roughly mapped to specific linguisticphe-
nomena that should be helpful in characterizing nonna-
tive speech, including pronunciation, prosody, vocabu-
lary, and grammar.

2. Nonnativeness Detection

We examine data from people speaking (or, in some
cases, attempting to speak) American English, primar-
ily because we had data and suitable models available
for that language from prior work in speech and speaker
recognition. In principle the study could be carried out
for other languages or dialects. We define nonnative
speakers for this study as follows:



� A speaker whose first language is any dialect of
American English, and who is speaking in that di-
alect in the conversations studied, is considered to
be a native speaker.� Talkers whose first language is not English, are
considered nonnative speakers when speaking En-
glish.

Two further caveats should be noted. To focus the
task, talkers whose first language is a non-American di-
alect of English (e.g., British, Australian, Indian) are re-
moved from consideration, since they typically are not
trying to modify their accent when speaking English (i.e.,
they are speaking their native dialect, posing no signif-
icant difficulties). Second, bilingual and multilingual
speakers who reported American English as one of their
native languages were also removed from the study.

Nonnativeness detection poses particular challenges
beyond those of speaker or dialect ID. Nonnative speech
is affected by the speaker’s L1, the relationship of L1 to
L2, and the speaker’s proficiency in L2. In this study,
because of limited data resources, we group all nonnative
speakers together, regardless of L1 or proficiency; better
performance could probably be achieved by conditioning
on these factors.

3. Data and Experimental Protocol

Data for our study is drawn from two large corpora: the
LDC Fisher (phase 1) corpus [8], and the NIST 2006
speaker recognition evaluation (SRE) set, which in turn
is a subset of the Mixer collection [9]. For experiments
we selected subsets of these corpora, identified asSRI-
FSH andSRI-SRE06, respectively.

3.1. SRI-FSH

The LDC Fisher Phase 1 corpus contains a large num-
ber of speakers, a small, but significant portion of which
are nonnative speakers. All conversations are conducted
in English. All speakers who did not declare English as
their native language (according to LDC’s corpus doc-
umentation) are included in our database as nonnatives.
For natives, we chose a random subset of American En-
glish native speakers about equal in size to the nonnative
set. The final selection comprised 749 nonnative speakers
and 741 native speakers. For each speaker an average of
1.9 conversation sides were available, resulting in 1,512
conversation sides from native speakers and 1,503 con-
versation sides from nonnative speakers. Fisher conver-
sations are 10 minutes in length, yielding about 5 minutes
of speech per conversation side on average. Note that
Fisher speaker classification relies on self-reported L1s,
according to LDC’s corpus documentation. (This means
that it is likely that some speakers with very high English
proficiency will be labeled as nonnatives.) Table 1 shows

Table 1: Distribution of L1 for the SRI-FSH and SRI-
SRE06 databases. The table includes all L1s found in
SRI-SRE06 and all the frequent L1s in SRI-FSH (66% of
all conversations). L1 labels are as found in LDC doc-
umentation and in some cases (e.g., Chinese and Man-
darin) are not orthogonal classes.

L1 SRI-FSH SRI-SRE06
Spanish 17.90 0
Chinese 10.65 77.78
Russian 8.05 9.82
Hindi 8.05 0.48

Mandarin 3.99 4.99
German 3.99 0

Cantonese 3.39 0
Korean 3.33 0.48
French 3.06 0
Arabic 2.59 0.64
Urdu 1.06 0.48
Thai 0.20 2.09
Other 0 3.22

the distribution of L1 languages for nonnative speakers.

3.2. SRI-SRE06

The NIST SRE 2006 data set contains a mix of languages,
albeit with English as the dominant language. Certain
speakers occur in multiple conversations, and some of
these conversations are conducted in non-English lan-
guages. This suggests that many of the English con-
versations involve nonnative speakers. For this study,
we listened to a total of 2590 conversation sides involv-
ing 595 distinct speakers, and recorded nativeness judg-
ments; 280 speakers (1,604 conversations sides) were la-
beled as native American English, 315 (986 conversation
sides) as nonnative. SRE 2006 conversations are 5 min-
utes long, giving about 2.5 minutes of speech per side on
average. Labeling for this database was done by listening
to a random subset of segments from each speaker and
assigning the labels based on the perceived accent and
fluency. The resulting labels, then, might consider an ac-
tual nonnative as native if the speaker had no detectable
accent or fluency difficulties, but it is acceptable in our
view that the models mimic the decisions of a human lis-
tener.

Table 1 shows the distribution of native languages
(L1) for a subset of the SRI-SRE06 nonnative speakers
for which L1 could be reasonably inferred from the cor-
pus documentation. Since the actual L1 information for
each speaker was not available, we looked at the range
of all languages spoken by a given speaker throughout
the corpus. If a speaker had conversations in both En-
glish and another languageL, and the speaker had been
labeled a nonnative, we assumed that the speaker’s L1



is L. This allowed us to infer L1 for 621 conversation
sides. Clearly, the distribution of L1 for SRI-SRE06 is
very different from that of the Fisher data. In particular,
SRI-SRE06 data contains mostly Chinese speakers, while
SRI-FSH shows a much broader and more balanced se-
lection of L1s.

3.3. Experimental protocol

We evaluate nonnativeness detection systems using one
of two training and test protocols:� Matched: Training and test data comes from the

same corpus. To make efficient use of all available
data, we employ 10-fold cross-validation. Speak-
ers are randomly assigned to ten roughly equal par-
titions. Each partition in turn is used as the test
set, while the other nine partitions are used to train
models. Overall results are computed by averaging
the outcomes over the ten test partitions.� Mismatched: Training and test data come from
different corpora: we train on SRI-FSH and test
on SRI-SRE06, and vice versa. We use this proto-
col to simulate a more realistic application dealing
with an unknown population of speakers, and test
the generalization of our models under such condi-
tions.

Performance is measured in terms of equal error rate
(EER), i.e., the operating point at which false nativeness
and false nonnativeness decisions occur with equal fre-
quency.

4. Models and Systems

Since the task in the precise form defined here is novel,
we investigated modeling approaches inspired by two ex-
tensively studied, related tasks:� Language recognition/identification (LID): a non-

native English speaker can be seen as a special sub-
type of language.� Speaker verification/identification (SID): native-
ness or nonnativeness may be viewed as a general-
ization of speaker identity, and similar binary clas-
sification techniques can be applied.

The approaches studied here were ultimately adapted
from a subset of systems found in SRI’s speaker recog-
nition system [10], plus one system jointly developed by
SRI and ICSI [11]. Apart from expediency, our choice
was motivated by two observations. First, speaker recog-
nition, broadly speaking, employs a superset of features
and modeling techniques found in language recognition.
Second, the systems studied here are chosen to cover
a range of features and time scales, giving good cover-
age of the documented linguistic manifestations of non-
nativeness, as explained further below. In addition to

the SVM-based models described below we also experi-
mented with cepstral Gaussian mixtures (GMMs) as non-
nativeness classifiers, but found them to be less compet-
itive than our best single system. Since we include other
models based on cepstral features, we did not include
cepstral GMMs in this study.

4.1. Phone N-gram language model

As a baseline, we tested a popular approach to language
recognition, a phone-recognition-based language model
(PRLM) [12]. An open-loop phone recognizer is run on
each conversation side and the 1-best phone strings are
recorded. The recognizer is trained on English data from
the Switchboard corpus and uses 45 phone labels based
on the ARPABET set. Trigram language models (LMs)
are trained based on phone transcripts for native and non-
native training speakers, respectively. At test time, a
score is computed that is the length-normalized log like-
lihood ratio of the two LMs given the phone sequence
extracted from test data.

Note that we used the PRLM as a baseline only; a
much improved model based on phone N-grams is de-
scribed below. Because of resource limitations, as well
as the relatively poor performance of the PRLM on our
data, we did not investigate approaches based on paral-
lel phone recognition for multiple languages (PPLRM) in
this study.

4.2. MLLR transform SVM

This model uses the speaker maximum likelihood linear
regression (MLLR) adaptation transforms employed by a
large-vocabulary automatic speech recognizer (ASR) as
features [13, 14]. The system computes two39 � 40-
dimensional affine transforms for the Gaussian means of
a male and female ASR model, respectively. Two ver-
sions of the system are studied. The first version relies
only on phone-loop recognition and clusters the Gaus-
sians into two phone classes, yielding2� 2� 39� 40 =6240 features per conversation side. The second, more
elaborate version uses full word recognition hypotheses
to compute MLLR transforms, and clusters Gaussians
into eight phone clusters; it thus yields feature vectors of8� 2 � 39� 40 = 24960 components. The features are
rank-normalized to the unit interval along each dimen-
sion, and a support vector machine (SVM) with linear
kernel is trained to discriminate between native and non-
native conversation sides. The nonnativeness score is the
signed distance of the test feature vector from the deci-
sion hyperplane.

4.3. Phone N-gram SVM

This model is a phone-sequence classifier based on sup-
port vector machines rather than language models [15].
We adapted a variant that has shown good performance



in speaker recognition [11]. As with the PRLM, an open-
loop phone recognizer is run on each conversation side,
but generating phone lattices rather than just 1-best hy-
potheses. We then extract expected frequencies for uni-
grams, bigrams, and trigrams (i.e., N-grams are weighted
according to their posterior probability of occurrence in
the lattice). The 8,483 most frequent N-grams are re-
tained, giving the dimensionality of the feature vector.
The N-gram frequencies are then scaled by the inverse
square root of the overall N-gram probabilities. When
combined with a linear SVM kernel, this gives the log
likelihood ratio kernel of [15]. Prior studies [11] have
shown that both the switch from LM to SVM modeling
and the generalization from 1-best to lattice recognition
give substantial gains in speaker recognition, so we ex-
pected the phone N-gram SVM to be superior to PRLM
for nonnativeness detection as well.

4.4. Prosodic sequence SVM

This system models syllable-based prosodic fea-
tures [16]. Features are based on estimated F0, energy,
and duration information extracted over syllables inferred
via automatic syllabification of ASR output. Pauses,
which can be particularly useful for low-proficiency
speakers, are also modeled as special tokens in the
sequences. Prosodic feature sequences are transformed
into fixed-length vectors by a particular implementation
of the Fisher score [17]. Features modeling sequences of
one, two, and three syllables are used. The resulting fea-
ture vector, of dimension 38,314, is first rank-normalized
(as in the MLLR-SVM system) and modeled by linear
kernel SVM.

4.5. Word N-gram SVM

Models of how frequently speakers use certain words or
phrases (idiolect) have been proposed by [18] and, al-
though poor models by themselves, were found to im-
prove speaker recognition systems in combination with
other knowledge sources. Here we use a version of
such a model based on SVMs, which gave better re-
sults than language-model-based approaches [19]. Per-
conversation side frequencies for 126k unigrams, bi-
grams, and trigrams are extracted from the 1-best hy-
potheses of the ASR system. The (very sparse) feature
vectors are rank-normalized along each dimension and
modeled by linear kernel SVMs, similar to the MLLR,
phonetic, and prosodic systems.

We can roughly associate the above systems with dif-
ferent aspects of nonnative language proficiency. The
MLLR and phone N-gram systems model acoustic obser-
vations and can potentially capture differences in pronun-
ciations. The prosodic system models patterns of pitch,
energy, duration, and pausing. It can thus capture aspects
both of fluency and of suprasegmental characteristics of

language that are among the most difficult for L2 speak-
ers to master. Finally, the word N-gram SVM models
differences in vocabulary, idiom, and grammar usage.

4.6. ASR system

The 8-class MLLR system, the prosodic, and the word
N-gram system all rely on word recognition. Our ASR
system was a 2-pass conversational telephone recognizer
dating from 2003 [20]. No Fisher data was used to train
the system, and all acoustic training data came from na-
tive American English speakers. Consequently, the av-
erage word error rate (WER) for nonnative speakers was
much higher than for native speakers (40% versus 27%,
as measured against Fisher quick transcriptions provided
by LDC). Also, because of the larger temporal distance
between training and test data (and attendant bigger mis-
match in language and acoustic models) we expect higher
error rates on SRE06 than on Fisher; however, we could
not verify this in the absence of transcriptions for SRE06
data.

5. Results and Discussion

We look first at the performance of individual systems
for the four different conditions comprising the crossing
of (1) matched vs. mismatched train and test data, and
(2) the choice of test set (SRI-FSH vs. SRI-SRE06). As
noted earlier, the two corpora differ in terms of L1 dis-
tributions, L2 proficiency, and ASR performance. It is
thus interesting to look at results when swapping train and
test data, and for both matched and mismatched cases, to
understand how performance depends on these factors.
Subsequently, in Section 5.2, we look at the results of
system combination for the case of the most realistic sce-
nario (mismatched train/test) and testing on the most cur-
rent data set (SRI-SRE06). We ask whether combination
aids performance, and if so, which systems offer the most
complementary information.

5.1. Individual systems

Figure 1 shows results for the five individual systems, un-
der the four different train/test conditions. For ease of
readability, lines connect results for each condition.

A number of observations can be noted. First, the ef-
fects of test corpus and train/test mismatch are remark-
ably regular across systems plots running almost per-
fectly parallel. One exception is the prosodic system for
the mismatched condition when testing on SRI-SRE06,
which is better than expected based on the shape of the
trends for the other three conditions. Although further
study is necessary, we suspect one reason is that nonna-
tive speakers in SRI-SRE06 often struggled to get words
out in English; this may have allowed the prosodic model
to utilize features based on pausing patterns that tend to
be robust to the higher rate of ASR errors in that corpus.
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Figure 1: Nonnativeness detection results (in % EER) by
individual system (“cl” = class, “NG” = N-gram), test
corpus, and matched vs. mismatched training. Matched
conditions use 10-fold cross-validation on the same cor-
pus. Mismatched conditions train on one corpus and test
on the other. The PRLM baseline system was tested
on SRI-SRE06 only, with mismatched training, giving
17.3% EER (not shown in figure).

Second, SRI-SRE06 is the easier test corpus, as can
be easily seen from comparing the two cross-validation
results in Figure 1. This is most likely due to two fac-
tors: the fairly homogeneous nature of L1 for nonna-
tives in that corpus (nearly 80% Chinese), and the esti-
mated lower proficiency of nonnatives in L2 in that data.
Both factors should facilitate native/nonnative discrimi-
nation. Note, however, that as mentioned earlier, ASR
performance is probably worse on SRI-SRE06 than on
SRI-FSH. It is not clear at this point whether lower ASR
performance hurts or helps nonnativeness detection (it
might help if word error patterns are consistent and in-
formative of nativeness status, similar to the way one
of our duration-based speaker ID models benefited from
higher word error rates [19]). The answer may depend
on the model used, and is of obvious importance to ap-
plications. One could investigate the question by running
poorer ASR systems on matched results, and observing
the effect by model for this task.

Third, as anticipated, train/test corpus mismatch
causes large degradations in performance. The effect of
mismatch is larger when testing on SRI-FSH than when
testing on SRI-SRE06. This is the expected direction
when considering the effects of L1 distribution and L2
proficiency, since both factors make training on SRI-
SRE06 a poor choice for testing on the more L1-variable
and higher L2-proficient SRI-FSH data. But in terms of
the effect of ASR, FSH is the better-recognized corpus.

As noted above, it is not yet clear how ASR affects re-
sults here, and further study is needed.

Fourth, while the pattern of individual system results
is fairly stable over conditions, in absolute terms the ef-
fect of test corpus and train/test mismatch is larger than
that of the individual systems. This highlights the impor-
tance of calibrating for such conditions when evaluating
future research on nativeness detection.

Finally, results in Figure 1 follow the general pattern
from speaker ID in that, when used alone, systems based
on acoustic features perform better than those based on
longer-range features such as prosody or words. A dif-
ference between the two tasks, however, is that for non-
nativeness detection, the prosodic and word N-gram sys-
tems are much closer in performance to the level of the
acoustic systems. As expected, the PRLM baseline sys-
tem is worse than the phone N-gram SVM (17.3% ver-
sus 13.4% EER training on SRI-FSH and testing on SRI-
SRE06).

5.2. Combined systems

So far we have only considered the performance of in-
dividual models. As in speaker recognition, the combi-
nation of multiple systems can yield improvements be-
cause of the complementary information captured by the
various systems. For this experiment we focus on the
most realistic and current condition, namely testing on
SRI-SRE06, using mismatched training (SRI-FSH). We
also remove the 2-class MLLR system from considera-
tion, since it performs less well than the 8-class system
and speaker recognition studies have shown no gain from
combining the two systems [14].

The combiner produces a new nativeness score from
the scores output by the individual systems and consists
of a neural network with a single layer (perceptron). The
combiner is trained with 2-fold cross-validation on SRI-
SRE06 (half of it is used to train the combiner, the other
half is used for testing). The final score is an average over
the folds. Table 2 shows results.

As shown, system combination yields improvements
over the best individual system for this condition. But,
more important, contributions to system combination fol-
low a different ordering than do the individual results.
The 8-class MLLR and phone N-gram systems perform
well individually, and one of them is necessary to achieve
good performance. The phone N-gram, however, is actu-
ally the least helpful system to combine with the MLLR
system in the two-way combination. Just as in studies in
speaker ID [10] the bestN -way system includes all sys-
tems used in the best(N � 1)-way system. System con-
tributions can thus be ordered from most to least useful
in combination, as follows:

MLLR > prosody> word N-gram> phone N-gram

However, all systems contribute complementary informa-



Table 2: System combination results using the mis-
matched condition, testing on SRI-SRE06. The combiner
is trained with 2-fold cross-validation on SRI-SRE06.
Results are given in terms of EER %. The corresponding
best single-system condition is provided for comparison.

Best single system
mllr,8class 12.47

2 way combinations
mllr,8class+prosody 10.35
mllr,8class+wordlm 11.03
prosody+phone-ngram 11.10
mllr,8class+phone-ngram 11.28
wordlm+phone-ngram 11.35
prosody+wordlm 11.66

3 way combinations
mllr,8class+prosody+wordlm 9.29
mllr,8class+prosody+phone-ngram 9.54
prosody+wordlm+phone-ngram 10.16
mllr,8class+wordlm+phone-ngram 10.22

4 way combination
mllr,8class+prosody+wordlm+phone-ngram8.60

tion: the final four-way combination yields an EER of
8.60%, a 31% relative reduction in error from the best
single system.

6. Conclusions and Future Work

We have investigated the problem of nonnativeness de-
tection in speech, using two large data sets from stan-
dard speech corpora. Nativeness labels were based on
self-reported first language information for one data set,
and on the results of human listening for the other. Sev-
eral models that have been successfully employed in past
work for automatic speaker recognition were adapted for
the task of detecting nonnative speech. Interestingly, rel-
ative performance results of the models for nonnativeness
detection followed the same general pattern as results
for speaker verification, but with a smaller gap between
acoustic and stylistic systems in the case of nonnativeness
detection. Results from model combination also showed
a substantial improvement over results for any individual
model.

We also found, however, that in absolute terms, the
largest effect on results was the degree of mismatch be-
tween training and test corpora. As might be expected,
performance is particularly degraded when training data
is more homogeneous than is test data, for nonnativeness-
related factors. We hypothesize that important factors in-
clude the distribution of particular L1s, nonnatives’ L2
proficiencies, and ASR accuracy. ASR performance re-
mains a poorly understood variable in our study, in part
because reference transcripts were not available for the

SRE06 data. Further work is needed to determine the
effect of ASR accuracy on individual systems, holding
other variables (especially train/test mismatch) constant.
It should be the case that better robustness of the ASR
system to nonnative speech will lead to overall improve-
ments in nonnativeness recognition.

A long-term goal, given sufficient data, is to investi-
gate explicit modeling of specific L1/L2 combinations. In
such work it should also be important to condition on esti-
mates of proficiency in L2. In data collection efforts such
as those by NIST, in which subject recruitment tends to
involve particular communities of speakers, L1 and pro-
ficiency in L2 may be correlated. As stated earlier, based
on the hand-labeling of SRI-SRE06 we suspect that the
SRI-SRE06 data has a higher rate of lower-proficiency
nonnative speakers than does Fisher, although this claim
requires more study. If it is true, then the L1 skew of SRI-
SRE06 is confounded with lower proficiency, making it
difficult to determine which factor affects performance.
Our guess is that mismatches in the direction of (1) higher
L1 skew in train than test, and (2) lower L2 proficiency
in train than test (making training samples more discrim-
inative than they will be in testing), are particularly detri-
mental to performance.
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