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Abstract
In this work we analyze the average information supplied
by a forensic speaker recognition system in an information-
theoretical way. The objective is the transparent reporting of
the performance of the system in terms of information, ac-
cording to the needs of transparency and testability in forensic
science. This analysis allows the derivation of a proper mea-
sure of goodness for forensic speaker recognition, the empirical
cross-entropy (� �� ), according to previous work in the liter-
ature. We also propose an intuitive representation, namelythe
� �� plot, which allows forensic scientists to explain the av-
erage information given by the evidence analysis process ina
clear and intuitive way. Such representation allows the foren-
sic scientist to assess the evidence evaluation process with in-
dependence of the prior information, which is province of the
court. Then, fact finders may check the average information
given by the evidence analysis with the incorporation of prior
information. An experimental example following NIST SRE
2006 protocol is presented in order to highlight the adequacy of
the proposed framework in the forensic inferential process. An
example of the presentation of the average information supplied
by the forensic analysis of the speech evidence in court is also
provided, simulating a real case.

1. Introduction
Information theory was proposed in the middle of the��th cen-
tury as a standard for measuring and presenting information[1].
After more than�� years, the applications of information theory
have been remarkable in many fields like physics, probability
theory and economics [2]. Under this framework, the uncer-
tainty about an unknown variable is quantified by a magnitude
calledentropy. Additional knowledge about other known vari-
ables under study will contribute to the reduction of the entropy,
and therefore, the information about the unknown variable will
be increased.

Recently, information theory has been proposed in order
to assess the goodness of automatic speaker detection [3, 4].
Such techniques assume that the system yields likelihood ratios
(�� ) as a degree of support to any of the hypotheses involved in
the detection process. Although such assessment techniques are
presented in apparently different forms, they have in essence the
same interpretation: the automatic speaker recognition process
gives information about whether the two speech material being
compared come from the same speaker or not.

In forensic speaker recognition, the�� approach has been
proposed for reporting the weight of the evidence in court
[5, 6, 7]. Moreover, the uprising requirements in forensic
science require the use of scientifically sound procedures for
clearly stating the accuracy of the techniques in use. For in-
stance, in a given case and according to Daubert rules or sim-

ilar criteria [8], the fact finder may demand a test in order to
clarify the accuracy of the�� computation technique used for
evidence analysis, whose results are to be presented in court.
Such assessment will contribute to the decision of the fact finder
about the admissibility of the evidence analysis process. In or-
der to fulfill this requirements, in this paper we propose theuse
of information-theoretical magnitudes for assessing the accu-
racy of the�� values computed by forensic speaker recognition
systems. We will consider that the evidence analysis gives in-
formation to the fact finder about the value of the hypothesis
involved in the case. The proposed assessment framework mea-
sures how good the forensic system is extracting such informa-
tion, and allows the forensic scientist to present it in court in
a clear and transparent way. The importance of transparent re-
porting of the performance of forensic techniques has been also
recently highlighted for forensic speaker recognition [7].

The aim of this paper is identifying and characterizing the
information supplied by the weight of the speech evidence com-
puted by the forensic system, considering the requirementsof
the so-dubbedcoming paradigm shiftin forensic identification
[8]. The reduction of the uncertainty gives a measure of the ex-
pected information that the evaluation of the evidence delivers
to the decision process in a forensic case, and it is modelled
in terms of entropy and divergence [2]. These magnitudes will
be integrated in a�� -based framework adopted from forensic
DNA analysis [7]. In particular, a clear distinction is madebe-
tween the information sources given by the analysis of the ev-
idence, province of the forensic scientist, and the rest of infor-
mation in the case, province of the court. A novel performance
representation is proposed, namely the� �� plot, which inte-
grates previous approaches and gives a clear an elegant measure
of the average reduction of uncertainty supplied by the forensic
system. The proposed representation also allows reportingto
the court the performance of the forensic system in a clear and
simple way, according to the needs of transparency and testabil-
ity in forensic science.

The paper is organized as follows. Section 2 introduces
the problem of the assessment of decisions in forensic science
and reviews some approaches found in the literature. In section
3, the proposed measure of accuracy, namelyempirical cross-
entropy(� �� ), is derived, as well as its interpretation. In Sec-
tion 4 the� �� plot is presented as a useful performance repre-
sentation suited for forensic speaker recognition, discussing its
relationship to other performance measures already proposed.
In Section 5 an experimental example is reported, which illus-
trates the adequacy of the proposed methods for forensic cases.
The section is completed with a simulation of a real case, where
the� �� value is reported as a measure of performance accord-
ing to the requirements of Daubert and similar criteria. Finally,
conclusions are drawn in Section 6.
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Figure 1: Elements in the decision process using�� -based forensic speaker recognition.

2. Cost-based evaluation of forensic speaker
recognition systems

The �� framework for evidence analysis is summed up here
[9, 10]. Consider the forensic speech evidence as the compar-
ison of arecoveredspeech sample (of unknown source) and a
control sample (usually from a suspect). Such comparison will
be referred to as atrial . Bayes’ theorem then allows the follow-
ing inference:

� ��� �� � � �� ��� �� � � � 	 �� 

� ��� � � �� ��� � � � (1)

where
��

(the control and the recovered samples come from
the same source) and

��
(the control and the recovered samples

come from different sources) are typically the relevant hypothe-
ses and� is the background information available in the case.
The likelihood ratio (�� ) is defined as:

�� 	
� �� � �� � � �� �� � �� � � � (2)

The hypotheses should be defined in the court from� ,
the prosecutor and defense propositions and often because of
the adversarial nature of the criminal system. In this frame-
work, we distinguish two magnitudes:�� the prior probabil-
ities

� ��� � � � 	
 � � ��� � � �, which are province of the

fact finder and should be stated assuming only the background
information in the case� ; and ��� the �� (Equation 2), com-
puted by the forensic scientist [4, 11, 7]. The background in-
formation� may include not only circumstantial information in
the case (such as witness testimony or police investigations),
but also the analysis of other forensic evidences (such as glass
fragments, paint flakes, etc.). Such two magnitudes allow the
fact finder to infer a posterior probability for each hypothesis� ��� �� � � � 	

 � � ��� �� � � �, which considers both� and
the evidence evaluation from the forensic scientist. The back-
ground information about the case� will be eliminated from
the notation for simplicity from here thereafter, but it will be as-
sumed that all the probabilities are conditioned to� . Thus, we
will express prior and posterior probabilities of

��
respectively

as
� ��� � and

� � �� �� �, and similarly for
��

.
In order to take a decision according to Bayesian theory

[12], the fact finder would have to use the posterior and also
some decision costs. These costs represent penalties for each
type of error in each binary decision, namely false acceptance

cost (� � �) and false rejections (� � �). The elements in this in-
ferential process are shown in Figure 1. Ideally, computingthe
�� value would allow the fact finder to take Bayes decisions,
which are known to be optimal in a cost sense [12]. However,
unavoidable and realistic imperfections in the computation of
the�� values will degrade the optimality of the decisions taken
by the fact finder.

2.1. Cost-based evaluation

In order to evaluate the goodness of the fact finder’s decisions,
a test can be performed from an evaluation database where the
identity of each speech utterance is known. Thus, we obtain a
set of target scores, where

��
is true, and a set of non-target sco-

res, for which
��

is true. The results of such a forensic test can
then be evaluated in a cost-based way, as the one proposed by
the American National Institute of Standards and Technology
(NIST) in their Speaker Recognition Evaluations (SRE) since
1996 [13]. Thus, the mean cost is defined as:

�� 	
� � � �� � 
 � � � 
 � ��� � � �� � �� � 
 � � � 
 � ��� � (3)

where
� � � �� � and

� � � �� � are the false rejection and false ac-
ceptance probabilities of the speaker recognition system,de-
pendent on the decision threshold

�
. Assuming that the system

yields�� values,
�

is defined as:

�� � � � � ����� ��
�� � � � � ����� �� (4)

Also, � � � and� � � are the costs respectively applied to each
false rejection or false acceptance.

� ��� � and
� ��� � are the

prior probabilities defined in Equation 1. In a forensic context
both costs and priors are independent of the forensic system,
and the fact finder should state their values, according to the
circumstances of each case (� ) [10, 9]. For instance, in a case
where the fact finder thinks that, in the light of� , there is a

��
of probability that the suspect is the author of the questioned,
then it should happen that

� ��� � 	 �  .
Changing the decision threshold in a speaker detection sys-

tem leads to different values of
� � � �� � and

� � � �� �, and there-
fore to different values of�� . Thus, it is possible to find
a value of the threshold (not necessarily unique), namely

� !
,

which leads to a minimum value of the mean cost. We will say
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Figure 2: Value of�� (Equation 3) for different decision thresholds. (a) SVM-SuperVector system (high calibration loss) and (b)
Logistic regression fused system (low calibration loss).� � � 	 � � � 	


. Bayes thresholds (Equation 5) are shown as vertical lines.

that a system is calibrated [3, 14] for given prior and cost val-
ues if the decision threshold determines a pair of

� � � �� !� and� � � �� !� probabilities which minimize�� , i.e., when
�

	
� !

.
The difference between the optimum value of�� at

� !
and the

value of�� determined by the selected threshold
�

is known
ascalibration loss[3]. As an example, in Figure 2(a) the value
of �� for a range of thresholds

�
is represented for different

values of the prior and for� � � 	 � � � 	

. It is observed that

a minimum value of�� can be achieved for the mean cost,
which is strongly dependent on the prior probabilities.

However, for a given forensic case the priors and costs are
province of the court and may not be even known by the foren-
sic scientist. Moreover, each forensic case is unique, and in
general the priors and costs may vary among forensic cases.
Hence, if the priors change, the optimum threshold

� !
for the

original priors and costs will not be optimum anymore for the
new priors and costs, as it is observed in Figure 2(a). Thus,
�� may dramatically increase because this lack of calibration,
which is dependent on the value of the prior and the costs. For-
tunately, according to Bayes decision theory [12], if the speaker
recognition system computes�� values (Equation 2) then the
optimum threshold for decision making, commonly known as
the Bayes threshold, is given by:

��
	

� � � 
 � ��� �
� � � 
 � ��� � (5)

Thus, in order to obtain an optimal value of the mean cost
for any prior or cost two conditions are necessary:�� computing
a �� value from the score; and��� setting the Bayes threshold
according to the priors and the costs (Equation 5). The for-
mer condition should be accomplished by the forensic system,
whereas the latter condition should be the duty of the fact finder.

Figure 2 illustrates the effects of calibration. Two differ-
ent systems are shown, and in both cases the value of�� is
represented for a range of thresholds

�
with the constraint that

� � � 	 � � � 	

. Figure 2(a) shows a system where decisions

are taken directly from the scores , i.e.,�� values have not been
computed from the scores. In this case, it can be said that the
score is used as a�� value1. Bayes thresholds (

��
) for each

prior are represented as vertical lines. It is clearly observed that

1Scores and
��

values are always considered to lay in a common

the optimality of�� is very different for different values of
the priors. For instance, selecting the Bayes threshold leads to
a suboptimal value of�� for all cases. However, Figure 2(b)
shows a system where�� values have been computed from the
scores, and it is shown that

��
is near from the optimum for all

the presented values of
� ��� �.

Figure 2(b) also shows that the optimality of
��

will depend
on the accuracy of the�� computation process. It is observed
that the optimum value of�� is not exactly in

��
. This is due

to the inaccuracies in the�� computation process. If the value
of the�� is not properly computed, then the threshold

��
may

not be optimal anymore, and therefore a calibration loss will
occur. Moreover, in forensic applications, where the valueof
the priors and the decision costs may be different case to case,
it is mandatory to measure the goodness of the computed��
values for any value of the prior and the decision costs.

2.2. Application-independent evaluation

A solution to this problem has been proposed in [3] for speaker
recognition, and since 2006 adopted by NIST in their Speaker
Recognition Evaluations (SRE) [13]. The values of the priors
and the costs in [3] determine anapplication. The measure of
accuracy proposed there, namely� ��� , is independent of the ap-
plication, being computed as:

� ��� 	


� 
 � � X

����	
���
�� �„ �


�� �

«

�


� 
 � � X

� ������	
���
�� � � � ��� � (6)

where��
and � �

are respectively the number of target and
non-target scores in the evaluation set. Thus, two averagesare
performed over two different logarithmic function of the scores:
one for targets and one for non-targets. In [3] it is demonstrated
that� ��� is the mean of�� over all possible values of the de-
cision costs, fixing

� ��� � 	 �  �. Thus, it is expected that
optimizing � ��� will improve the calibration of the scores for
any possible value of the decision costs at

� ��� � 	 �  � [3].

domain. Therefore, if the scores lay in the��� �� � range, as it is
usual in speaker recognition, then they will be considered��� ��� �
values in order to use them with Equation 1.



3. Information-theoretical evaluation
In this section we will derive an information-theoretical gen-
eralization of� ��� , namelyEmpirical Cross-Entropy(� �� )
which measures the accuracy of the�� values in terms of av-
erage information loss.� �� is in essence a normalized ver-
sion of other measures proposed in the literature for application-
independent evaluation of speaker detection, such as���
 [15].
Moreover, another normalized version of� �� , namelynor-
malized cross-entropy(NCE), has been already proposed in
the literature for forensic speaker recognition [4] and in NIST
Speech Recognition and Rich Transcription evaluations [16].

3.1. Uncertainty and information

Information theory [1, 2] states that the information obtained in
an inferential process is determined by the reduction of theen-
tropy, which measures the uncertainty about a given unknown
variable in the light of the available knowledge. In our foren-
sic speaker recognition framework, the entropy representsthe
uncertainty that the fact finder has about the actual value ofthe
hypothesis variable

�
	

��� � �� �.
In a given forensic case, and before the analysis of the evi-

dence, the uncertainty of the fact finder about the hypotheses is
only conditioned to the background information about the case
(� ) as defined in Section 2. With this available knowledge, the
entropy of the hypothesis, namelyprior entropyor entropy of
the prior is determined by the following expression [2]:

�� �� � 	
� P

���� �� � � �� � � ��	 � � �� � � (7)

The entropy function is concave with respect to the prior. Its
maximum is one (measured in bits), and occurs when

� ��� � 	� ��� � 	 �  �. Its minimum is zero and occurs when any of
the priors equals zero. Thus, entropy is maximum when the
uncertainty about the hypotheses is maximum, and entropy is
zero when there is certainty about

�
.

Once the evidence� is known and analyzed, a�� value is
provided by the forensic system. Then, a posterior probability
can be obtained from the prior probability and the�� value. In
a given forensic case, such�� value may or may not reduce
the uncertainty about the hypothesis variable. However, itcan
be demonstrated [2] that the expected value of the entropy of
the posterior probability over all possible values of the evidence
� cannot be greater than the prior entropy. This expected value
is theposterior entropy, computed as [2]:

�� �� �� � 	
� P

���� ��� � �� � �


R

�

� � � � � � � ��	 � � � � � � �� �  

(8)
where the evidence value� 	

�
(here, the value of the score)

is integrated over its entire domain.
The expected information supplied by the evidence analy-

sis is illustrated in Figure 3. There, it is represented thatknow-
ledge about the evidence will never increase the expected un-
certainty about the hypotheses over all possible values of the
evidence [2]. However, the computation of Equation 8 is usu-
ally non-practical, as it requires the knowledge about the likeli-
hoods� � � � � � � computed by the system. Such likelihoods may
not be known in general, e.g., if discriminative�� computa-
tion techniques are used as in [4, 3, 7]. Moreover, even when
the� � � � � � � likelihoods as computed by the forensic system are
known, they may not be appropriate for unseen evaluation sco-
res, because of the unavoidable imperfections in the�� compu-

H ( )P è H ( )P è|E
Evidence

(Information
gain)

Figure 3: Expected reduction of uncertainty (information gain)
due to evidence analysis, over all possible values of the evi-
dence. The area of the ellipses represent entropy, i.e., uncer-
tainty.

tation process (e.g. mismatch between training and evaluation
conditions).

A solution to this problem has been proposed in the liter-
ature [15, 3, 16] by comparing the posterior probabilities com-
puted using the forensic system with areferenceprobability dis-
tribution. The letter

�
(� for pdfs) will denote probabilities ob-

tained using the forensic system and the letter� (� for pdfs)
will denote reference probabilities. This eliminates the depen-
dence of the posterior and the likelihood inside the integral in
Equation 8, leading to the cross-entropy:

� � �� � � �� � 	
� X

���� �� � �
�� � �



Z

�

� �� �� � � ��	 � � � � � � �� �  

(9)
It can be demonstrated that the cross-entropy (Equation 9)

may be decomposed into:

� ��� � � �� � 	
�� �� �� � � � � �� � � �� � (10)

where� ��� �� �� � is the well-known Kullback-Leibler (KL)
divergence between the system’s posterior distribution and the
reference distribution [2] for all possible values of the evidence,
defined as:

� � �� � � �� � 	
X

���� ��� �
�� � �



Z

�

� �� �� � � ��	 � � � � � � ��� � � � � �� 

�  
(11)

Thus, the cross-entropy measures the complementary effect
of two different magnitudes:

� �� �� �� �, the posterior entropy of the reference, which
measures the uncertainty about the hypotheses if the
reference probability distribution is used for computing
posteriors.

� � � �� � � �� �, the deviation of the system’s posterior
�

from the reference posterior� . This is an additional in-
formation loss, because it was expected that the system
computed� , not

�
(Equation 9).

3.2. Proposed measure of accuracy: empirical cross-
entropy (� �� )

The computation of the cross-entropy using Equation 9 may be
tedious if possible. However, an empirical approximation is
used here. Given a target and a non-target set of�� values
from forensic testing, we can obtain two target and non-target
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sets of posterior probabilities using Equation 1, assumingthat
the prior probabilities are known. Therefore, we can average
the expectations in Equation 9, supposing the law of the large
numbers holds, obtaining:

� �� 	
� � ��� �

�� X

����	
��� ��	
� � � �� � �� �

� � ��� �
� � X

� ������	
��� ��	
� � � �� � �� � (12)

where:

� � �� � � �� � � � �� (13)

This value will be our evaluation objective, namelyempirical
cross-entropy(� �� ), which is equivalent to the already pro-
posed NCE [16, 4] and���
 [15]. The posterior probability is
dependent on the prior probability

� ��� � and the�� value,
since:

� � �� �� � 	
�� 


� ��� �� ��� �
 � �� 


� ��� �� ��� �  (14)

Then,� �� can be expressed as:

� �� 	
� ��� �
�� X

����	
��� ��	
�

0

@

 �


�� � 

� ��� �� ��� �

1

A

� � ��� �
� � X

� ������	
��� ��	
� „ � ��� 


� ��� �� ��� �
«

(15)

Thus,� �� is prior-dependent, and it is not possible in gen-
eral for the forensic scientist to compute its value for a given
particular case, because the prior probabilities in such a case
are province of the fact finder. However, the forensic scientist
is allowed to compute and represent� �� for a range of prior
probabilities, without assuming a particular value for

� ��� �.
Then, the fact finder can compute the� �� value for the par-
ticular prior in a given case.

Figure 4 illustrates the information loss measured by cross-
entropy in terms of its decomposition (Equation 10). As the
prior is taken as a parameter, then

�� �� � 	
�� �� �. There-

fore, from Equation 15, it is straightforward that� �� is inde-
pendent of the reference probability� . Thus, the selection of�
is only constrained by Equation 10. This has the following in-
terpretation: for a fixed value of� �� , changing the reference� implies that:

� �� �� �� � increases (decreases) and
� � � �� � � �� � decreases (increases)

in order to keep� �� constant. This is illustrated in Figure 4:
the ellipse representing cross-entropy has always the samesize.
However, the inner small gray ellipse representing posterior en-
tropy of� may increase or decrease depending on the choice of
the reference� .

3.3. Choosing a reference � for intuitive interpretation

The selection of the reference probability� is constrained, be-
cause Equation 10 must hold. Therefore, the reference� may
be carefully selected. Moreover, in order to interpret the results
in court, simplicity and clarity should be the objective. Consid-
ering that, in this paper we propose a selection of the reference
probability distribution� which has an intuitive interpretation
in the context of a forensic case. It may be derived as follows:
the aim of every forensic case is finding the true value of the
hypothesis

�
. This would only be achieved if the fact finder

obtains the following posterior probabilities:

� � �� �� � 	
 � �� �� ��	�

� � �� �� � 	 � � �� �� ��	� (16)

which will be referred to as theoracleposterior distribution. If
this oracle distribution is selected as a reference, the entropy of
the reference posterior� is zero (

�� �� �� � 	 �) and therefore
the � �� becomes the
 ��

divergence� ��� � � �� � of the
posterior distribution of the system with respect to the oracle
posterior.

The choice of such a reference posterior has an attractive
and simple interpretation: the higher the� �� value, the more
the average information the fact finder needs in order to know
the true value of the hypotheses over many forensic cases. Ifthe
forensic system is misleading to the fact finder, then the� ��
will grow, and more information on average will be needed in
order to know the true values of the hypotheses.

4. The
� � �

Plot
In this paper we propose to represent� �� as a function of� ��� � in a so-called� �� plot. For each prior probability in
a partition of the� � �

range, posterior probabilities
� � �� �� �

are computed using the�� values for the evaluation set and
Equation 1. The value of� �� (Equation 15) is then repre-
sented as a function of

� ��� �.
Figure 5(a) shows an example of� �� plot for a sample

ATVS-UAM system. The solid curve is the� �� (average in-
formation loss) of the�� values computed by the system. The
higher this� �� curve, the higher the information needed on
average in order to know the true hypothesis, and therefore the
worse the system.

Two other systems are also represented for comparison. On
the one hand, the dashed curve represents thecalibrated sys-
tem, which is the system which optimizes� �� while preserv-
ing discrimination [3]2. The calibrated system is obtained from
the forensic system using the Pool Adjacent Violators (PAV)
algorithm (see [3] for details). On the other hand, the dotted
curve represents the performance of a system always delivering
�� 	


, referred to as aneutral system. The posterior in this

neutral case is the prior, which is independent of the system.

2This system will be obtained from the forensic system, both having
the same DET curve.
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Figure 5: Comparison of the� �� plot (a) to APE plots and� ��� (b). ATVS SVM-SV system. NIST SRE 2006 protocol.

Thus, according to Equation 9, the cross-entropy of the neu-
tral system is simply the entropy of the prior probability, given
by Equation 7. This neutral system plays an important role: if
the � �� value of the forensic system is greater than the en-
tropy of the neutral system, then the forensic system will lose
more information on average than basing the decisions only on
the prior information, i.e., not using the forensic system.In
the range of prior probabilities where this happens, the forensic
system should not be used for evidence analysis.

The� �� plot is easy to interpret if we choose the oracle
reference. Imagine a case in court where a control and a recov-
ered sample are presented as evidence. The fact finder asks for
the forensic evidence evaluation of the speech samples. Sup-
pose that the fact finder establishes a given value for

� ��� �
before the analysis of the evidence. Thus, the� �� value in
the plot at the given value of

� ��� � is the average informa-
tion (over forensic cases) that we need in order to know the true
value of the hypothesis for the given prior.

4.1. Comparison to other performance measures

� �� and the already proposed� ��� are closely related. From
Equations 6 and 15 it is straightforward that

� ��� 	 � �� �� ��� ��� �� (17)

Thus, � ��� is a value which summarizes� �� . Moreover,
� �� at a given prior represents the expected cost of taking
decisions using any value of the decision costs, whose valueat� ��� � 	 �  � is � ��� . The interpretation of� ��� in terms of
information is now straightforward. It measures the average in-
formation needed by the fact finder in order to know the true
values of the hypotheses when the prior uncertainty is maxi-
mum.

Another representation is proposed in [3], namely the APE
plot, which represents the performance of a speaker detector in
a wide range of applications in terms of error rates. If we set
the� � � 	 � � � 	


, and we also assume that Bayes thresholds��

are used for taking decisions from the posterior
� � �� �� �,

then Equation 3 represents the total error rate for
��

, which is
shown by the APE plots as a prior-dependent measure. It can be
demonstrated [3] that the integral of the APE plot over the prior
is proportional to� ��� . Therefore, reducing the error rate for

��
also reduces the value of� �� at

� ��� � 	 �  �. A comparison
between an� �� plot and an APE curve is shown in Figure 5.
It is shown that the� �� value gives similar intuition about the
calibration of the system as the APE plots. However, APE plots

represents a given error rate due to decisions, but in� �� plots
no decision is assumed to be taken. Also, it is clearly shown
that the value of� ��� is the value of� �� at

� ��� � 	 �  �3.

5. Experimental example
In order to show the adequacy of the proposed information-
theoretical assessment methodology, we present experimental
results using two ATVS-UAM systems and its fusion. NIST
SRE 2006 protocol was followed in order to conduct the tests.
An example of presenting the average information supplied by
the forensic system in court based on a real case is also shown.

5.1. Database, evaluation protocol and systems

A forensic testing simulation has been performed using the
evaluation protocol proposed in NIST 2006 SRE [13]. All
the results presented in this paper correspond to the 1conv4w-
1conv4w condition (608 speakers), where there is one conver-
sation side for model training and one conversation side for
testing. The length of the conversations is typically five min-
utes, with an average of 2.5 minutes after silence removal. For
this condition, more than��  ��� score computations per sys-
tem were performed. The database used in NIST SRE 2006 has
been partially extracted from the MIXER corpus [13], but a sig-
nificant amount of additional multi-channel and multi-language
data was acquired in order to complete the corpus for the eval-
uation. It includes different communication channels, handsets,
microphones and languages, and represents well the qualityand
diversity of real telephone conversations. Background data for
training the system has been extracted from the NIST SRE 2005
database and protocol [13].

Two score-based systems have been used in order to obtain
the scores from each recovered-control speech pair. On the one
hand, a GMM-UBM-MAP system is used [17, 7]. On the other
hand, we use a SVM-Supervector (SVM-SV) system, which is
based on the classification of GMM mean-supervectors using
support vector machines. Details can be found in [18, 7]. Nui-
sance Attribute Projection (NAP) technique has been used in
order to compensate session variability [18]. It is important to
notice that no�� computation technique has been used for re-
ducing the calibration loss of the scores from the experiments
conducted with the individual systems.

The two systems have been fused via logistic regression

3The value of
� ��

at � ��� � � 	 
� has been highlighted with a
dashed line in the

� ��
plot in order to easily find

� ���
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Figure 6:� �� plots for the individual systems based on SVM-SV (a) and GMM (b), and for the fused system using logistic regression
(c).

[19], a linear fusion where the transformation is trained inorder
to optimize an evaluation objective. In [19] it is demonstrated
that, under some circumstances, such objective function is� ��� .
Therefore, logistic regression not only fuses the scores com-
ing from the individual systems, but it also tends to calibrate
them. Logistic regression has been performed using the FoCal
toolkit4.

5.2. Information-theoretical evaluation

In Figure 6 the� �� plots are shown for the individual sys-
tems and for their fusion via logistic regression. Figures 6(a,b)
shows that the� �� values are not satisfactory for the indi-
vidual systems. Actually, if a fact finder assumes that he will
receive a�� value from a system and such system did not take
into account calibration, the decisions of the fact finder may be
dramatically far from the optimum, which is represented by a
growth of� �� . Hence, in the case of the individual systems
the� �� is far from its calibrated value, as it can be seen from
the difference between the dashed and solid curves.

Figure 6(c) shows the� �� plot for the fused system. It
is observed that the� �� value is smaller than for the individ-
ual systems, which is justified by the calibrating transformation
applied by logistic regression. This improvement is observed
for all priors. Although� ��� 	 � �� �� ��� ��� �� was used as

an optimization objective, in this case� �� was reduced for
every prior, because once a�� value is computed by logistic
regression, it can be used for any other prior. Also, the differ-
ence between the dashed and solid curves is small, which means
a small information loss due to a lack of calibration.

5.3. Presenting the average information supplied by the
system in court

Imagine a scenario where the prosecutor presents a piece of ev-
idence consisting of an incriminating questioned recording con-
taining some utterances coming from one of


possible spea-

kers. A suspect is appointed from police investigations, one of
the


speakers, and some recordings are obtained from him.

Considering only this background information, the fact finder
may assign a prior probability

� ��� � 	
��� that

��
is true

(the suspect is the source of the questioned speech)5. The court

4FoCal is available at http://niko.brummer.googlepages.com/.
5For the presented simplified example, no other information is as-

sumed to be present in the forensic case. However, in a real case the

gives the forensic speech scientist both recordings, and the fact
finder also insists the scientist’s analytical technique must com-
ply with Daubert-like rules.

Taking into account all those elements, the forensic scien-
tist uses one of the presented systems in order to compute a��
value to report the fact finder6. However, considering the ad-
missibility requirements of Daubert rules, the foresic scientist
decides to include in the report results of forensic testingtaking
into account the circumstances and conditions of the analyzed
recordings. Possibly among other performance measures, the
scientist includes the� �� plot of the forensic test in order to
explain the fact finder the information given by the system in
the inferential process.

If the fact finder so desires, the scientist may explain in
court how the average information would be improved over
many forensic cases by the use of the forensic system. Imag-
ine that the scientist uses the fused system presented in Figure
6(c), which obtains a good value of� �� . Thus, the argument
of the scientist should be as follows:

� Before knowing the weight of the evidence, and given
that the prior probabilities have been set to

� ��� � 	�  , the � �� plot shows that, using this system, we
need �  �� bits of information on average in order to
know the true value of the hypothesis over cases like
this one (dotted curve of Figure 6(c) at the prior odds� ��� � �� ��� � 	

��� ).
� After analyzing the weight of the evidence, more infor-

mation has been obtained, and we will need only�  �
bits on average in order to know the true value of the hy-
pothesis over cases like this one (solid curve of Figure
6(c) at the prior odds

� ��� � �� ��� � 	
��� ).

� If we had used the calibrated system, we would have
need�   bits on average in order to know the true value
of the hypothesis (dashed curve of Figure 6(c) at the prior
odds

� ��� � �� ��� � 	
��� ). However, it has to be clear

that this calibrated results are not feasible in practice, be-
cause the forensic scientist needs to know information

background information� may include more circumstantial informa-
tion or other evidence sources.

6Many questions regarding the adequacy of the forensic testing
database with respect to the real forensic field data may arise, as well as
issues like population selection and reporting procedures. Such topics
are out of the scope of this paper, but some discussion about them can
be found in recent work from the authors [7].



about the true answers of the hypotheses in order to ob-
tain this calibrated system.

6. Conclusions
In this paper, an analysis of the influence of the forensic spea-
ker recognition system in the decision of a fact finder about a
given forensic case has been presented in terms of information.
Information theory has been used in order to derive empirical
cross-entropy (� �� ) as a measure of accuracy of a forensic
speaker recognition system, according to other equivalentmea-
sures such as���
 or NCE.� �� can be interpreted as the av-
erage information needed by the fact finder over cases and af-
ter evidence analysis in order to know whether the recovered
and control speech samples come from the same source or not.
� �� considers the uncertainty about the hypotheses involved
in a case in the light of the evidence and the rest of knowledge
in the case. Moreover, it also measures the information lossdue
to a non-perfect�� calibration. This derivation has led to a
novel elegant representation, the� �� plot, which allows pre-
senting the average information supplied by evidence analysis
in court with a clear separation of roles. The derived repre-
sentation allows the transparent reporting of the performance of
the system in terms of such information-theoretical magnitudes.
The proposed� �� plot has been compared to other assess-
ment methods such as APE plots and� ��� . As a conclusion, the
authors believe that the proposed information-theoretical inter-
pretation may be easy to understand by fact finders, aiding de-
cisions about admissibility according to Daubert rules andother
similar criteria.

Another advantage of the presented technique is its ade-
quacy to other forensic disciplines where�� values are used
for evidence evaluation, such as glass and paint analysis [20].
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