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Abstract

We examine the effectiveness of various speaker recogrape
proaches based on word-conditioning. Subsets of 62 keyword
(used for word-conditioning) are examined for their indivi
ual and combined effectiveness for a keyword HMM approach,
a supervector keyword HMM approach, a keyword phone N-
grams approach, and a keyword phone HMM approach. Our
results demonstrate the effectiveness of acoustic featmd
importance of keyword frequency in individual keyword re-
sults, where the keywordgahandyou knowoutperform oth-
ers. We also demonstrate the power of SVMs, in conjunction
with acoustic features, in keyword combination experiragint
which the supervector keyword HMM approach (4.34 R)
outperforms other keyword-based approaches, and achéeves
6.5% improvement over the GMM baseline (4.6%& R) on

the SRE06 8 conversation side task.

1. Introduction

Speaker recognition has historically used low-level atious
features with GMMs in a text-independent, bag-of-frames ap
proach for speaker discrimination [1]. These approachHg®re
spectral signal information, while ignoring the lexicahtent of
speech for speaker recognition purposes. They are alswihist
cally text-indepedent, making no assumptions about thedex
content of the signals. Since 2001, more attention has beidn p
to the use of high-level features, such as words [2] and gione
sequences [3] [4], for speaker recognition. High-levetdess
have been used to capture idiolect-based tendencies despea
and the inter-speaker variability of such tendencies head to
good speaker discriminative power.

Word-conditioning via the use of keywords (word N-grams,
typically of orders 1 and 2) have introduced text-dependénc
text-independent speaker recognition systems [5]. Theofise
keywords reduces the undesirable effect that lexical lbdita
may have in speaker recognition, and focuses speaker mgdeli
power on more informative regions of signals. Hence, if cer-
tain keywords have high inter-speaker variability of procia-
tion, a system can be constructed using only portions ofctpee
containing those keywords. Sturim et al. introduced a syste
utilizing GMMs trained on keyword-constrained bag-ofrfras
acoustic feature sequences [5], while Boakye introduceskan
tension that relies on HMMs instead of GMMs [6]. Note that
Boakye’s HMM system also exploits time-dependent informa-
tion among the acoustic feature frames.

In this paper, we explore the effectiveness of four recent
keyword-based speaker recognition systems using sulf€s o
keywords, while examining how the subsets perform under dif
ferent circumstances. The systems include Boakye'’s keywor
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HMM system [6], and three systems involving both acoustic
and high-level features. One system, which we introduced in
[7], uses the means of the Gaussian mixture components of key
word HMMs as features in an SVM classifier. This approach is
an extension of the keyword HMM approach, and is inspired by
Campbell et al.’s [8], which uses the Gaussian mixture meéns

a GMM-based system in an SVM classifier. The next system,
which we report in this paper for the first time, uses keyword
HMMs trained on phone sequence data. This approach, which
is built upon the keyword HMM approach, hypothesizes that
the time-dependent relationships among phones in keyword-
constrained sequences provide adequate speaker disatiiain
power. The final system, which we introduced in [9], uses
keyword-constrained phone N-gram counts in an SVM classi-
fier. This approach is built on a non keyword-constrainedchgho
N-grams system [4].

This paper is organized as follows. Section 2 describes the
data. Sections 3, 4, 5, and 6 discuss the keyword HMM, super-
vector keyword HMM, phone lattice keyword HMM, and key-
word phone N-grams systems respectively. Section 7 describ
the keywords, section 8 describes the results, and secpoo-9
vides a summary of our findings.

2. Data

The Switchboard Il and Fisher corpora are used for backgroun
model training, and the SREO6 corpus for target speaker Inode
training and testing. In addition, Switchboard Il and SRE6&
used to train example impostor speakers [8] for the supervec
tor keyword HMM system’s SVM training. SRE04 and SREQ6
are subsets of the MIXER conversational speech corpus.evher
two unfamiliar speakers speak for roughly 5 minutes. A conve
sation side (roughly 2.5 minutes for non-Fisher and 5 miute
for Fisher) contains speech from one speaker only. 7,598 con
versation sides are used from SREQG6 (for target speakerimode
training and testing), 1,792 from SREO04, 4,304 from Switch-
board Il, and 1,128 from Fisher. 1,553 Fisher and Switchitboar
Il conversation sides are used as background conversadies, s
where each speaker is represented by no more than one con-
versation side. Note that a speech/non-speech detectpis[13
used to remove silences from all conversation sides, iatain
~80% of conversation side data (determined using the 1,553
background conversation sides). There are 16,831 totas tri
for SRE06 with 2,010 true speaker trials. Only the Englisk po
tions of all corpora are used.

Word and/or open-loop phone recognition decodings are
used for the various systems. They are obtained from SR,
performed using the DECIPHER recognizer [12]. DECIPHER
uses gender-dependent 3-state HMMs, trained using MFCC fea



tures of order 13 plus deltas and double deltas, for phoregrec
nition [4].

3. Thekeyword HMM system

Two of our three systems are based on the keyword HMM
system, and it's methodology is as follows. For a particular
keyword, keyword-constrained Mel-Frequency Cepstralfcoe
cient (MFCC) feature sequences from the background coavers
tion sides are used to train a background keyword HMM. Next,
keyword-constrained MFCC sequences from conversati@ssid
of a target speaker are used to train a speaker-specific kdywo
HMM via adaptation from the corresponding background key-
word HMM. Lastly, keyword-constrained sequences from & tes
conversation side are scored against a particular targeksp
keyword HMM via the standard log-likelihood ratio.

3.1. Background keyword HMM training

One background keyword HMM is obtained for each keyword
using MFCCs sequences with C0-C19 plus deltas (40 dimen-
sions total), extracted every 10 ms with 25 ms frames usieg th
HTK software [10]. The output distribution at each HMM state
is a mixture of Gaussian components. Ideally, there shoeld b
enough components to represent a wide range of distritsution

necessary to model the data, and not too many such as to pose

a risk for over-training in addition to being computatidgpadx-
pensive. Eight Gaussian mixture components are experimen-
tally chosen to satisfy both criteria. The HMMs are leftright

with self-loops at each state and no skips [6]. The HMMs begin
in the first state and finish in the last state, and the first asd |
states are non-emitting. The number of states for each kelywo
HMM is the following [6]:

NumStates = min <3P, iD) 1)
whereP is the average number of phones comprising the key-
word (obtained from a dictionary), ard is the median number

of MFCC frames for the keyword.

Background keyword HMM parameters are obtained via
the Viterbi alignment and EM algorithms using HTK. The pa-
rameters are first assigned uniform distributions and wgatias-
ing the Viterbi alignment algorithm. These updated vallent
act as initial values for EM training.

3.2. Target speaker keyword HMM training

For each target speaker, an HMM is trained for each keyword,
using keyword-constrained MFCC features from eight conver
sation sides of target speaker data. Eight conversatiogs sid
are used to provide sufficient keyword HMM training data, be-
cause not all keywords may exist in a single conversatioe. sid
For each keyword, training is done via MAP adaptation from
the background keyword HMMs. MAP adaptation provides a
certain consistency between the background and targetespea
HMMs, such that if a keyword does not exist among the target
speaker conversation sides, the target speaker keyword MM
the same as the background keyword HMM.

Only the Gaussian mixture means are altered, via HTK, as
follows: for statej and Gaussian mixture: [6][10]:

~ ij T

fijm = @

wherer is the weight of a priori knowledge to the adaptation
data, N;,, is the occupation likelihood of the adaptation data,
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Figure 1:MAP adaptation of background keyword HMM to cre-
ate target speaker keyword HMM.

iijm is the Gaussian mean of the adaptation data, is the
Gaussian mean of the background keyword HMM, an4l is
the updated Gaussian mean. Figure 1 illustrates MAP adapta-
tion using MFCC features for a given keyword.

A sequence of feature vectof$, ..., fv) belonging to in-
stancei of keyword W in test conversation side is scored
against target speaker moddlrs as follows:

p(f1, - fn|Mrs) ) 3)
p(f1,.--fN|MBKG)

where Mgk is the background keyword HMM, and

Score(i, W, t, Mrg) = log (

10g(p(f1, -y fn|M)) =10g(Y_ p(f1, ., f]z, M)p(z| M)

4
wherez is the sequence of all allowable states.

An overall keyword score for a trial is obtained by adding
the scores and dividing by the total number of frames for all
instances of the keyword in test conversation sidekeyword-
combined score is obtained by applying this procedure acros
all instances of all keywords in the test conversation side.

4. Approach 1: The supervector keyword
HMM system

The supervector keyword HMM system, which we introduced
in [7], is an extension of the keyword HMM system. Instead of
computing the log-likelihoods and scoring each test caaer

tion side as in the keyword HMM approach, the MAP adapted
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Figure 2: Obtaining supervector from MAP adapted Gaussian
mixture means.

Gaussian mixture means of each target speaker keyword HMM
are used as features in an SVM classifier. The 40-dimensional
Gaussian mixture mean vectors of each component of each
emitting state are concatenated to form a high-dimensismal
pervector. The supervector concept is introduced by Calhpbe
et al. [8] in a system using GMMs instead of HMMs as statisti-
cal models. Figure 2 illustrates this process.

4.1. SVM training with supervectors

As in [8], an SVM classifier with a linear kernel is trained
for each target speaker, using tH& M ‘9" software package
[11]. For each target speaker, the supervector obtained ifo
keyword HMM acts as the positive SVM training example, su-
pervectors from keyword HMMs trained from 1,330 example
impostor speakers [8] act as negative training examplesewh
those from keyword HMMs trained using data from single test
conversation sides act as SVM test examples. The same MAP
adaptation is used to train keyword HMMs for example impos-
tor speakers (using eight conversation sides) and sinsflede-
versation sides.

The SVM training approach as described above implies
that each target speaker SVM is trained with only one posi-
tive training example (the supervector from the target kpea
keyword HMM). To increase the number of positive training
examples, different subsets of the eight conversatiors$atea
target speaker can be used (in a round-robin) to train a ked/wo
HMM per subset, and supervectors from keyword HMMs from
all subsets can be used as positive training examples. Hence
this round-robin training gives as many positive trainingra-
ples as the number of subsets. Note that this is in contraiséto
SVM training approach of [8], which uses one target speaker
supervector per conversation side (the possible absenreyof
word instances in single conversation sides prevents us fro
doing the same). Figure 3 illustrates the round-robin ingin
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Figure 3:Target speaker round-robin training for SVMs.

process.

Different weights can be assigned to SVM training errors
for positive and negative training examples. Because there
still many more negative training examples than positieéntr
ing examples for each target speaker even after subset selec
tion, giving the positive example training errors more wig
compared to negative example training errors seems désirab
Once an SVM is trained for each target speaker, they are ased t
classify supervectors from keyword HMMs trained from sengl
test conversation sides. If a keyword is missing in a testeen
sation side, the supervector from the corresponding bacigr
keyword HMM is used as a substitute. The classification score
for a test conversation side supervector against a targakep
SVM model is the score for that particular trial.

The above approach trains one SVM for each target speaker
from the corresponding keyword HMM, such that the speaker
discriminative power of each keyword can be determined sep-
arately. To combine the keywords, supervectors obtaired fr
all keyword HMMs for a target speaker can be concatenated
into one higher-dimensional supervector for the targeakpe
(the same must be done for each example impostor speaker and
test conversation side). SVM training and testing, as presly
described, can be performed using the higher-dimensianal s
pervectors to determine the combined speaker discrimmati
power of all keywords.

5. Approach 2: The phone lattice keyword
HMM system

This system is another extension of Boakye’s keyword HMM
system, and uses the same training and testing paradigm. How



Keyword: you_know . ities of the most probable paths extending from the begmnin
..doiyou know the answer ... and end of that edge sequence. If there are multiple instance
of the same phone sequence among the keyword-constrained
edges, global probabilities for each instance are summeb-to
tain an overall global probability for the sequence. Keyavor
constrained phone sequences are ranked according tokeir o
all global probabilities, and the top N sequences are used fo
keyword HMM training. Note that this entire procedure of
phone sequence extraction is only for a particular keywofd i
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P Open-ioop phone attice stance and conversation side. The procedure must be rdpeate
e for all keywords instances and conversation sides.
Dijkstra's l The following 48 phones, obtained from SR, are uszal:
Algorithm .
ae, ah, ao, aw, ax, ay, b, ch, d, dh, dx, eh, er, ey, f, fip, g, hh,

ih, iy, jh, k, |, lau, m, n, ng, ow, oy, p, pau, puh, pum, r, s,
sh, t, th, uh, uw, v, w, y, z, zk; s >, < \s >. Note that
some of the phones, such pau, lau,< s >, < \s > are
not actual phones, but symbols that represent various @spec
of conversational speechpau represents a pause, or silence,
..... lau represents laughtet;, s > represents the start of a phone
o sequence, and \s > represents the end of a phone sequence.

ae

- R
Y . ah ™

= null

ah

Most probable

pee l 5.2. Keyword HMM training
Probability | Top N sequences: Once the phone sequences for a particular keyword are ob-
0.0010 <s>_eh_ah_h_y_ae_dx _<\s> tained, keyword HMMs are trained. Each of the 48 phones
Sl <s>.7h.aa Ly ae_dx s> are assigned an integer value from 1 through 48, such that
- each phone sequence represents a sequence of discret value
0.0001 <s>_ay_ae_h_y_ae_<\s> a .
Hence, keyword HMM states have multinomial output proba-
bility distributions with 48 outputs.
Figure 4: Extraction of top N keyword-constrained phone se- All HMMs have 2 emitting states. Because each phone
quences sequence is typically only 6 to 7 phones in length (extremely

short), HMMs with more than the minimum number of states

would result in over-training, and decreased performaege (
ever, instead of using MFCC feature sequences to train each perimentally determined). The HMMs are also ergodic, since
keyword HMM, phone sequences are used. The nature of the a given phone sequence, any phone can transition to any other
keyword HMMs, such as the number of states, ergodicity, and phone, implying that restrictions should not be imposedr ove

output probability distributions, also differ. Becauseoph se- HMM state transitions.

guence data is far more sparse than the 40-dimensional MFCC For a given keyword, the top N phone sequences (in terms

feature sequences, this approach uses considerably tesanda of global probabilities) from each background conversasiale

model parameters compared to the other approaches. are used to train the background keyword HMM (using the HTK
software). As with the keyword HMM system, the background

5.1. Extraction of phone sequences keyword HMM parameters are obtained using the Viterbi align

ment and EM algorithms (but with multinomial output prolabi
ities). If a keyword does not exist among the target speaker c
versation sides, the target speaker keyword HMM is the same a
the corresponding background keyword HMM.

Target speaker keyword HMM training is done in a similar
fashion as background keyword HMM training. One keyword
HMM is trained for each target speaker via the EM algorithm,
with parameters initialized with those from the correspogd
background keyword HMM. Like the keyword HMM system,
eight conversation sides of target speaker data are useairo t
each HMM.

When a keyword appears more than once in a conversation
side, the top N sequences from each keyword instance can be
obtained, and the entire set of top N sequences can be used to
train a keyword HMM. Note that this method implicitly gives
higher HMM training weight to phone sequences that appear
more than once among the keyword instances, since those se-
guences appear more than once in the HMM training data.

For a given keyword/V, top N phone sequences from each
test conversation sideare scored against a target speaker model
Mrs. The score for phone sequenids computed via the stan-
dard log-likelihood ratio (like the keyword HMM approach):

Each keyword HMM is trained using a set of keyword-
constrained phone sequences, extracted from phone ldttice
codings (where each edge represents a particular phondgsand i
acoustic probability, and each node represents a partitoia

in the conversation side). For each keyword instance angea gi
conversation side, the top N most probable phone sequences
formed by phone lattice edges falling within the time bound-
aries of the keyword (a keyword-constrained lattice segjnen
are considered.

The global path probabilities of each keyword-constrained
phone sequence must be computed. These probabilities-are es
timated by finding the most probable paths (via Dijkstradgal
rithm) from the first lattice node (in terms of time) to the esd
at the beginning of the keyword-constrained lattice segmen
and from the last lattice node to the nodes at the end of the
segment. Because the phones corresponding to edges outside
of the keyword-constrained segment are not consideredethe
most probable paths have no phones associated with thes. Thi
entire procedure is shown in figure 4.

The global probability of a particular keyword-constraine
phone sequence is the product of the probabilities of eagh ed
along its keyword-constrained edge sequence, and thelgroba



p(phh cee 7phT|MTS) ) (5)
p(ph1,...,phr|MpKc)

where Mgk is the background keyword HMMT is the
length of the phone sequence. Note that keywididas used in
the above equations, encapsulates all instances of theokeéyw
such that phone sequencean be any phone sequence belong-
ing to any instance of keyword in test conversation side

Similar to the keyword HMM approach, the score for a trial
for keyword W is computed by averaging the likelihood ratios
of all phone sequences constrained by the keyword in test con
versation side, and the keywords can be combined by averag-
ing the likelihood ratios across all keywords in the testvemn
sation side.

LLR(i,t, Mps, W) = log(

6. Approach 3: The keyword phone
N-grams system

This system, which we introduced in [9], examines the speake
discriminative power of keyword-constrained phone N-gram
counts using an SVM classifier. Unlike the previous HMM-
based system, time-dependent relationships among keyword
constrained phones are removed, and only their counts are
used for training and testing. This approach is inspired by
an approach that uses non keyword-constrained phone N-gram
counts in a similar SVM classifier [4].

6.1. Phone N-gram countsextraction

For a given keyword, the phone N-gram counts extraction pro-
cedure is similar to the extraction of top N keyword-corised
phone sequences in the previous system, in that a phoreelatti
segment consisting of edges falling within the time bouissar
of the keyword are obtained, and the global path probadsliti
from beginning and ends of the lattice to the segment are esti
mated via Dijkstra’s algorithm. However, instead of conmpat
the global probabilities of entire phone sequences withe t
lattice segment, the probabilities of phone N-grams areetks
An estimate of the global probability? (N;|W, C') for phone
N-gram N; constrained by keywordll” in conversation sid€’

is computed as follows:

225 22k P(Sk|W;, C)count (N;|Sk)
N count(W|C)

where S;, is a phone sequence constrained by keywdrd
count(N;|Sy) is the number of occurrences of phone N-gram
N; along phone sequencg;, andcount(W|C') is the number
of instances of keywordl” in conversation sid€’.

The estimated probabilities of all phone N-grams (typicall
of orders 1, 2, and 3) for a particular keyword and conversati
side is used as a feature vector in the SVM classifier (after a
minor weighting of the features).

P(N:|W,C) (6)

6.2. Keyword combination

As with the previous approaches, results can be obtained for
each keyword separately by using only the phone N-gram fea-
tures constrained by each particular keyword. Different-ke
words can be combined at the feature level by concatenating
the feature vectors for the different keywords within a @mv
sation side (similar to the keyword-combination approamh f
the supervector keyword HMM system). Training, testing and
scoring are completed on these larger feature vectors.

Because not all keywords appear in all conversation sides,
phone N-gram data for a particular keyword in a conversation
side may not exist, and are assigned feature values of 0.isThis
undesirable, since the values of 0 do not accurately reflenig
N-gram probabilities should the keyword exist in the corger
tion side. This missing data problem can be avoided by choos-
ing high frequency keywords, with the majority of conveisat
sides containing most or all of the keywords. Note that a sec-
ond way to address the missing data problem is by substitut-
ing the missing values with existing background values.sThi
approach, however, has been experimentally determinegrio p
form poorly.

6.3. SVM training, testing, and scoring

As with the supervector keyword HMM approach and the ap-
proach for the non keyword-constrained phone N-grams sys-
tem [4], an SVM with a linear kernel is trained for each target
speaker (via thesV M 9"t software package [11]). For each
target speaker, the feature vectors belonging to 8 targetkep
conversation sides are used as positive training exampleéks

the vectors belonging to all background conversation sides
used as negative training examples. To obtain a score f@la tr
the test conversation side feature vector is scored agtiast
target speaker SVM model.

7. Thekeywords

A total of 62 keywords are involved in the four systems. Some
are among the common discourse markers, back-channels, and
filled pauses [6]. Certain keywords are chosen based on their
perceived inter-speaker variability in pronunciation,iletoth-

ers are chosen based on frequency (to address the missing dat
problem in the keyword-constrained phone N-gram counts sys
tem). The keywords are the followinga; about, actually, all,
and, anyway, are, be, because, but, do, for, get, have, i, if,
i_know, Lmean, in, is, isee, it, ithink, just, know, like, mean,
my, no, not, now, of, oh, okay, on, one, or, people, realghtri

see, so, that, the, there, they, think, this, to, uh, uhhohwas,

we, well, what, with, would, yeah, yep, you, ymow, yousee

Among these, the following 18 keywordsaetually, any-
way, Lknow, Lmean, isee, ithink, like, now, okay, right, see,
uh, uhhuh, um, well, yeap, yep, ykoow, yousee— are used
in the keyword HMM system [6] (note that 19 keywords are
used originally, but one keyword lead to degeneracy amoag th
Gaussian mixture components of HMMs, and will not be used),
and represent-15% of total background conversation side du-
ration.

Also, the following 52 unigrams among the 62 keywords —
a, about, all, and, are, be, because, but, do, for, get, havk,
in, is, it, just, know, like, mean, my, no, not, of, oh, okay, o
one, or, people, really, right, so, that, the, there, theink, this,
to, uh, uhhuh, um, was, we, well, what, with, would, yeah, you
— represent high-frequency unigrams, each occurring nhaire t
4,000 times in the background conversation sides. Note that
the 62 keywords represent42% of background conversation
side duration, with the 52 unigrams representing the mgjori
(~41%) of this duration.

Since different keywords are typically better suited fdr di
ferent approaches, different subsets of the 62 keywordexare
amined for each system. A major goal is to examine the perfor-
mance of keywords, especially as it relates to their lengtits
frequencies, in different settings.



Acoustic | Keyword HMM Supervector

(MFCC) keyword HMM
g features
2
o
2
g Legend:
uw Phonetic .

features Phone lattice Keyword phone |:| HMM-based

keyword HMM N-grams
l:’ Non HMM-based

Likelihood ratio SVM classifier

Testing and scoring approach

Figure 5: Summary of similarities and differences among the
approaches

8. Experimentsand results

The four approaches have various similarities and diffezen

In particular, the keyword HMM approach resembles the su-
pervector keyword HMM approach, since both approaches use
keyword-constrained acoustic features to train HMMs, dred t
phone lattice keyword HMM approach, since both approaches
use the same log-likelihood based scoring in the keyword HMM
framework. The phone lattice keyword HMM approach also
resembles the keyword phone N-grams approach, since both
approaches utilize only high-level keyword-constrainbdme
features. Lastly, the keyword phone N-grams and supervec-
tor keyword HMM approaches utilize the SVM classifier for
testing and scoring. Figure 5 summarizes the similarities a
differences among the approaches. Comparisons usingugario
subsets of the 62 keywords are made for the similar appreache

8.1. Keyword combination results

The keyword-combination results examine the effectiveraés
the collective power of a set of keywords for each system. The
set of 18 keywords (19 minugou_seg of the keyword HMM
system, along with 20 of the 52 high-frequency unigrams —
about, all, because, but, have, just, know, mean, no, n@&, on
people, really, so, that, there, think, this, was, whare exam-
ined for the HMM-based systems (a total of 38 keywords are
used). These 20 unigrams are selected based on their length,
as each resulted in at least 5 HMM states for the acoustic key-
word HMM systems. Note that these 38 keywords represent
~26% of background conversation side duration. Because the
keyword phone N-grams system requires keywords of high fre-
guency due to the missing data problem, the 52 high-frequenc
unigrams are chosen. The 52 keywords are also used for the
phone lattice keyword HMM approach.

For the supervector keyword HMM system, a weight of 1 is
given to weigh the positive versus negative SVM trainingesy
and round-robin training using subsets of 3 conversatidessis
used to give 8 positive training examples per target speéier
the keyword phone N-grams system, a weight of 500 is used,
phone N-grams of order 1, 2, and 3 are extracted as featunes, a
the top~33K features, in terms of frequency among the back-
ground conversation sides, are used. For the phone latice k
word HMM system, the 40 most probable phone sequences (in
terms of global probability for each keyword instance) asedi
for HMM training. Table 1 shows the keyword-combination
results for the various systems (along with the speaker mode
complexity of each system), on the 8-conversation side ask

SREOQ6, using 16,831 trials with 2,010 true speaker trialsoA
shown are results for two non keyword-based baseline sgstem
— a cepstral GMM system [13] and a non keyword-constrained
phone N-grams system [4], both with T-norm added [14]. Note
that the non keyword-constrained phone N-grams system uses
a larger background set (6,117 conversation sides), ahthina
two non keyword-based systems use more data by requiring en-
tire speech conversation sides.

System # of EFER | #of speaker
keywords | (%) model
parameters
Keyword HMM 18 5.5 ~50K
Keyword HMM 38 5.0 ~110K
Appr. 1: SVHMM 18 4.9 ~250K
Appr. 1: SVHMM 38 4.3 ~440K
Appr. 2: PLHMM 18 20.7 ~1.8K
Appr. 2: PLHMM 38 16.9 ~3.8K
Appr. 2: PLHMM 52 13.7 ~5.2K
Appr. 3: KPN 52 5.0 ~260K
Non keyword-
constrained phone
N-grams baseline - 5.2 -
GMM baseline - 4.6 -

Table 1:Keyword combined results.

Using 38 keywords~26% of speech data), the supervec-
tor keyword HMM system (4.3% E R) out-performs all other
systems. It shows a 6.5% relative improvement over the GMM
baseline (4.6%F E R), and a 17.3% improvement over the non
keyword-constrained phone N-grams baseline (5.2%R).

The supervector keyword HMM system (4.3%F R) achieves

a 14.0% improvement over the keyword HMM system (5.0%
EER), and a 74.6% improvement over the phone lattice key-
word HMM system (16.9%F E R).

Using the 52 high-frequency keywords, the keyword phone
N-grams system (5.09%F R) achieves a 3.8% improvement
over the non keyword-constrained phone N-grams baseline
(5.2% EER). This result directly demonstrates the effective-
ness of focusing modeling power on the informative regions
of conversation sides containing the keywords, since tlye ke
word phone N-grams system uses the methodology of the non
keyword-constrained system, but applied to each keywquel se
arately. The keyword phone N-grams system also achieves a
63.5% improvement over the phone lattice keyword HMM sys-
tem (13.7%E E R). However, the system uses41% of back-
ground conversation side data compared to-426% used for
the keyword HMM and supervector keyword HMM systems.

Recall that both the keyword phone N-grams and su-
pervector keyword HMM systems are SVM-based, with fea-
ture vectors having-33K and~55K dimensions respectively.
Hence, with the exception of the keyword HMM system us-
ing 38 keywords, which has the sarBF R (5.0%) as the key-
word phone N-grams system, SVM-based approaches relying
on high-dimensional feature vectors outperform the otler a
proaches.

Note that the phone lattice keyword HMM system uses sig-
nificantly fewer model parameters than other keyword-based
systems. Also, unlike the acoustic feature-based systdras,
phone lattice keyword HMM system uses a very sparse form
of speech data (phone sequences versus 40-dimensional MFCC
feature sequences) to train its keyword HMMs. Hence, it ts no



surprising to observe a drop-off in performance for thidesys

The results also demonstrate the benefits of using more key-
words. Increasing the number of keywords from 18 to 38 result
in an 12.2% improvement for the supervector keyword HMM
system (4.9%F ER to 4.3% FER), and a 9.1% improvement
for the keyword HMM system (5.5%FER to 5.0% EER).
However, as more keywords are used, one advantage of using
keyword-constraining, namely, reducing the amounts oéspe
data required, diminishes. The 38 keywords26% of back-
ground data) represent-a60% increase in data over the 18
keywords ¢15% of background data). This increase in data
usage greatly increases the need for memory and computation
when implementing the systems.

8.2. Individual keyword results

The individual keywords are examined to see how each would
perform in the various approaches, under the optimal sesof p
rameters as previously described. Because not all keyvexrds

ist in all conversation sides, individual keyword resultgyan-
volve trials where the keyword exists in both the target kpea
and test conversation sides. Individual results for the &3 k
words are obtained for the supervector keyword HMM and key-
word HMM systems. Table 2 shows results for the top 15 key-
words (in terms of performance) of the keyword HMM system,
which has the best individual results on the SRE06 8 conver-
sation side task. Also shown are the individual keyword re-
sults for the supervector keyword HMM system, the number of
occurrences of the keyword in background conversatiorsside
and the number of keyword HMM states for the MFCC feature-
based HMM systems. Note that these keywords are also ex-
perimented with for the phone lattice keyword HMM system.
However, results are significantly worse. Individual resdbr

the 52 high-frequency unigrams are also obtained for thegho
lattice keyword HMM (PLHMM) and keyword phone N-grams
(PLN) systems, and the top 20, according to the keyword phone
N-grams system, are shown in table 3. Note that for the 38
keywords, if a keyword unigram is part of a keyword bigram,
those unigram instances are ignored. For the 52 unigrams, no
keyword instances are discarded.

EER (%) results Other statistics

# of HMM

Keyword HMM | SVHMM || instances| states
yeah 11.4 17.0 26,530 | 6
you know || 11.9 17.5 17,349 | 8
i think 14.7 23.5 6,288 9
right 14.7 22.7 8,021 8
um 14.8 19.3 11,962 | 6
that 14.9 19.2 26,277 | 5
because 15.2 24.1 5,164 8
like 15.2 21.7 18,058 | 5
i mean 15.8 26.8 5,470 8
but 16.6 22.9 12,766 | 5
people 17.2 26.5 4,906 8
SO 17.4 24.7 14,291 | 6
have 18.0 25.4 9,610 5
just 18.1 28.4 8,660 6
not 18.3 26.0 6,817 5

Table 2: Individual keyword results for keyword HMM and su-
pervector keyword HMM systems

EFER (%) results
# of
Keyword || PLA | PLHMM instances
know 24.1 | 26.1 24,258
i 247 | 25.2 59,622
and 24.8 | 28.7 37,878
yeah 26.1 | 29.7 26,530
like 26.1 | 26.7 18,058
you 26.9 | 28.9 39,093
that 27.3 | 30.1 26,277
think 28.3 | 32.9 9,467
right 29.0 | 30.2 8,021
because || 29.1 | 32.3 5,164
but 29.8 | 32.6 12,766
people 30.5 | 34.6 4,906
really 30.7 | 32.2 6,674
um 32.2 | 30.7 11,962
to 32.2 | 33.2 27,224
mean 324 | 35.0 5,724
the 32.7 | 34.6 31,606
so 33.3 | 345 14,291
have 33.4 | 35.2 9,610
they 34.7 | 35.9 12,436

Table 3: Individual keyword results for phone lattice keydio
HMM and keyword phone N-grams systems

According to both tables, keywords that perform relatively
well for one system tend to perform well for the others. Re-
sults show that individual keywords generally perform éeit
the acoustic features framework, with significant improeets
from the phone lattice keyword HMM and keyword phone N-
grams systems, to the keyword and supervector HMM systems.
This is demonstrated by the keywoydah(among many oth-
ers), which shows a 56.3% improvementAlE R (26.1% to
11.4%) from the keyword phone N-grams to keyword HMM
systems. In addition, there is improvement in individuay-ke
word E E R from the supervector to the keyword HMM system
(a 32.9% improvement for yeah, from 17.0% to 11.4%), in con-
trast to the 14.0% improvement from the latter to the former i
the keyword-combination experiments.

The keyword phone N-grams system shows a modest im-
provement from the phone lattice keyword HMM system (a
12.1% improvement foyeah from 29.7% to 26.1%). This is
in contrast to the 63.5% improvement achieved in the keyword
combination experiments. This suggests that SVMs (used by
the keyword phone N-grams system) perform exceedingly well
in feature-level combination, such that increasing theedim
sionality of the overall feature vector (via concatenatdiea-
tures) leads to significantly improved results. Whereaddehe
ture vectors in the keyword-combination experiments aer ov
30K in dimension, they are typically of 1,000 to 2,000 in di-
mension in the individual keyword experiments. Overakgsih
results suggest that while systems relying on phone fesatuane
match or exceed performances of acoustic feature-based sys
tems in keyword-combination experiments, the sparsenkess o
the high-level phone features compared to the acoustiariest
leads to significantly worse results when keywords are exam-
ined separately.

Keywords that perform well (i.ezeah, youknow) generally
occur more often in the background conversation sides. This
is especially true for the supervector keyword HMM system,



where 6 of the top 7 performing keywordge@h, youknow,
that, um, like, byt rank among the top 10 in occurrences.
While keyword performance is positively correlated wittyke
word frequency, keyword length (approximately represgbte

the number of keyword HMM states), appears to be less of a
factor. However, some keywords of high lengthriean, peo-
ple) have low frequency, while 4 of the top 7 keywords for the
keyword HMM system have eight or more HMM states. Hence,
given more data such that more instances of keywords with hig
numbers of HMM states can be used for training and testing, it
may be possible to discover a clear positive correlationwben
keyword performance and length.

9. Conclusion

We have discussed and compared four speaker recognition sys
tems relying on word-conditioning: the keyword HMM, su-
pervector keyword HMM, phone lattice keyword HMM, and
keyword phone N-grams systems. We also examined the per-
formances of 62 keywords (representing2% of background
conversation side duration) of various lengths and fregesn

in both keyword-combination experiments and individuat-ke
word experiments using the above approaches.

We have shown that the SVM is an effective classifier for
keyword-combination experiments with very high dimension
feature vectors. The effectiveness of the SVM in this frame-
work appears to compensate for features that perform poorly
the individual keyword setting (i.e. phone N-grams). Adaus
features perform significantly better in the individual weyd
setting, and achieve the best result in conjunction witfS&
in keyword-combination. The effectiveness of acoustituiezs
with SVMs in keyword combination is demonstrated by the su-
pervector keyword HMM system, which achieves a 0.3% abso-
lute EE R improvement (4.6% to 4.3% FE R) over the GMM
baseline (our best baseline) on the SRE06 8 conversatien sid
task.

The keywordsyeahandyou knowhave the best individual
keyword results. An extension we are currently working on is
to augment the supervectors of the supervector keyword HMM
system using long-term, prosodic features, in an attemipt-to
crease the speaker-discriminative power of the keywords.
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