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Abstract

We examine the effectiveness of various speaker recognition ap-
proaches based on word-conditioning. Subsets of 62 keywords
(used for word-conditioning) are examined for their individ-
ual and combined effectiveness for a keyword HMM approach,
a supervector keyword HMM approach, a keyword phone N-
grams approach, and a keyword phone HMM approach. Our
results demonstrate the effectiveness of acoustic features and
importance of keyword frequency in individual keyword re-
sults, where the keywordsyeahandyou knowoutperform oth-
ers. We also demonstrate the power of SVMs, in conjunction
with acoustic features, in keyword combination experiments, in
which the supervector keyword HMM approach (4.3%EER)
outperforms other keyword-based approaches, and achievesa
6.5% improvement over the GMM baseline (4.6%EER) on
the SRE06 8 conversation side task.

1. Introduction
Speaker recognition has historically used low-level acoustic
features with GMMs in a text-independent, bag-of-frames ap-
proach for speaker discrimination [1]. These approaches rely on
spectral signal information, while ignoring the lexical content of
speech for speaker recognition purposes. They are also histori-
cally text-indepedent, making no assumptions about the lexical
content of the signals. Since 2001, more attention has been paid
to the use of high-level features, such as words [2] and phonetic
sequences [3] [4], for speaker recognition. High-level features
have been used to capture idiolect-based tendencies of speakers,
and the inter-speaker variability of such tendencies have lead to
good speaker discriminative power.

Word-conditioning via the use of keywords (word N-grams,
typically of orders 1 and 2) have introduced text-dependence in
text-independent speaker recognition systems [5]. The useof
keywords reduces the undesirable effect that lexical variability
may have in speaker recognition, and focuses speaker modeling
power on more informative regions of signals. Hence, if cer-
tain keywords have high inter-speaker variability of pronuncia-
tion, a system can be constructed using only portions of speech
containing those keywords. Sturim et al. introduced a system
utilizing GMMs trained on keyword-constrained bag-of-frames
acoustic feature sequences [5], while Boakye introduced anex-
tension that relies on HMMs instead of GMMs [6]. Note that
Boakye’s HMM system also exploits time-dependent informa-
tion among the acoustic feature frames.

In this paper, we explore the effectiveness of four recent
keyword-based speaker recognition systems using subsets of 62
keywords, while examining how the subsets perform under dif-
ferent circumstances. The systems include Boakye’s keyword

HMM system [6], and three systems involving both acoustic
and high-level features. One system, which we introduced in
[7], uses the means of the Gaussian mixture components of key-
word HMMs as features in an SVM classifier. This approach is
an extension of the keyword HMM approach, and is inspired by
Campbell et al.’s [8], which uses the Gaussian mixture meansof
a GMM-based system in an SVM classifier. The next system,
which we report in this paper for the first time, uses keyword
HMMs trained on phone sequence data. This approach, which
is built upon the keyword HMM approach, hypothesizes that
the time-dependent relationships among phones in keyword-
constrained sequences provide adequate speaker discriminative
power. The final system, which we introduced in [9], uses
keyword-constrained phone N-gram counts in an SVM classi-
fier. This approach is built on a non keyword-constrained phone
N-grams system [4].

This paper is organized as follows. Section 2 describes the
data. Sections 3, 4, 5, and 6 discuss the keyword HMM, super-
vector keyword HMM, phone lattice keyword HMM, and key-
word phone N-grams systems respectively. Section 7 describes
the keywords, section 8 describes the results, and section 9pro-
vides a summary of our findings.

2. Data
The Switchboard II and Fisher corpora are used for background
model training, and the SRE06 corpus for target speaker model
training and testing. In addition, Switchboard II and SRE04are
used to train example impostor speakers [8] for the supervec-
tor keyword HMM system’s SVM training. SRE04 and SRE06
are subsets of the MIXER conversational speech corpus, where
two unfamiliar speakers speak for roughly 5 minutes. A conver-
sation side (roughly 2.5 minutes for non-Fisher and 5 minutes
for Fisher) contains speech from one speaker only. 7,598 con-
versation sides are used from SRE06 (for target speaker model
training and testing), 1,792 from SRE04, 4,304 from Switch-
board II, and 1,128 from Fisher. 1,553 Fisher and Switchboard
II conversation sides are used as background conversation sides,
where each speaker is represented by no more than one con-
versation side. Note that a speech/non-speech detector [13] is
used to remove silences from all conversation sides, retaining
∼80% of conversation side data (determined using the 1,553
background conversation sides). There are 16,831 total trials
for SRE06 with 2,010 true speaker trials. Only the English por-
tions of all corpora are used.

Word and/or open-loop phone recognition decodings are
used for the various systems. They are obtained from SRI,
performed using the DECIPHER recognizer [12]. DECIPHER
uses gender-dependent 3-state HMMs, trained using MFCC fea-



tures of order 13 plus deltas and double deltas, for phone recog-
nition [4].

3. The keyword HMM system
Two of our three systems are based on the keyword HMM
system, and it’s methodology is as follows. For a particular
keyword, keyword-constrained Mel-Frequency Cepstral Coeffi-
cient (MFCC) feature sequences from the background conversa-
tion sides are used to train a background keyword HMM. Next,
keyword-constrained MFCC sequences from conversation sides
of a target speaker are used to train a speaker-specific keyword
HMM via adaptation from the corresponding background key-
word HMM. Lastly, keyword-constrained sequences from a test
conversation side are scored against a particular target speaker
keyword HMM via the standard log-likelihood ratio.

3.1. Background keyword HMM training

One background keyword HMM is obtained for each keyword
using MFCCs sequences with C0-C19 plus deltas (40 dimen-
sions total), extracted every 10 ms with 25 ms frames using the
HTK software [10]. The output distribution at each HMM state
is a mixture of Gaussian components. Ideally, there should be
enough components to represent a wide range of distributions
necessary to model the data, and not too many such as to pose
a risk for over-training in addition to being computationally ex-
pensive. Eight Gaussian mixture components are experimen-
tally chosen to satisfy both criteria. The HMMs are left-to-right
with self-loops at each state and no skips [6]. The HMMs begin
in the first state and finish in the last state, and the first and last
states are non-emitting. The number of states for each keyword
HMM is the following [6]:

NumStates = min

„
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whereP is the average number of phones comprising the key-
word (obtained from a dictionary), andD is the median number
of MFCC frames for the keyword.

Background keyword HMM parameters are obtained via
the Viterbi alignment and EM algorithms using HTK. The pa-
rameters are first assigned uniform distributions and updated us-
ing the Viterbi alignment algorithm. These updated values then
act as initial values for EM training.

3.2. Target speaker keyword HMM training

For each target speaker, an HMM is trained for each keyword,
using keyword-constrained MFCC features from eight conver-
sation sides of target speaker data. Eight conversation sides
are used to provide sufficient keyword HMM training data, be-
cause not all keywords may exist in a single conversation side.
For each keyword, training is done via MAP adaptation from
the background keyword HMMs. MAP adaptation provides a
certain consistency between the background and target speaker
HMMs, such that if a keyword does not exist among the target
speaker conversation sides, the target speaker keyword HMMis
the same as the background keyword HMM.

Only the Gaussian mixture means are altered, via HTK, as
follows: for statej and Gaussian mixturem [6][10]:

µ̂jm =
Njm

Njm + τ
µ̄jm +

τ

Njm + τ
µjm (2)

whereτ is the weight of a priori knowledge to the adaptation
data,Njm is the occupation likelihood of the adaptation data,

Figure 1:MAP adaptation of background keyword HMM to cre-
ate target speaker keyword HMM.

µ̄jm is the Gaussian mean of the adaptation data,µjm is the
Gaussian mean of the background keyword HMM, andµ̂jm is
the updated Gaussian mean. Figure 1 illustrates MAP adapta-
tion using MFCC features for a given keyword.

A sequence of feature vectors(f1, ..., fN ) belonging to in-
stancei of keyword W in test conversation sidet is scored
against target speaker modelMTS as follows:

Score(i, W, t, MTS) = log

„

p(f1, ..., fN |MTS)

p(f1, ...fN |MBKG)

«

(3)

whereMBKG is the background keyword HMM, and

log(p(f1, ..., fN |M)) = log(
X

x

p(f1, ..., fN |x, M)p(x|M))

(4)
wherex is the sequence of all allowable states.

An overall keyword score for a trial is obtained by adding
the scores and dividing by the total number of frames for all
instances of the keyword in test conversation sidet. A keyword-
combined score is obtained by applying this procedure across
all instances of all keywords in the test conversation side.

4. Approach 1: The supervector keyword
HMM system

The supervector keyword HMM system, which we introduced
in [7], is an extension of the keyword HMM system. Instead of
computing the log-likelihoods and scoring each test conversa-
tion side as in the keyword HMM approach, the MAP adapted



Figure 2:Obtaining supervector from MAP adapted Gaussian
mixture means.

Gaussian mixture means of each target speaker keyword HMM
are used as features in an SVM classifier. The 40-dimensional
Gaussian mixture mean vectors of each component of each
emitting state are concatenated to form a high-dimensionalsu-
pervector. The supervector concept is introduced by Campbell
et al. [8] in a system using GMMs instead of HMMs as statisti-
cal models. Figure 2 illustrates this process.

4.1. SVM training with supervectors

As in [8], an SVM classifier with a linear kernel is trained
for each target speaker, using theSV M light software package
[11]. For each target speaker, the supervector obtained from its
keyword HMM acts as the positive SVM training example, su-
pervectors from keyword HMMs trained from 1,330 example
impostor speakers [8] act as negative training examples, while
those from keyword HMMs trained using data from single test
conversation sides act as SVM test examples. The same MAP
adaptation is used to train keyword HMMs for example impos-
tor speakers (using eight conversation sides) and single test con-
versation sides.

The SVM training approach as described above implies
that each target speaker SVM is trained with only one posi-
tive training example (the supervector from the target speaker
keyword HMM). To increase the number of positive training
examples, different subsets of the eight conversation sides for a
target speaker can be used (in a round-robin) to train a keyword
HMM per subset, and supervectors from keyword HMMs from
all subsets can be used as positive training examples. Hence,
this round-robin training gives as many positive training exam-
ples as the number of subsets. Note that this is in contrast tothe
SVM training approach of [8], which uses one target speaker
supervector per conversation side (the possible absence ofkey-
word instances in single conversation sides prevents us from
doing the same). Figure 3 illustrates the round-robin training

Figure 3:Target speaker round-robin training for SVMs.

process.
Different weights can be assigned to SVM training errors

for positive and negative training examples. Because thereare
still many more negative training examples than positive train-
ing examples for each target speaker even after subset selec-
tion, giving the positive example training errors more weight
compared to negative example training errors seems desirable.
Once an SVM is trained for each target speaker, they are used to
classify supervectors from keyword HMMs trained from single
test conversation sides. If a keyword is missing in a test conver-
sation side, the supervector from the corresponding background
keyword HMM is used as a substitute. The classification score
for a test conversation side supervector against a target speaker
SVM model is the score for that particular trial.

The above approach trains one SVM for each target speaker
from the corresponding keyword HMM, such that the speaker
discriminative power of each keyword can be determined sep-
arately. To combine the keywords, supervectors obtained from
all keyword HMMs for a target speaker can be concatenated
into one higher-dimensional supervector for the target speaker
(the same must be done for each example impostor speaker and
test conversation side). SVM training and testing, as previously
described, can be performed using the higher-dimensional su-
pervectors to determine the combined speaker discriminative
power of all keywords.

5. Approach 2: The phone lattice keyword
HMM system

This system is another extension of Boakye’s keyword HMM
system, and uses the same training and testing paradigm. How-



Figure 4: Extraction of top N keyword-constrained phone se-
quences

ever, instead of using MFCC feature sequences to train each
keyword HMM, phone sequences are used. The nature of the
keyword HMMs, such as the number of states, ergodicity, and
output probability distributions, also differ. Because phone se-
quence data is far more sparse than the 40-dimensional MFCC
feature sequences, this approach uses considerably less data and
model parameters compared to the other approaches.

5.1. Extraction of phone sequences

Each keyword HMM is trained using a set of keyword-
constrained phone sequences, extracted from phone latticede-
codings (where each edge represents a particular phone and its
acoustic probability, and each node represents a particular time
in the conversation side). For each keyword instance and a given
conversation side, the top N most probable phone sequences
formed by phone lattice edges falling within the time bound-
aries of the keyword (a keyword-constrained lattice segment)
are considered.

The global path probabilities of each keyword-constrained
phone sequence must be computed. These probabilities are es-
timated by finding the most probable paths (via Dijkstra’s algo-
rithm) from the first lattice node (in terms of time) to the nodes
at the beginning of the keyword-constrained lattice segment,
and from the last lattice node to the nodes at the end of the
segment. Because the phones corresponding to edges outside
of the keyword-constrained segment are not considered, these
most probable paths have no phones associated with them. This
entire procedure is shown in figure 4.

The global probability of a particular keyword-constrained
phone sequence is the product of the probabilities of each edge
along its keyword-constrained edge sequence, and the probabil-

ities of the most probable paths extending from the beginning
and end of that edge sequence. If there are multiple instances
of the same phone sequence among the keyword-constrained
edges, global probabilities for each instance are summed toob-
tain an overall global probability for the sequence. Keyword-
constrained phone sequences are ranked according to their over-
all global probabilities, and the top N sequences are used for
keyword HMM training. Note that this entire procedure of
phone sequence extraction is only for a particular keyword in-
stance and conversation side. The procedure must be repeated
for all keywords instances and conversation sides.

The following 48 phones, obtained from SRI, are used:aa,
ae, ah, ao, aw, ax, ay, b, ch, d, dh, dx, eh, er, ey, f, fip, g, hh,
ih, iy, jh, k, l, lau, m, n, ng, ow, oy, p, pau, puh, pum, r, s,
sh, t, th, uh, uw, v, w, y, z, zh,< s >, < \s >. Note that
some of the phones, such aspau, lau,< s >, < \s > are
not actual phones, but symbols that represent various aspects
of conversational speech.pau represents a pause, or silence,
lau represents laughter,< s > represents the start of a phone
sequence, and< \s > represents the end of a phone sequence.

5.2. Keyword HMM training

Once the phone sequences for a particular keyword are ob-
tained, keyword HMMs are trained. Each of the 48 phones
are assigned an integer value from 1 through 48, such that
each phone sequence represents a sequence of discrete values.
Hence, keyword HMM states have multinomial output proba-
bility distributions with 48 outputs.

All HMMs have 2 emitting states. Because each phone
sequence is typically only 6 to 7 phones in length (extremely
short), HMMs with more than the minimum number of states
would result in over-training, and decreased performance (ex-
perimentally determined). The HMMs are also ergodic, sincein
a given phone sequence, any phone can transition to any other
phone, implying that restrictions should not be imposed over
HMM state transitions.

For a given keyword, the top N phone sequences (in terms
of global probabilities) from each background conversation side
are used to train the background keyword HMM (using the HTK
software). As with the keyword HMM system, the background
keyword HMM parameters are obtained using the Viterbi align-
ment and EM algorithms (but with multinomial output probabil-
ities). If a keyword does not exist among the target speaker con-
versation sides, the target speaker keyword HMM is the same as
the corresponding background keyword HMM.

Target speaker keyword HMM training is done in a similar
fashion as background keyword HMM training. One keyword
HMM is trained for each target speaker via the EM algorithm,
with parameters initialized with those from the corresponding
background keyword HMM. Like the keyword HMM system,
eight conversation sides of target speaker data are used to train
each HMM.

When a keyword appears more than once in a conversation
side, the top N sequences from each keyword instance can be
obtained, and the entire set of top N sequences can be used to
train a keyword HMM. Note that this method implicitly gives
higher HMM training weight to phone sequences that appear
more than once among the keyword instances, since those se-
quences appear more than once in the HMM training data.

For a given keywordW , top N phone sequences from each
test conversation sidet are scored against a target speaker model
MTS . The score for phone sequencei is computed via the stan-
dard log-likelihood ratio (like the keyword HMM approach):



LLR(i, t, MTS , W ) = log(
p(ph1, . . . , phT |MTS)

p(ph1, . . . , phT |MBKG)
) (5)

where MBKG is the background keyword HMM,T is the
length of the phone sequence. Note that keywordW , as used in
the above equations, encapsulates all instances of the keyword,
such that phone sequencei can be any phone sequence belong-
ing to any instance of keywordW in test conversation sidet.

Similar to the keyword HMM approach, the score for a trial
for keywordW is computed by averaging the likelihood ratios
of all phone sequences constrained by the keyword in test con-
versation sidet, and the keywords can be combined by averag-
ing the likelihood ratios across all keywords in the test conver-
sation side.

6. Approach 3: The keyword phone
N-grams system

This system, which we introduced in [9], examines the speaker
discriminative power of keyword-constrained phone N-gram
counts using an SVM classifier. Unlike the previous HMM-
based system, time-dependent relationships among keyword-
constrained phones are removed, and only their counts are
used for training and testing. This approach is inspired by
an approach that uses non keyword-constrained phone N-gram
counts in a similar SVM classifier [4].

6.1. Phone N-gram counts extraction

For a given keyword, the phone N-gram counts extraction pro-
cedure is similar to the extraction of top N keyword-constrained
phone sequences in the previous system, in that a phone lattice
segment consisting of edges falling within the time boundaries
of the keyword are obtained, and the global path probabilities
from beginning and ends of the lattice to the segment are esti-
mated via Dijkstra’s algorithm. However, instead of computing
the global probabilities of entire phone sequences within the
lattice segment, the probabilities of phone N-grams are desired.
An estimate of the global probabilityP (Ni|W,C) for phone
N-gramNi constrained by keywordW in conversation sideC
is computed as follows:

P (Ni|W,C) =

P

j

P

k p(Sk|Wj , C)count(Ni|Sk)

count(W |C)
(6)

where Sk is a phone sequence constrained by keywordW ,
count(Ni|Sk) is the number of occurrences of phone N-gram
Ni along phone sequenceSk, andcount(W |C) is the number
of instances of keywordW in conversation sideC.

The estimated probabilities of all phone N-grams (typically
of orders 1, 2, and 3) for a particular keyword and conversation
side is used as a feature vector in the SVM classifier (after a
minor weighting of the features).

6.2. Keyword combination

As with the previous approaches, results can be obtained for
each keyword separately by using only the phone N-gram fea-
tures constrained by each particular keyword. Different key-
words can be combined at the feature level by concatenating
the feature vectors for the different keywords within a conver-
sation side (similar to the keyword-combination approach for
the supervector keyword HMM system). Training, testing and
scoring are completed on these larger feature vectors.

Because not all keywords appear in all conversation sides,
phone N-gram data for a particular keyword in a conversation
side may not exist, and are assigned feature values of 0. Thisis
undesirable, since the values of 0 do not accurately reflect phone
N-gram probabilities should the keyword exist in the conversa-
tion side. This missing data problem can be avoided by choos-
ing high frequency keywords, with the majority of conversation
sides containing most or all of the keywords. Note that a sec-
ond way to address the missing data problem is by substitut-
ing the missing values with existing background values. This
approach, however, has been experimentally determined to per-
form poorly.

6.3. SVM training, testing, and scoring

As with the supervector keyword HMM approach and the ap-
proach for the non keyword-constrained phone N-grams sys-
tem [4], an SVM with a linear kernel is trained for each target
speaker (via theSV M light software package [11]). For each
target speaker, the feature vectors belonging to 8 target speaker
conversation sides are used as positive training examples,while
the vectors belonging to all background conversation sidesare
used as negative training examples. To obtain a score for a trial,
the test conversation side feature vector is scored againstthe
target speaker SVM model.

7. The keywords
A total of 62 keywords are involved in the four systems. Some
are among the common discourse markers, back-channels, and
filled pauses [6]. Certain keywords are chosen based on their
perceived inter-speaker variability in pronunciation, while oth-
ers are chosen based on frequency (to address the missing data
problem in the keyword-constrained phone N-gram counts sys-
tem). The keywords are the following –a, about, actually, all,
and, anyway, are, be, because, but, do, for, get, have, i, if,
i know, i mean, in, is, isee, it, ithink, just, know, like, mean,
my, no, not, now, of, oh, okay, on, one, or, people, really, right,
see, so, that, the, there, they, think, this, to, uh, uhhuh, um, was,
we, well, what, with, would, yeah, yep, you, youknow, yousee.

Among these, the following 18 keywords –actually, any-
way, i know, i mean, isee, ithink, like, now, okay, right, see,
uh, uhhuh, um, well, yeap, yep, youknow, yousee– are used
in the keyword HMM system [6] (note that 19 keywords are
used originally, but one keyword lead to degeneracy among the
Gaussian mixture components of HMMs, and will not be used),
and represent∼15% of total background conversation side du-
ration.

Also, the following 52 unigrams among the 62 keywords –
a, about, all, and, are, be, because, but, do, for, get, have,i, if,
in, is, it, just, know, like, mean, my, no, not, of, oh, okay, on,
one, or, people, really, right, so, that, the, there, they, think, this,
to, uh, uhhuh, um, was, we, well, what, with, would, yeah, you
– represent high-frequency unigrams, each occurring more than
4,000 times in the background conversation sides. Note that
the 62 keywords represent∼42% of background conversation
side duration, with the 52 unigrams representing the majority
(∼41%) of this duration.

Since different keywords are typically better suited for dif-
ferent approaches, different subsets of the 62 keywords areex-
amined for each system. A major goal is to examine the perfor-
mance of keywords, especially as it relates to their lengthsand
frequencies, in different settings.



Figure 5: Summary of similarities and differences among the
approaches

8. Experiments and results
The four approaches have various similarities and differences.
In particular, the keyword HMM approach resembles the su-
pervector keyword HMM approach, since both approaches use
keyword-constrained acoustic features to train HMMs, and the
phone lattice keyword HMM approach, since both approaches
use the same log-likelihood based scoring in the keyword HMM
framework. The phone lattice keyword HMM approach also
resembles the keyword phone N-grams approach, since both
approaches utilize only high-level keyword-constrained phone
features. Lastly, the keyword phone N-grams and supervec-
tor keyword HMM approaches utilize the SVM classifier for
testing and scoring. Figure 5 summarizes the similarities and
differences among the approaches. Comparisons using various
subsets of the 62 keywords are made for the similar approaches.

8.1. Keyword combination results

The keyword-combination results examine the effectiveness of
the collective power of a set of keywords for each system. The
set of 18 keywords (19 minusyou see) of the keyword HMM
system, along with 20 of the 52 high-frequency unigrams –
about, all, because, but, have, just, know, mean, no, not, one,
people, really, so, that, there, think, this, was, what– are exam-
ined for the HMM-based systems (a total of 38 keywords are
used). These 20 unigrams are selected based on their length,
as each resulted in at least 5 HMM states for the acoustic key-
word HMM systems. Note that these 38 keywords represent
∼26% of background conversation side duration. Because the
keyword phone N-grams system requires keywords of high fre-
quency due to the missing data problem, the 52 high-frequency
unigrams are chosen. The 52 keywords are also used for the
phone lattice keyword HMM approach.

For the supervector keyword HMM system, a weight of 1 is
given to weigh the positive versus negative SVM training errors,
and round-robin training using subsets of 3 conversation sides is
used to give 8 positive training examples per target speaker. For
the keyword phone N-grams system, a weight of 500 is used,
phone N-grams of order 1, 2, and 3 are extracted as features, and
the top∼33K features, in terms of frequency among the back-
ground conversation sides, are used. For the phone lattice key-
word HMM system, the 40 most probable phone sequences (in
terms of global probability for each keyword instance) are used
for HMM training. Table 1 shows the keyword-combination
results for the various systems (along with the speaker model
complexity of each system), on the 8-conversation side taskof

SRE06, using 16,831 trials with 2,010 true speaker trials. Also
shown are results for two non keyword-based baseline systems
– a cepstral GMM system [13] and a non keyword-constrained
phone N-grams system [4], both with T-norm added [14]. Note
that the non keyword-constrained phone N-grams system uses
a larger background set (6,117 conversation sides), and that the
two non keyword-based systems use more data by requiring en-
tire speech conversation sides.

System # of EER # of speaker
keywords (%) model

parameters

Keyword HMM 18 5.5 ∼50K
Keyword HMM 38 5.0 ∼110K
Appr. 1: SVHMM 18 4.9 ∼250K
Appr. 1: SVHMM 38 4.3 ∼440K
Appr. 2: PLHMM 18 20.7 ∼1.8K
Appr. 2: PLHMM 38 16.9 ∼3.8K
Appr. 2: PLHMM 52 13.7 ∼5.2K
Appr. 3: KPN 52 5.0 ∼260K
Non keyword-
constrained phone-
N-grams baseline – 5.2 –
GMM baseline – 4.6 –

Table 1:Keyword combined results.

Using 38 keywords (∼26% of speech data), the supervec-
tor keyword HMM system (4.3%EER) out-performs all other
systems. It shows a 6.5% relative improvement over the GMM
baseline (4.6%EER), and a 17.3% improvement over the non
keyword-constrained phone N-grams baseline (5.2%EER).
The supervector keyword HMM system (4.3%EER) achieves
a 14.0% improvement over the keyword HMM system (5.0%
EER), and a 74.6% improvement over the phone lattice key-
word HMM system (16.9%EER).

Using the 52 high-frequency keywords, the keyword phone
N-grams system (5.0%EER) achieves a 3.8% improvement
over the non keyword-constrained phone N-grams baseline
(5.2%EER). This result directly demonstrates the effective-
ness of focusing modeling power on the informative regions
of conversation sides containing the keywords, since the key-
word phone N-grams system uses the methodology of the non
keyword-constrained system, but applied to each keyword sep-
arately. The keyword phone N-grams system also achieves a
63.5% improvement over the phone lattice keyword HMM sys-
tem (13.7%EER). However, the system uses∼41% of back-
ground conversation side data compared to the∼26% used for
the keyword HMM and supervector keyword HMM systems.

Recall that both the keyword phone N-grams and su-
pervector keyword HMM systems are SVM-based, with fea-
ture vectors having∼33K and∼55K dimensions respectively.
Hence, with the exception of the keyword HMM system us-
ing 38 keywords, which has the sameEER (5.0%) as the key-
word phone N-grams system, SVM-based approaches relying
on high-dimensional feature vectors outperform the other ap-
proaches.

Note that the phone lattice keyword HMM system uses sig-
nificantly fewer model parameters than other keyword-based
systems. Also, unlike the acoustic feature-based systems,the
phone lattice keyword HMM system uses a very sparse form
of speech data (phone sequences versus 40-dimensional MFCC
feature sequences) to train its keyword HMMs. Hence, it is not



surprising to observe a drop-off in performance for this system.
The results also demonstrate the benefits of using more key-

words. Increasing the number of keywords from 18 to 38 results
in an 12.2% improvement for the supervector keyword HMM
system (4.9%EER to 4.3%EER), and a 9.1% improvement
for the keyword HMM system (5.5%EER to 5.0%EER).
However, as more keywords are used, one advantage of using
keyword-constraining, namely, reducing the amounts of speech
data required, diminishes. The 38 keywords (∼26% of back-
ground data) represent a∼60% increase in data over the 18
keywords (∼15% of background data). This increase in data
usage greatly increases the need for memory and computation
when implementing the systems.

8.2. Individual keyword results

The individual keywords are examined to see how each would
perform in the various approaches, under the optimal set of pa-
rameters as previously described. Because not all keywordsex-
ist in all conversation sides, individual keyword results only in-
volve trials where the keyword exists in both the target speaker
and test conversation sides. Individual results for the 38 key-
words are obtained for the supervector keyword HMM and key-
word HMM systems. Table 2 shows results for the top 15 key-
words (in terms of performance) of the keyword HMM system,
which has the best individual results on the SRE06 8 conver-
sation side task. Also shown are the individual keyword re-
sults for the supervector keyword HMM system, the number of
occurrences of the keyword in background conversation sides,
and the number of keyword HMM states for the MFCC feature-
based HMM systems. Note that these keywords are also ex-
perimented with for the phone lattice keyword HMM system.
However, results are significantly worse. Individual results for
the 52 high-frequency unigrams are also obtained for the phone
lattice keyword HMM (PLHMM) and keyword phone N-grams
(PLN) systems, and the top 20, according to the keyword phone
N-grams system, are shown in table 3. Note that for the 38
keywords, if a keyword unigram is part of a keyword bigram,
those unigram instances are ignored. For the 52 unigrams, no
keyword instances are discarded.

EER (%) results Other statistics
# of HMM

Keyword HMM SVHMM instances states

yeah 11.4 17.0 26,530 6
you know 11.9 17.5 17,349 8
i think 14.7 23.5 6,288 9
right 14.7 22.7 8,021 8
um 14.8 19.3 11,962 6
that 14.9 19.2 26,277 5
because 15.2 24.1 5,164 8
like 15.2 21.7 18,058 5
i mean 15.8 26.8 5,470 8
but 16.6 22.9 12,766 5
people 17.2 26.5 4,906 8
so 17.4 24.7 14,291 6
have 18.0 25.4 9,610 5
just 18.1 28.4 8,660 6
not 18.3 26.0 6,817 5

Table 2: Individual keyword results for keyword HMM and su-
pervector keyword HMM systems

EER (%) results
# of

Keyword PLA PLHMM instances

know 24.1 26.1 24,258
i 24.7 25.2 59,622
and 24.8 28.7 37,878
yeah 26.1 29.7 26,530
like 26.1 26.7 18,058
you 26.9 28.9 39,093
that 27.3 30.1 26,277
think 28.3 32.9 9,467
right 29.0 30.2 8,021
because 29.1 32.3 5,164
but 29.8 32.6 12,766
people 30.5 34.6 4,906
really 30.7 32.2 6,674
um 32.2 30.7 11,962
to 32.2 33.2 27,224
mean 32.4 35.0 5,724
the 32.7 34.6 31,606
so 33.3 34.5 14,291
have 33.4 35.2 9,610
they 34.7 35.9 12,436

Table 3: Individual keyword results for phone lattice keyword
HMM and keyword phone N-grams systems

According to both tables, keywords that perform relatively
well for one system tend to perform well for the others. Re-
sults show that individual keywords generally perform better in
the acoustic features framework, with significant improvements
from the phone lattice keyword HMM and keyword phone N-
grams systems, to the keyword and supervector HMM systems.
This is demonstrated by the keywordyeah(among many oth-
ers), which shows a 56.3% improvement inEER (26.1% to
11.4%) from the keyword phone N-grams to keyword HMM
systems. In addition, there is improvement in individual key-
wordEER from the supervector to the keyword HMM system
(a 32.9% improvement for yeah, from 17.0% to 11.4%), in con-
trast to the 14.0% improvement from the latter to the former in
the keyword-combination experiments.

The keyword phone N-grams system shows a modest im-
provement from the phone lattice keyword HMM system (a
12.1% improvement foryeah, from 29.7% to 26.1%). This is
in contrast to the 63.5% improvement achieved in the keyword-
combination experiments. This suggests that SVMs (used by
the keyword phone N-grams system) perform exceedingly well
in feature-level combination, such that increasing the dimen-
sionality of the overall feature vector (via concatenationof fea-
tures) leads to significantly improved results. Whereas thefea-
ture vectors in the keyword-combination experiments are over
30K in dimension, they are typically of 1,000 to 2,000 in di-
mension in the individual keyword experiments. Overall, these
results suggest that while systems relying on phone features can
match or exceed performances of acoustic feature-based sys-
tems in keyword-combination experiments, the sparseness of
the high-level phone features compared to the acoustic features
leads to significantly worse results when keywords are exam-
ined separately.

Keywords that perform well (i.e.yeah, youknow) generally
occur more often in the background conversation sides. This
is especially true for the supervector keyword HMM system,



where 6 of the top 7 performing keywords (yeah, youknow,
that, um, like, but) rank among the top 10 in occurrences.
While keyword performance is positively correlated with key-
word frequency, keyword length (approximately represented by
the number of keyword HMM states), appears to be less of a
factor. However, some keywords of high length (i mean, peo-
ple) have low frequency, while 4 of the top 7 keywords for the
keyword HMM system have eight or more HMM states. Hence,
given more data such that more instances of keywords with high
numbers of HMM states can be used for training and testing, it
may be possible to discover a clear positive correlation between
keyword performance and length.

9. Conclusion
We have discussed and compared four speaker recognition sys-
tems relying on word-conditioning: the keyword HMM, su-
pervector keyword HMM, phone lattice keyword HMM, and
keyword phone N-grams systems. We also examined the per-
formances of 62 keywords (representing∼42% of background
conversation side duration) of various lengths and frequencies
in both keyword-combination experiments and individual key-
word experiments using the above approaches.

We have shown that the SVM is an effective classifier for
keyword-combination experiments with very high dimensional
feature vectors. The effectiveness of the SVM in this frame-
work appears to compensate for features that perform poorlyin
the individual keyword setting (i.e. phone N-grams). Acoustic
features perform significantly better in the individual keyword
setting, and achieve the best result in conjunction with theSVM
in keyword-combination. The effectiveness of acoustic features
with SVMs in keyword combination is demonstrated by the su-
pervector keyword HMM system, which achieves a 0.3% abso-
lute EER improvement (4.6% to 4.3%EER) over the GMM
baseline (our best baseline) on the SRE06 8 conversation side
task.

The keywordsyeahandyou knowhave the best individual
keyword results. An extension we are currently working on is
to augment the supervectors of the supervector keyword HMM
system using long-term, prosodic features, in an attempt toin-
crease the speaker-discriminative power of the keywords.
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