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Abstract

In this work we analyze the average information supplied
by a forensic speaker recognition system in an information-
theoretical way. The objective is the transparent repgrth
the performance of the system in terms of information, ac-
cording to the needs of transparency and testability innfgice
science. This analysis allows the derivation of a proper-mea
sure of goodness for forensic speaker recognition, therézapi
cross-entropy ECE), according to previous work in the liter-
ature. We also propose an intuitive representation, nathely
ECE plot, which allows forensic scientists to explain the av-
erage information given by the evidence analysis process in
clear and intuitive way. Such representation allows therfer
sic scientist to assess the evidence evaluation procebsrwit
dependence of the prior information, which is province & th
court. Then, fact finders may check the average information
given by the evidence analysis with the incorporation obpri
information. An experimental example following NIST SRE
2006 protocol is presented in order to highlight the adego@c
the proposed framework in the forensic inferential procéss
example of the presentation of the average informationlggpp
by the forensic analysis of the speech evidence in coursis al
provided, simulating a real case.

1. Introduction

Information theory was proposed in the middle of g¢h cen-
tury as a standard for measuring and presenting informftion
After more tharb0 years, the applications of information theory
have been remarkable in many fields like physics, probgbilit
theory and economics [2]. Under this framework, the uncer-
tainty about an unknown variable is quantified by a magnitude
calledentropy Additional knowledge about other known vari-
ables under study will contribute to the reduction of theemy,

and therefore, the information about the unknown variable w
be increased.

Recently, information theory has been proposed in order
to assess the goodness of automatic speaker detection. [3, 4]
Such techniques assume that the system yields likelihdm$ra
(LR) as a degree of support to any of the hypotheses involved in
the detection process. Although such assessment teckrageie
presented in apparently different forms, they have in esstre
same interpretation: the automatic speaker recognitiongss
gives information about whether the two speech materiaigoei
compared come from the same speaker or not.

In forensic speaker recognition, tiieR approach has been
proposed for reporting the weight of the evidence in court
[5, 6, 7]. Moreover, the uprising requirements in forensic
science require the use of scientifically sound procedwes f
clearly stating the accuracy of the techniques in use. For in
stance, in a given case and according to Daubert rules or sim-

ilar criteria [8], the fact finder may demand a test in order to
clarify the accuracy of thé&.R computation technique used for
evidence analysis, whose results are to be presented it cour
Such assessment will contribute to the decision of the fadéfi
about the admissibility of the evidence analysis procassrd

der to fulfill this requirements, in this paper we proposeubke

of information-theoretical magnitudes for assessing tteua
racy of theL R values computed by forensic speaker recognition
systems. We will consider that the evidence analysis gnes i
formation to the fact finder about the value of the hypothesis
involved in the case. The proposed assessment framework mea
sures how good the forensic system is extracting such irgoerm
tion, and allows the forensic scientist to present it in €dar

a clear and transparent way. The importance of transpagent r
porting of the performance of forensic techniques has bksen a
recently highlighted for forensic speaker recognition [7]

The aim of this paper is identifying and characterizing the
information supplied by the weight of the speech evidenee-co
puted by the forensic system, considering the requiremants
the so-dubbedoming paradigm shifin forensic identification
[8]. The reduction of the uncertainty gives a measure of e e
pected information that the evaluation of the evidencevdedi
to the decision process in a forensic case, and it is modelled
in terms of entropy and divergence [2]. These magnitudels wil
be integrated in & R-based framework adopted from forensic
DNA analysis [7]. In particular, a clear distinction is mauole-
tween the information sources given by the analysis of the ev
idence, province of the forensic scientist, and the reshfaoiri
mation in the case, province of the court. A novel perforneanc
representation is proposed, namely #i€ E plot, which inte-
grates previous approaches and gives a clear an eleganinmeas
of the average reduction of uncertainty supplied by therfsie
system. The proposed representation also allows repaxing
the court the performance of the forensic system in a cledr an
simple way, according to the needs of transparency andiksta
ity in forensic science.

The paper is organized as follows. Section 2 introduces
the problem of the assessment of decisions in forensic geien
and reviews some approaches found in the literature. linsect
3, the proposed measure of accuracy, naneehpirical cross-
entropy(ECE), is derived, as well as its interpretation. In Sec-
tion 4 theECE plot is presented as a useful performance repre-
sentation suited for forensic speaker recognition, disiogsits
relationship to other performance measures already pegpos
In Section 5 an experimental example is reported, whicls-llu
trates the adequacy of the proposed methods for forenss cas
The section is completed with a simulation of a real caserevhe
the EC E value is reported as a measure of performance accord-
ing to the requirements of Daubert and similar criteria.afin
conclusions are drawn in Section 6.
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Figure 1: Elements in the decision process uduirbased forensic speaker recognition.

2. Cost-based evaluation of forensic speaker
recognition systems

The LR framework for evidence analysis is summed up here
[9, 10]. Consider the forensic speech evidence as the cempar
ison of arecoveredspeech sample (of unknown source) and a
control sample (usually from a suspect). Such comparison will
be referred to astmial. Bayes’ theorem then allows the follow-
ing inference:

PO |ED _ p PO ]D )
P (64 |E,T) P (84 1)

whered, (the control and the recovered samples come from
the same source) arfg (the control and the recovered samples
come from different sources) are typically the relevantdiiip-

ses andl is the background information available in the case.
The likelihood ratio LR) is defined as:

LR

_ p(E|by, 1)
M= (El60, D) @

The hypotheses should be defined in the court frbm
the prosecutor and defense propositions and often becduse o
the adversarial nature of the criminal system. In this frame
work, we distinguish two magnitudesi) the prior probabil-
ites P (0, |I) = 1 — P (64 | I), which are province of the
fact finder and should be stated assuming only the background
information in the casd; andi:) the LR (Equation 2), com-
puted by the forensic scientist [4, 11, 7]. The backgrounrd in
formationI may include not only circumstantial information in
the case (such as witness testimony or police investigation
but also the analysis of other forensic evidences (sucheass gl
fragments, paint flakes, etc.). Such two magnitudes all@v th
fact finder to infer a posterior probability for each hypatise
P(6, |E,I)=1—P(8q | E, I), which considers botli and
the evidence evaluation from the forensic scientist. Thekba
ground information about the cadewill be eliminated from
the notation for simplicity from here thereafter, but it Maé as-
sumed that all the probabilities are conditioned torhus, we
will express prior and posterior probabilities &f respectively
asP (6,) andP (6,| E), and similarly foré,.

In order to take a decision according to Bayesian theory
[12], the fact finder would have to use the posterior and also
some decision costs. These costs represent penaltiesclor ea
type of error in each binary decision, namely false accegtan

cost Cy,) and false rejectiond{s,). The elements in this in-
ferential process are shown in Figure 1. Ideally, computireg
LR value would allow the fact finder to take Bayes decisions,
which are known to be optimal in a cost sense [12]. However,
unavoidable and realistic imperfections in the computat
the LR values will degrade the optimality of the decisions taken
by the fact finder.

2.1. Cost-based evaluation

In order to evaluate the goodness of the fact finder's dewssio

a test can be performed from an evaluation database where the
identity of each speech utterance is known. Thus, we obtain a
set of target scores, whefig is true, and a set of non-target sco-
res, for whichd, is true. The results of such a forensic test can
then be evaluated in a cost-based way, as the one proposed by
the American National Institute of Standards and Technplog
(NIST) in their Speaker Recognition Evaluations (SRE) sinc
1996 [13]. Thus, the mean cost is defined as:

Cm = Py (1) - Cpr - P(0p) + Pra (1) - Cya - P(0a) (3)
wherePy, (1) and Py, (1) are the false rejection and false ac-
ceptance probabilities of the speaker recognition systgn,
pendent on the decision threshaldAssuming that the system
yields LR values,r is defined as:

LR >T
LR<T

: Decide 6,

: Decide 64 )

Also, C¢, andCy, are the costs respectively applied to each
false rejection or false acceptancP.(6,) and P (84) are the
prior probabilities defined in Equation 1. In a forensic et
both costs and priors are independent of the forensic system
and the fact finder should state their values, according o th
circumstances of each casB (10, 9]. For instance, in a case
where the fact finder thinks that, in the lightbfthere is a 0%

of probability that the suspect is the author of the questipn
then it should happen th# (6,) = 0.1.

Changing the decision threshold in a speaker detection sys-
tem leads to different values &, (7) and Py, (7), and there-
fore to different values ofCs;. Thus, it is possible to find
a value of the threshold (not necessarily unique), namély
which leads to a minimum value of the mean cost. We will say
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Figure 2: Value ofCs (Equation 3) for different decision thresholds. (a) SVMp8Vector system (high calibration loss) and (b)
Logistic regression fused system (low calibration log%), = Cr, = 1. Bayes thresholds (Equation 5) are shown as vertical lines.

that a system is calibrated [3, 14] for given prior and co$t va

ues if the decision threshold determines a paiPgf (7*) and

Py, (™) probabilities which minimize&yy, i.e., whenr = 7*.

The difference between the optimum valuetf; at~* and the

value of Cyr determined by the selected threshelis known

ascalibration loss[3]. As an example, in Figure 2(a) the value

of Cxr for a range of thresholds is represented for different

values of the prior and fa€'s, = Cf, = 1. Itis observed that

a minimum value ofCj; can be achieved for the mean cost,

which is strongly dependent on the prior probabilities.
However, for a given forensic case the priors and costs are

province of the court and may not be even known by the foren-

sic scientist. Moreover, each forensic case is unique, and i

general the priors and costs may vary among forensic cases.

Hence, if the priors change, the optimum threshoidfor the
original priors and costs will not be optimum anymore for the
new priors and costs, as it is observed in Figure 2(a). Thus,
Cyn may dramatically increase because this lack of calibration
which is dependent on the value of the prior and the costs. For
tunately, according to Bayes decision theory [12], if theadger
recognition system computdsR values (Equation 2) then the
optimum threshold for decision making, commonly known as
the Bayes threshold, is given by:

Cfa - P (64)
Cyr - P (6)

B = ©)
Thus, in order to obtain an optimal value of the mean cost
for any prior or cost two conditions are necessajycomputing
a LR value from the score; and) setting the Bayes threshold
according to the priors and the costs (Equation 5). The for-
mer condition should be accomplished by the forensic system
whereas the latter condition should be the duty of the fadgfin
Figure 2 illustrates the effects of calibration. Two differ
ent systems are shown, and in both cases the vald&.pfs
represented for a range of threshofdwith the constraint that
C¢r = Cy, = 1. Figure 2(a) shows a system where decisions
are taken directly from the scores, i.BR values have not been
computed from the scores. In this case, it can be said that the
score is used as AR value'. Bayes thresholdsrg) for each
prior are represented as vertical lines. Itis clearly olesgtthat

1scores and.R values are always considered to lay in a common

the optimality of Cxs is very different for different values of
the priors. For instance, selecting the Bayes thresholisléa
a suboptimal value of'»s for all cases. However, Figure 2(b)
shows a system wheleR values have been computed from the
scores, and it is shown thag is near from the optimum for all
the presented values #f(6,).

Figure 2(b) also shows that the optimality:of will depend
on the accuracy of th& R computation process. It is observed
that the optimum value o' is not exactly inrs. This is due
to the inaccuracies in theR computation process. If the value
of the LR is not properly computed, then the thresheldmay
not be optimal anymore, and therefore a calibration lost wil
occur. Moreover, in forensic applications, where the valtie
the priors and the decision costs may be different case & cas
it is mandatory to measure the goodness of the complfed
values for any value of the prior and the decision costs.

2.2. Application-independent evaluation

A solution to this problem has been proposed in [3] for speake
recognition, and since 2006 adopted by NIST in their Speaker
Recognition Evaluations (SRE) [13]. The values of the prior
and the costs in [3] determine application The measure of
accuracy proposed there, namély,, is independent of the ap-

plication, being computed as:
1
(1 * LRz‘)

1
Cur TN Z loga
lng(l + LR]‘)

P i€targets

1
2- N, Z

Jj€nonTargets

+ (6)

where N, and N4 are respectively the number of target and
non-target scores in the evaluation set. Thus, two averages
performed over two different logarithmic function of theses:
one for targets and one for non-targets. In [3] it is dem@atstt
thatCy;, is the mean o0 over all possible values of the de-
cision costs, fixingP (,) = 0.5. Thus, it is expected that
optimizing Cy;,- will improve the calibration of the scores for
any possible value of the decision cost®4#,) = 0.5 [3].

domain. Therefore, if the scores lay in tfie oo, c0) range, as it is
usual in speaker recognition, then they will be considdreg(L R)
values in order to use them with Equation 1.



3. Information-theoretical evaluation

In this section we will derive an information-theoreticarg
eralization ofCj;,, namely Empirical Cross-Entropy(ECE)
which measures the accuracy of th& values in terms of av-
erage information lossECE is in essence a normalized ver-
sion of other measures proposed in the literature for agipdic-
independent evaluation of speaker detection, su@dias[15].
Moreover, another normalized version BIC E, namelynor-
malized cross-entropyNCE), has been already proposed in
the literature for forensic speaker recognition [4] and SN
Speech Recognition and Rich Transcription evaluationk [16

3.1. Uncertainty and information

Information theory [1, 2] states that the information ob&al in

an inferential process is determined by the reduction oftihe
tropy, which measures the uncertainty about a given unknown
variable in the light of the available knowledge. In our fore
sic speaker recognition framework, the entropy represtmeats
uncertainty that the fact finder has about the actual valukeof
hypothesis variablé = {6,, 64}

In a given forensic case, and before the analysis of the evi-
dence, the uncertainty of the fact finder about the hypothisse
only conditioned to the background information about theeca
(I) as defined in Section 2. With this available knowledge, the
entropy of the hypothesis, namgbyior entropy or entropy of
the prioris determined by the following expression [2]:

P (6;

<o @ o
The entropy function is concave with respect to the prios. It
maximum is one (measured in bits), and occurs wRdHf,,) =
P (64) = 0.5. Its minimum is zero and occurs when any of
the priors equals zero. Thus, entropy is maximum when the
uncertainty about the hypotheses is maximum, and entropy is
zero when there is certainty abdut

Once the evidenc# is known and analyzed, AR value is
provided by the forensic system. Then, a posterior prolgabil
can be obtained from the prior probability and thR value. In
a given forensic case, sudhR value may or may not reduce
the uncertainty about the hypothesis variable. Howevearit
be demonstrated [2] that the expected value of the entropy of
the posterior probability over all possible values of thiglemce
E cannot be greater than the prior entropy. This expectecvalu
is theposterior entropycomputed as [2]:

Hp () = — P (6;)log,

P#) | p(el6:)log, P

— 00

Hp B|E)=— >

i€{p,d}

(6:| e) de.
®)

where the evidence valuB = e (here, the value of the score)
is integrated over its entire domain.

The expected information supplied by the evidence analy-
sis is illustrated in Figure 3. There, it is represented kimatv-
ledge about the evidence will never increase the expected un
certainty about the hypotheses over all possible valuebef t
evidence [2]. However, the computation of Equation 8 is usu-
ally non-practical, as it requires the knowledge about itredit
hoodsp (e| ;) computed by the system. Such likelihoods may
not be known in general, e.g., if discriminatiieR computa-
tion techniques are used as in [4, 3, 7]. Moreover, even when
thep (e| 6;) likelihoods as computed by the forensic system are
known, they may not be appropriate for unseen evaluation sco
res, because of the unavoidable imperfections iltReompu-

Evidence

(Information
gain)

Figure 3: Expected reduction of uncertainty (informati@ing
due to evidence analysis, over all possible values of the evi
dence. The area of the ellipses represent entropy, i.eerunc
tainty.

tation process (e.g. mismatch between training and evafuat
conditions).

A solution to this problem has been proposed in the liter-
ature [15, 3, 16] by comparing the posterior probabilitieme
puted using the forensic system withedierenceprobability dis-
tribution. The letterP (p for pdfs) will denote probabilities ob-
tained using the forensic system and the le€e(q for pdfs)
will denote reference probabilities. This eliminates tlepeh-
dence of the posterior and the likelihood inside the inteigra
Equation 8, leading to the cross-entropy:

o o]

/ q(e|b;)log, P (6;e)de.

i (9)
It can be demonstrated that the cross-entropy (Equation 9)
may be decomposed into:

Hqp (0| E) =

- > Q@

i€{p,d}

Hqp (0| E) = Hq (6|E) + Doy (6| E)  (10)
whereD o p ( H| E) is the well-known Kullback-Leibler (KL)
divergence between the system’s posterior distributiahthe
reference distribution [2] for all possible values of thédewnce,

defined as:

Q (6:|e
Daip(01B)= Y @ e)/ e16:)log, 201 4,
o P (bile)
(11)
Thus, the cross-entropy measures the complementary effect
of two different magnitudes:

e Hg (6|E), the posterior entropy of the reference, which
measures the uncertainty about the hypotheses if the
reference probability distribution is used for computing
posteriors.

e Dgpr (8] E), the deviation of the system’s posteriBr
from the reference posteri@). This is an additional in-
formation loss, because it was expected that the system
computed?, not P (Equation 9).

3.2. Proposed measure of accuracy: empirical cross
entropy (ECE)

The computation of the cross-entropy using Equation 9 may be
tedious if possible. However, an empirical approximatien i
used here. Given a target and a non-target setBfvalues
from forensic testing, we can obtain two target and nonetarg
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sets of posterior probabilities using Equation 1, assurttiad
the prior probabilities are known. Therefore, we can averag
the expectations in Equation 9, supposing the law of theelarg
numbers holds, obtaining:

0
ECE= - Q%fl'iz logy P (65| e;)
1€targets
0
- Qjﬁ,d) Y. log P(falej) (12)
d j€nonTargets
where:
HQ||P(6|E) ~ ECE (13)

This value will be our evaluation objective, namagnpirical
cross-entropy(EC E), which is equivalent to the already pro-
posed NCE [16, 4] and@ig [15]. The posterior probability is
dependent on the prior probabiliy (6,) and theLR value,
since:

_P(6p)
P(6,|E) = — 2 _ (14)

P(6y) -
1+ LR- 555

Then,ECE can be expressed as:

pop = 90) 3 log, 14—t

Np i€targets LRi . 1;((322
Q (6a) P (6p)
1 1+ LR; - 15
’ Nd jGnog;zrgets %62 i ! P(ed) ( )

Thus, ECE is prior-dependent, and it is not possible in gen-
eral for the forensic scientist to compute its value for eegiv
particular case, because the prior probabilities in suchsa ¢
are province of the fact finder. However, the forensic sgsént
is allowed to compute and represdidC E for a range of prior
probabilities, without assuming a particular value 8(6,).
Then, the fact finder can compute tB&'E value for the par-
ticular prior in a given case.

Figure 4 illustrates the information loss measured by eross
entropy in terms of its decomposition (Equation 10). As the
prior is taken as a parameter, th&fp (§) = Hq (). There-
fore, from Equation 15, it is straightforward thBC'E is inde-
pendent of the reference probabil@: Thus, the selection &
is only constrained by Equation 10. This has the following in
terpretation: for a fixed value dfC E, changing the reference
Q implies that:

e Hg (A|E) increases (decreases) and
e Dgpr (8] E) decreases (increases)

in order to keepE CE constant. This is illustrated in Figure 4:
the ellipse representing cross-entropy has always the sase
However, the inner small gray ellipse representing pasten-
tropy of @ may increase or decrease depending on the choice of
the referencé).

3.3. Choosing areference @ for intuitiveinterpretation

The selection of the reference probabilijyis constrained, be-
cause Equation 10 must hold. Therefore, the referéhoeay

be carefully selected. Moreover, in order to interpret gsutts

in court, simplicity and clarity should be the objective.rSal-
ering that, in this paper we propose a selection of the refere
probability distribution@ which has an intuitive interpretation
in the context of a forensic case. It may be derived as follows
the aim of every forensic case is finding the true value of the
hypothesisd. This would only be achieved if the fact finder
obtains the following posterior probabilities:

Q(6,|E)=1, 6pistrue
Q (6| E) =0, B4istrue

which will be referred to as theracle posterior distribution. If
this oracle distribution is selected as a reference, thepyof
the reference posteri@p is zero Hq (8| E) = 0) and therefore
the ECE becomes thel L—divergenceD o p (0| E) of the
posterior distribution of the system with respect to theckrra
posterior.

The choice of such a reference posterior has an attractive
and simple interpretation: the higher theC'E value, the more
the average information the fact finder needs in order to know
the true value of the hypotheses over many forensic casé® If
forensic system is misleading to the fact finder, thenAlieE
will grow, and more information on average will be needed in
order to know the true values of the hypotheses.

(16)

4. The ECE Plot

In this paper we propose to represdd E as a function of
P (6,) in a so-calledECE plot. For each prior probability in
a partition of the[0, 1] range, posterior probabilitieB (6,| E)
are computed using thBR values for the evaluation set and
Equation 1. The value oECE (Equation 15) is then repre-
sented as a function @? (6,).

Figure 5(a) shows an example BICE plot for a sample
ATVS-UAM system. The solid curve is thBECE (average in-
formation loss) of theL R values computed by the system. The
higher thisECE curve, the higher the information needed on
average in order to know the true hypothesis, and therefiere t
worse the system.

Two other systems are also represented for comparison. On
the one hand, the dashed curve representsalibrated sys-
tem, which is the system which optimiz&' E while preserv-
ing discrimination [3}. The calibrated system is obtained from
the forensic system using the Pool Adjacent Violators (PAV)
algorithm (see [3] for details). On the other hand, the dbtte
curve represents the performance of a system always dativer
LR = 1, referred to as aeutral system. The posterior in this
neutral case is the prior, which is independent of the system

2This system will be obtained from the forensic system, baiirig
the same DET curve.
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Thus, according to Equation 9, the cross-entropy of the neu-
tral system is simply the entropy of the prior probabilitiyem

by Equation 7. This neutral system plays an important rdle: i
the ECE value of the forensic system is greater than the en-
tropy of the neutral system, then the forensic system wéklo
more information on average than basing the decisions anly o
the prior information, i.e., not using the forensic systein.

the range of prior probabilities where this happens, therfsic
system should not be used for evidence analysis.

The ECE plot is easy to interpret if we choose the oracle
reference. Imagine a case in court where a control and a+ecov
ered sample are presented as evidence. The fact finder asks fo
the forensic evidence evaluation of the speech samples: Sup
pose that the fact finder establishes a given valueAd#é,,)
before the analysis of the evidence. Thus, B@FE value in
the plot at the given value aP (6,) is the average informa-
tion (over forensic cases) that we need in order to know the tr
value of the hypothesis for the given prior.

4.1. Comparison to other performance measures
ECE and the already proposet;, are closely related. From
Equations 6 and 15 it is straightforward that

Cur = ECE|P(0P a7

)=0.5
Thus, Cy,» is a value which summarizeBCE. Moreover,
ECE at a given prior represents the expected cost of taking
decisions using any value of the decision costs, whose alue
P (6,) = 0.5 is Cy». The interpretation o€y, in terms of
information is now straightforward. It measures the averiag
formation needed by the fact finder in order to know the true
values of the hypotheses when the prior uncertainty is maxi-
mum.

Another representation is proposed in [3], namely the APE
plot, which represents the performance of a speaker detiecto
a wide range of applications in terms of error rates. If we set
theCt, = C¢, = 1, and we also assume that Bayes thresholds
Tp are used for taking decisions from the postefidfé,| E),
then Equation 3 represents the total error raterfgrwhich is
shown by the APE plots as a prior-dependent measure. It can be
demonstrated [3] that the integral of the APE plot over therpr
is proportional taC;.. Therefore, reducing the error rate for
also reduces the value &iCE at P (6,) = 0.5. A comparison
between arECE plot and an APE curve is shown in Figure 5.
Itis shown that theZ C E value gives similar intuition about the
calibration of the system as the APE plots. However, APEsplot

SVM-SV (high calibration loss)

-1 0 1
logit (BASE 10) prior

[ loss
[ calibration loss

c,, Ibits]

(b)

represents a given error rate due to decisions, hBIGIE plots
no decision is assumed to be taken. Also, it is clearly shown
that the value o€y, is the value ofECE at P (6,) = 0.5°.

5. Experimental example

In order to show the adequacy of the proposed information-
theoretical assessment methodology, we present expegmen
results using two ATVS-UAM systems and its fusion. NIST
SRE 2006 protocol was followed in order to conduct the tests.
An example of presenting the average information supplied b
the forensic system in court based on a real case is also shown

5.1. Database, evaluation protocol and systems

A forensic testing simulation has been performed using the
evaluation protocol proposed in NIST 2006 SRE [13]. All
the results presented in this paper correspond to the laenv4
1conv4w condition (608 speakers), where there is one cenver
sation side for model training and one conversation side for
testing. The length of the conversations is typically fivexmi
utes, with an average of 2.5 minutes after silence remowal. F
this condition, more thah0.000 score computations per sys-
tem were performed. The database used in NIST SRE 2006 has
been partially extracted from the MIXER corpus [13], butgk si
nificant amount of additional multi-channel and multi-laage
data was acquired in order to complete the corpus for the eval
uation. It includes different communication channels,dsats,
microphones and languages, and represents well the gaatity
diversity of real telephone conversations. Background ftat
training the system has been extracted from the NIST SRE 2005
database and protocol [13].

Two score-based systems have been used in order to obtain
the scores from each recovered-control speech pair. Omthe o
hand, a GMM-UBM-MAP system is used [17, 7]. On the other
hand, we use a SVM-Supervector (SVM-SV) system, which is
based on the classification of GMM mean-supervectors using
support vector machines. Details can be found in [18, 7].- Nui
sance Attribute Projection (NAP) technique has been used in
order to compensate session variability [18]. It is impoirt®
notice that na.R computation technique has been used for re-
ducing the calibration loss of the scores from the expertmen
conducted with the individual systems.

The two systems have been fused via logistic regression

3The value of ECE at P (6,) = 0.5 has been highlighted with a
dashed line in théZCE plot in order to easily find’y;,.



'
'
'
'
0
'
f
'
'
'
'
'
i
'
'
'
:
[
v
'
'
'
'
'

SVM-SV (high calibration loss)

—LR values
= = = After PAV
“““ LR=1 always

Empirical cross—
o © o o o
= N w S [

o

GMM (high calibration loss)

Logistc Regression Fusion (low calibration loss)

S —LR values

= = =After PAV

——LR values
= = =After PAV 0.9r
“““ LR=1 always

“““ LR=1 always

Empirical cross—
o o o o o
N w S [ o

o
i

(@)

0
Prior Iogw(odds)

0
Prior Iogm(odds)

(b)

o

0
Prior Iogm(odds)

(©)

Figure 6: ECE plots for the individual systems based on SVM-SV (a) and GNil énd for the fused system using logistic regression

(c).

[19], a linear fusion where the transformation is trainedrider

to optimize an evaluation objective. In [19] it is demonsith
that, under some circumstances, such objective functi6hyis
Therefore, logistic regression not only fuses the scores-co
ing from the individual systems, but it also tends to caliera
them.4Logistic regression has been performed using thelFoCa
toolkit”.

5.2. Information-theoretical evaluation

In Figure 6 theECE plots are shown for the individual sys-
tems and for their fusion via logistic regression. Figurésif)
shows that theECE values are not satisfactory for the indi-
vidual systems. Actually, if a fact finder assumes that hé wil
receive aL R value from a system and such system did not take
into account calibration, the decisions of the fact findey ina
dramatically far from the optimum, which is represented by a
growth of ECE. Hence, in the case of the individual systems
the ECE is far from its calibrated value, as it can be seen from
the difference between the dashed and solid curves.

Figure 6(c) shows th&CE plot for the fused system. It
is observed that th&C E value is smaller than for the individ-
ual systems, which is justified by the calibrating transfation
applied by logistic regression. This improvement is obsdrv
for all priors. AlthoughCy, = ECE|P(9p):O_5 was used as

an optimization objective, in this cadeéC' E was reduced for
every prior, because oncelaR value is computed by logistic
regression, it can be used for any other prior. Also, theediff
ence between the dashed and solid curves is small, whichamean
a small information loss due to a lack of calibration.

5.3. Presenting the average information supplied by the
system in court

Imagine a scenario where the prosecutor presents a piege of e
idence consisting of an incriminating questioned recayaion-
taining some utterances coming from oneldfpossible spea-
kers. A suspect is appointed from police investigationg oh

the 11 speakers, and some recordings are obtained from him.
Considering only this background information, the fact énd
may assign a prior probability’ (§,) = L that6, is true
(the suspect is the source of the questioned sp&ethg court

4FoCal is available at http://niko.brummer.googlepagea/c
5For the presented simplified example, no other informatioasi
sumed to be present in the forensic case. However, in a realtbe

gives the forensic speech scientist both recordings, anéhtt
finder also insists the scientist’s analytical techniqueteom-
ply with Daubert-like rules.

Taking into account all those elements, the forensic scien-
tist uses one of the presented systems in order to complufe a
value to report the fact find&r However, considering the ad-
missibility requirements of Daubert rules, the foresieatist
decides to include in the report results of forensic testiking
into account the circumstances and conditions of the aadlyz
recordings. Possibly among other performance measures, th
scientist includes th& CE plot of the forensic test in order to
explain the fact finder the information given by the system in
the inferential process.

If the fact finder so desires, the scientist may explain in
court how the average information would be improved over
many forensic cases by the use of the forensic system. Imag-
ine that the scientist uses the fused system presented umneFig
6(c), which obtains a good value &C E. Thus, the argument
of the scientist should be as follows:

e Before knowing the weight of the evidence, and given
that the prior probabilities have been setRd6,) =
0.1, the ECE plot shows that, using this system, we
need0.46 bits of information on average in order to
know the true value of the hypothesis over cases like
this one (dotted curve of Figure 6(c) at the prior odds
P (6,) /P (8a) = 15).

e After analyzing the weight of the evidence, more infor-
mation has been obtained, and we will need dnli2
bits on average in order to know the true value of the hy-
pothesis over cases like this one (solid curve of Figure
6(c) at the prior odd#> (6,) /P (fa) = 15)-

e If we had used the calibrated system, we would have
need0.1 bits on average in order to know the true value
of the hypothesis (dashed curve of Figure 6(c) at the prior
oddsP (6,) /P (4) = 15)- However, it has to be clear
that this calibrated results are not feasible in practiee, b
cause the forensic scientist needs to know information

background informatiord may include more circumstantial informa-
tion or other evidence sources.

6Many questions regarding the adequacy of the forensicntesti
database with respect to the real forensic field data mag,aswell as
issues like population selection and reporting procedugesh topics
are out of the scope of this paper, but some discussion ahemit tan
be found in recent work from the authors [7].



about the true answers of the hypotheses in order to ob-
tain this calibrated system.

6. Conclusions

In this paper, an analysis of the influence of the forensiaspe
ker recognition system in the decision of a fact finder about a
given forensic case has been presented in terms of infamati
Information theory has been used in order to derive empirica
cross-entropy FCE) as a measure of accuracy of a forensic
speaker recognition system, according to other equivaheat-
sures such aBi.g or NCE. ECE can be interpreted as the av-
erage information needed by the fact finder over cases and af-
ter evidence analysis in order to know whether the recovered
and control speech samples come from the same source or not.
ECE considers the uncertainty about the hypotheses involved
in a case in the light of the evidence and the rest of knowledge
in the case. Moreover, it also measures the informationdoss
to a non-perfectL R calibration. This derivation has led to a
novel elegant representation, the&' E plot, which allows pre-
senting the average information supplied by evidence arsaly
in court with a clear separation of roles. The derived repre-
sentation allows the transparent reporting of the perfocaaf
the system in terms of such information-theoretical magtgs.
The proposedE CE plot has been compared to other assess-
ment methods such as APE plots &fg.. As a conclusion, the
authors believe that the proposed information-theorkeiitar-
pretation may be easy to understand by fact finders, aiding de
cisions about admissibility according to Daubert rules aimer
similar criteria.

Another advantage of the presented technique is its ade-
quacy to other forensic disciplines whekd? values are used
for evidence evaluation, such as glass and paint analy@js [2
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