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Abstract
An individual’s voice is hardly ever heard in complete isolation.
More commonly, it occurs simultaneously along with other in-
terfering sounds, including those of other overlapping voices.
Though there has been a great deal of progress in automatic
speaker identification, the majority of past work has focused on
the case of non-overlapping speakers. Many of these systems
are easily confounded by more realistic scenarios where mul-
tiple talkers may be overlapping or speaking simultaneously.
Furthermore, the variations due to different acoustic environ-
ments in real-world settings are detrimental to well-known sys-
tems that aim to separate the features or the acoustic signal of
a mixture of talkers. We propose a system that, given multi-
ple acoustic observations, attempts to jointly identify and sep-
arate the acoustic features of multiple simultaneous talkers that
fall within a library of known individuals. This system uses
the probabilistic framework of expectation propagation (EP)
to iteratively determine model-based statistics of both individ-
ual acoustic features and speaker identity. In our initial study,
we demonstrate that this framework exhibits performance that
in the upper-bound significantly exceeds that of a sequential
method employing blind source separation followed by speaker
identification on the estimated source signals.

1. Introduction
The tracking and isolation of a single source within a mixture
of sound sources is commonly referred to as the “cocktail party
problem” [1]. This is a task that we as humans perform quite
easily, but that has thus far eluded attempts at a general com-
putational solution. Likewise, recognizing a familiar individual
through the sound of their voice is a relatively easy task for most
people, even when the voice is heard in the presence of noise,
background sounds, and other voices. A similarly robust recog-
nition capability in machines would enable a wide variety of ap-
plications, particularly in the areas of security and safety, such
as automated audio surveillance and forensic sound recording
analysis [2]. Accurate identification of multiple simultaneous
speakers could also lead to improved speech interfaces, such
as a computer able to identify and transcribe multiple voices
within a conference room [3].

Thus far, most systems addressing the problem of multiple
simultaneous speaker identification have generally involved se-
quential processing. First a separation of the individual voices
is attempted using one of a variety of Blind Source Separation
(BSS) methods [4, 5]. Then acoustic features are extracted from
the estimated separated sources, and these features are com-
pared to known features using a pattern classification method
[6, 7]. But when the human auditory system tracks and identi-

fies a familiar voice within a mixture that includes competing
sounds and voices, we do not process the two problems of sepa-
ration and identification sequentially. In fact, it is likely that we
use prior knowledge of the sound of that voice to aid in focus-
ing on the speaker of interest, which further refines our estimate
of the speaker’s identity. According to this hypothesis, we it-
eratively pursue a joint estimate of both the speaker’s identity
and the distinction between that voice and the other competing
sounds.

In this paper, we propose a system that, given multiple si-
multaneous acoustic observations, jointly separates and iden-
tifies known speakers from a sound mixture. Our system is
motivated by the framework of approximate Bayesian inference
via Expectation Propagation (EP) and passes probabilistic in-
formation iteratively between the separation and identification
subsystems. We conduct simulations using the proposed sys-
tem in several configurations, and compare its performance in
an ideal scenario to that of a sequential system that first uses
the BSS method of Independent Components Analysis (ICA)
[5] followed by speaker identification on the estimated source
signals.

2. Background
In order to orient the reader as to the context of the presented
work, we briefly review in this section the speaker identification
and source separation problems, as well as the general descrip-
tion of expectation propagation.

2.1. Speaker Recognition

A fair amount of research on speaker identification has been
directed towards the comparison of various acoustic features
for speaker identification (e.g., see [8]). Most recent work has
focused on spectral features that correlate to the time-varying
shape of the vocal tract. In particular, mel-frequency cepstral
coefficients (MFCCs) have gained broad acceptance for the ap-
plication of automatic speech recognition as well as other ma-
chine listening problems [9]. This feature representation is also
used at the core of our proposed speaker identification system.

Much prior work in voice identification has focused on the
case of a single speaker and an uncorrupted audio channel.
These constraints are appropriate for certain applications, such
as user authentication where the input can be controlled, and
“clean” features are needed for the training of accurate classi-
fiers. When novel data is presented to such a system, the ex-
tracted features will lead to a classification as one of the known
speakers, generally using an established pattern classification
method, such as Gaussian mixture models (GMMs) [10] and
neural networks [11]. The most accurate systems further con-



strain the vocal input to be a known “pass phrase” or sentence.
A review of many such speaker identification systems is pre-
sented in [12] and [13]. Systems requiring specific passphrases
have achieved equal error rates (where the frequency of false
positives equals that of false negatives) of less than one percent,
while the best text-independent systems have achieved equal er-
ror rates of under 5 percent in the most recent NIST Speaker
Recognition evaluation in 2006 [14].

For applications such as audio surveillance and the foren-
sic analysis of sound recordings, it is not realistic to adhere to
a single speaker, noise-free, and a priori known text scenario.
Recent NIST evaluations have also included a two-speaker tele-
phone conversation, in which the goal was to detect whether a
targeted speaker was present in the conversation (mostly non-
simultaneous speech). The best performers in this task, which
also achieved equal error rates less than 10% [14], involved
the tracking of the target speaker throughout the conversation.
Other recently proposed methods have addressed informed sep-
aration of sources where known or learned source priors are
used to improve the separation of speech mixtures [15] and
singing voice from background music [16]. These are similar
in spirit to our proposed system, but employ non-iterative meth-
ods for source separation.

2.2. Source Separation

In the last 15 years, there has been substantial progress in the
field of blind source separation, i.e., the separation of a mixture
of sources when no specific information regarding the sources
is available a priori [5]. In particular, the method of Indepen-
dent Components Analysis (ICA), has demonstrated significant
promise while assuming only general statistical properties of
the sources (independence, non-Gaussian distribution). This
framework assumes a linear mixture of sound sources, and mul-
tiple observations (at least as many as the number of sources).
There are many algorithms that implement ICA, particularly for
acoustic signals [17], and one of the most efficient is FastICA
[18].

ICA has proven to be quite successful in the case of in-
stantaneous linear mixtures, but is far less successful in the
case of convolved mixtures (as occurs in realistic conditions).
Frequency-domain ICA has been used to transform a mixture
convolved in time into an instantaneous mixture in frequency
[19]. This formulation, however, brings about other difficulties
since ICA results in arbitrary scaling and permutation of the
independent components (sources). A robust implementation
of frequency-domain ICA using short-time windows has been
elusive, and thus far has not resulted in a general solution to
real-world source separation problems.

2.3. Expectation Propagation

The central interest of Bayesian statistical inference is to sur-
mise the information learned about an unknown vector of ran-
dom parameters θ in the set Q upon observation of a particular
realization r = r of the random data r jointly distributed with
θ according to pθ,r in a random experiment. This informa-
tion is entirely captured in the a posteriori probability density
pθ|r(·|r). In its broadest sense, expectation propagation (EP)
comprises a family of distributed iterative methods seeking the
best approximation p̂θ|r(·|r) to the a posteriori density pθ|r(·|r)
among a user-chosen family of approximating exponential fam-
ily [20, 21] distributions B, as shown in Figure 1. To do so, EP

pθ|r
p̂θ|r

B

F

Figure 1: Expectation propagation iteratively refines an approx-
imation p̂θ|r to the true a posteriori distribution pθ|r among
those probability distributions in an approximating exponential
family B.

exploits a multiplicative factoring of the a posteriori density

pθ|r(θ|r) =

NY
a=1

fa(θa |ra), θa ⊆ θ, ra ⊆ r ∀a (1)

to iteratively refine the parameters {λa(ra)} of the approximate
density

p̂θ|r(θ|r) =

QN
a=1 exp (ta(θa) · λa(ra))R

Q
QN

a=1 exp (ta(θ′a) · λa(ra)) dθ′

in a distributed manner [22, 23, 24, 25]. At design time, the
user applying EP selects the approximating exponential family
of distributions B by choosing a factoring (1) and selecting the
functions {ta(·)}.

Once the selection of the factoring (1) and the functions
{ta(·)} has been made, EP provides a method for refining
λa(ra) for each a by minimizing the relative entropy (Kullback
Leibler divergence) D according to

λa(ra)← arg min
λa (ra )

D
“

qa(θ|r)‖ p̂θ|r(θ|r)
”

(2)

where

qa(θ|r) :=
fa(θa |ra)

Q
c 6=a exp (tc(θc) · λc(rc))R

Q fa(θ′a)
Q

c 6=a exp (tc(θ
′
c) · λc(rc)) dθ′

A simple taking of derivatives, together with the log-convexity
of the Kullback Leibler divergence in the second argument
shows that (2) is equivalent to choosing λa(ra) such that the
expectation of ta(θa) matches under the two probability distri-
butions appearing in (2), i.e. λa(ra) such thatZ

Q
ta(θa)fa(θa |ra)

Y
c 6=a

exp (tc(θc) · λc(rc)) dθZ
Q

fa(θ′a)
Y
c 6=a

exp
`
tc(θ

′
c) · λc(rc)

´
dθ′

=

Z
Q

ta(θa)p̂θ|r(θ|r)dθ

Under parallel scheduling all of these updates (2) are done in
parallel for all a , while under serial scheduling these updates
are performed one by one.



 

Channel 
Estimation 

Kalman 
Filter 
Based 
Source 
Separa-
tion 

Feature 
Calcula 
tion 

Library of Known  
Speakers’ IDs + 
Vocal Features 

Feature 
Calcula 
tion 

Library of Known  
Speakers’ IDs + 
Vocal Features 

p(r|s) p(s|u) p(u|l) p(l) 

All 
Speakers 

Have 
Different 
Identities 

Assumed 
Ideal (Genie 
Bound) 

Figure 2: The statistical model relating the identities of the
speakers and the observations at the microphones.

3. Applying EP to Multiple Speaker
Identification

In this section, we describe in detail how expectation propaga-
tion may be applied to the problem of joint source separation
and speaker identification. As described in Section 2.3, apply-
ing EP amounts to: 1) selecting a multiplicative factorization
of the true a posteriori density, 2) selecting a matching family
of approximating densities B, and, if necessary, 3) describing
a computationally efficient way to compute the corresponding
updates in (2). We describe the statistical model for the joint
speaker identification and source separation problem and the
factoring we will use in section 3.1. Additionally, we describe
the approximating family of densities we will use in Section 3.2,
and the computationally efficient calculation of the EP updates
in Section 3.3.

3.1. Factoring the A Posteriori Density

A diagram of the system describing the statistical model for
the joint source separation and speaker identification problem
is shown in Figure 2. An array of microphones receive a mix-
ture of speech and echos from several speakers, and the goal is
to process samples of this mixture to determine the identities of
the speakers among those in a library of known speakers. The
statistical model relating the observations at the microphones to
the identities of the speakers may be simply written as cascad-
ing of several models: the prior identity statistical model repre-
senting the probabilities without having observed any data that
all possible collections of speakers in the library are present,
the feature generation model describing the acoustic features
of each speaker in the library, the vocal tract model which de-
scribes the generation of speech (utterances) of a speaker given
their acoustic features, and the acoustic channel which maps
each speakers utterances to what is received at the microphones.
It is the conditional independencies in this statistical model, as
shown at the top of Figure 2, that allow expectation propaga-
tion to be applied. In particular, the received data at the micro-
phones is independent of the identities of the speakers and their
acoustic features given their separated speech. Similarly, the
separated speech is independent of the identities of the speakers
given their features. This sequence of conditional independen-
cies provides a natural factoring of the joint density to apply ex-
pectation propagation to. In particular, gather all of the sampled
observations at the microphones into the vector r. Furthermore,
gather the samples of the separated speech of the pth speaker
into the vector ξ(p) for each speaker p ∈ {1, . . . ,P}. Let the

k th feature vector of the pth speaker be denoted by u
(p)
k , and let

it be associated with the subset of samples x
(p)
k of ξ(p). Finally,

let the index in the library of the pth speaker be `(p). Each of
the newly defined parameters can then be collected into a vec-
tor θ :=

h
ξ(1), . . . , ξ(P), {u(1)

k }, . . . , {u
(P)
k }, `

(1), . . . , `(P)
i
.

Then the sequence of conditional independencies just described
may be summarized in the joint statistical model

pθ,r = p`(1),...,`(P)| {z }
f1(θ1)

pr|ξ|{z}
f2(θ2)

PY
p=1

Y
k

p
ξ
(p)
k
|u(p)

k| {z }
f3,p,k (θ2,p,k )

p
u
(p)
k
|`(p)| {z }

f4,p,k (θ2,p,k )

where we have labeled with the underbraces the different factors
as in (1). In particular θ1 :=

h
`(1), . . . , `(P)

i
and f1 represents

the prior identity model, θ2 :=
h
ξ(1), . . . , ξ(P)

i
and f2 rep-

resents the acoustic channel model, θ3,p,k =
h
x

(p)
k ,u

(p)
k

i
and

f3,p,k represents the vocal tract model, θ4,p,k :=
h
u

(p)
k , `(p)

i
and f4,p,k represents the feature generation model. To com-
pletely specify the model, we presently discuss each of the com-
ponent models in detail.

3.1.1. Acoustic Channel Model

Let the audio amplitude of the pth talker’s speech at the n time
instant be ξ

(p)
n , and let the sampled amplitude of the mth micro-

phone at time instant n be r
(m)
n , and collect these into the vec-

tors ξn :=
h
ξ
(1)
n , . . . , ξ

(P)
n

iT

and rn :=
h
r
(1)
n , . . . , r

(M )
n

iT

.
Define the vector valued z-transforms

ξ(z) :=
X
n

ξnz−n , r(z) :=
X
n

rnz−n

We will use the following linear time invariant model with addi-
tive noise for the acoustic channel relating the speakers speech
with the microphone inputs

r(z) = G(z)ξ(z) + ζ(z)

where
ζ(z) =

X
n

ζnz−n

and ζn are i.i.d. zero mean normally distributed random vec-
tors with covariance matrix σI. The channel transfer function
is written as

G(z) :=

 
RX

r=0

Hrz
−r

!

3.1.2. Vocal Tract Model

Given their proven efficacy in speech recognition and identifi-
cation systems, we will use mel frequency cepstral coefficients
[26, 27, 28] (MFCCs) as our acoustic features. Since MFCCs
are usually calculated over a short-time segment, we break each
speaker’s audio utterances up into frames of length L overlap-
ping by L/2:

x
(p)
k :=

h
ξ
(p)

k L
2 +1

, ξ
(p)

k L
2 +2

, . . . , ξ
(p)

k L
2 +L

i
(3)

These blocks are used to calculate the MFCC vectors u
(p)
k of

length K through the relation

u
(p)
k = M(x

(p)
k ) := C log

“
T|FGx

(p)
k |
”

(4)



where both the log and | · | operations are understood to operate
element-wise. The other operations of the MFCC computation
can be broken down into the following matrices [26, 28]:

G : diagonal Hanning window matrix
F : L× L DFT matrix
T : D × L mel-frequency triangular filter matrix
C : K ×D DCT matrix of mel-frequencies

3.1.3. Feature Generation Model

A common baseline model for speaker identification [10] then
models the feature generation process of a given speaker, which
determines the manner in which the MFCC vectors are gener-
ated, as the independent random selection of the feature vector
from a multivariate Gaussian distribution with a mean vector
and co-variance matrix which is constant for a given speaker,
but varies across different speakers. The library of speakers is
thus a list of MFCC mean vectors and covariance matrices (one
for each identity in the library).

3.1.4. Prior Identity Model

Despite the fact that generally speaking it is implausible to as-
sume that initially the joint speech separator and speaker iden-
tifier will know which speakers are likely to be in the room,
one can say with certainty that each speaker should have a dif-
ferent identity. This constraint can be imposed in the model
in the form of a prior density on the indices of the different
speakers in the library, which is uniform over all those indices
`(1), . . . , `(P) which are all different.

3.2. Selecting an Approximating Family of Densities

We will select the approximating family of densities to be
those probability densities which model the speech of the differ-
ent speakers ξ(p), the different MFCC vectors of the different

speakers u
(p)
k , and the identities `(p) of the different speakers all

as mutually independent. For a given speaker p, the MFCC vec-
tors u

(p)
k will be modeled as independently distributed jointly

Gaussian random vectors, and the speech samples ξ
(p)
n will be

modeled as independent Gaussian random variables. This fam-
ily of approximating densities can be chosen by selecting:

t1(θ1) :=
h
eT

`(1) , . . . , e
T
`(P)

iT

where ek is the kth column of the identity matrix with dimen-
sion equal to the number of speakers in the library minus one,
and the all zero vector if k is equal to the number of speakers in
the library,

t2(θ2) =
h
ξ(p)
n , (ξ(p)

n )2|∀n, p
iT

t3,p,k (θ3,p,k ) =
h
t2(θ2),

h
(u

(p)
k )T , upper[u(p)

k (u
(p)
k )T ]

iiT

where upper returns a row vector containing those elements on
and above the diagonal of its square matrix argument, and

t4,p,k (θ4,p,k ) :=
hh

(u
(p)
k )T , upper[u(p)

k (u
(p)
k )T ]

i
, eT

`(p)

iT

3.3. Computationally Efficient EP Update Calculation

In this section we describe the computationally efficient forms
of the EP update (2) that our implementation uses. In partic-
ular, several further simplifying approximations will be made.
The first approximation is made in the acoustic channel model,
where instead of taking the a posteriori expectation featured in
(2) over all of r (i.e. a forward backward / RTS smoother im-
plementation), a sliding window expectation over successively
larger subsets of r is used (i.e. the Kalman filter). The second
approximation is made at the vocal tract calculation, where it is
necessary to map Gaussian densities back and forth across the
nonlinear MFCC calculation. This is done by exploiting a lin-
earization of the MFCC function about the mean of the density
to be mapped across the MFCC calculation. The third and final
approximation is made in the all speakers have different iden-
tities module, where the union bound is used to approximate a
difficult to calculate probability.

First, we provide an overview of the operation of the joint
source separator and speaker identifier diagrammed in Figure
3. The first module, the Kalman filter, given a sequence of
prior means s

(p)
n and variances v

(p)
n which model the sources

ξ
(p)
n as independent, uses pr|ξ to calculate a sequence of pos-

terior means and variances given the audio observation, which
are collected into frames t

(p)
k and w

(p)
k for the MFCC calcula-

tion (hence the subscript k ). This sequence of posterior means
and variances is then used to calculate, through a linearization
of the MFCC calculation around the means, a series of means
and covariance matrices for the MFCCs. These means and co-
variance matrices are then compared to those in a library of
known speaker’s MFCC means and covariance matrices, yield-
ing a vector of log probability ratios λ(p) for each speaker de-
scribing the likelihood that speaker p corresponds to a particu-
lar identity index in the library. Because no two speakers can
have the same identity, we can revise the beliefs that speaker
p has identity `(p) over all speakers according to the constraint
that `(p) 6= `(p

′) ∀p 6= p′. This revision yields extrinsic in-
formation (which is the posterior log probability ratio minus
prior log probability ratio) µ(p). The iterative structure then
uses the extrinsic information as a prior probability in the li-
brary unit pu(p)|`(p) to provide a new prior estimate for the mean
MFCC vector n(p) and MFCC covariance matrix F(p) for the
pth speaker. This prior mean MFCC vector is then inverted into
a prior audio sample Gaussian distribution with means s

(p)
n and

variances v
(p)
n for ξ

(p)
n which is used as prior information in

the Kalman filter, repeating the previously described iterative
process from the beginning of this paragraph. To allow repro-
ducibility of our results, we now duplicate here a detailed de-
scription of the mathematics of the operation of each module in
the system diagram shown in Figure 3 that may also be found
in the preliminary paper [29].

3.3.1. Kalman Filter Module

The prior means s
(p)
n passed into the Kalman filter can be used

to subtract off the prior mean of the received signal in order to
get a model for which the prior mean of the state vector is zero,
via the equations

r′n := rn −
RX

r=0

Hr [s
(1)
n−r , . . . , s

(P)
n−r ]

T
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Figure 3: Iterative source separation and speaker identification system.

We can then substitute this into the standard Kalman filter equa-
tions

Kn = Σn|n−1H
T
“
HΣn|n−1H

T + σ2I
”−1

dn = r′n − r̂n|n−1, ŷn|n = ŷn|n−1 + Kndn

Σn|n = Σn|n−1 −KnHΣn|n−1

ŷn+1|n = Aŷn|n , r̂n+1|n = Hŷn+1|n

Σn+1|n = AΣn|nA
T + diag

“
v(1)
n , v(1)

n , . . . , v(P)
n ,01×PR

”
Because it corresponds to having observed all of those elements
of the observations directly involved with it, we should use the
last (temporally) estimate of a source symbol, passing the asso-
ciated mean and variance output from the Kalman filter on to
the MFCC calculation.h

w
(p)
k

i
i
= [Σ(k L

2 +i+R)|(k L
2 +i+R)]RP+p,RP+ph

t
(p)
k

i
i
= [ŷ(k L

2 +i+R)|(k L
2 +i+R)]RP+p + s

(p)

k L
2 +i

3.3.2. MFCC Module

Let F be the DFT matrix of dimension L. Let G be a diagonal
matrix with the Hamming window of length L as its diagonal el-
ements. Collect the triangular basis functions used in the MFCC
calculation into a matrix T of dimension D × L. Let C be the
K lowest frequencies of the DCT matrix of size D .

The MFCC module operates using a local linear approxi-
mation to the MFCC calculation with matrix

M
(p)
k = Cdiag

“
T|Ft

(p)
k |
”−1

Tdiag
“
|FGt

(p)
k |
”−1

h
diag

h
<{FGt

(p)
k }

i
<{FG}

+diag
h
={FGt

(p)
k }

i
={FG}

i
In the “right” moving direction, then the mean and covariance
matrices are

n
(p)
k = C log

“
T|FGt

(p)
k |
”

F
(p)
k = M

(p)
k diag(w

(p)
k )(M

(p)
k )T

In the “left” moving (feedback) direction, the mean and vari-
ances are

v
(p)
k = diag

»“
diag(w

(p)
k )−1 + (M

(p)
k )T (E

(p)
k )−1M

(p)
k

”−1
–

s
(p)
k = diag(v

(p)
k )

“
diag(w

(p)
k )−1t

(p)
k

+ (M
(p)
k )T (E

(p)
k )−1m

(p)
k

”
Because any given time sample of the audio data is associated
with two MFCC vectors, we combine the means and covari-
ances of the two estimates fed back from the MFCC module
into one via the equations

v
(p)

k L
2 +i

=

0@ 1

[v
(p)
k ]i

+
1

[v
(p)
k−1]i+ L

2

1A−1

and

s
(p)

k L
2 +i

= v
(p)

k L
2 +i

0@ [s
(p)
k ]i

[v
(p)
k ]i

+
[s

(p)
k−1]i+ L

2

[v
(p)
k−1]i+ L

2

1A
3.3.3. Library Module

Let zj and Pj be the mean and covariance of the j th
speaker in the library, respectively, and let there be J speak-
ers in the library. For a particular j , k , p define the matrix

Σ =
“
P−1

j + (F
(p)
k )−1

”−1

and vector m = P−1
j zj +

(F
(p)
k )−1n

(p)
k . The library module calculates a vector of log

likelihood ratios with the equation

[λ(p)]j :=
X
k

1

2
mT Σ−1m− 1

2
(n

(p)
k )T (F

(p)
k )−1n

(p)
k

−1

2
zT
j P−1

j zj +
1

2
log

 
det(Σ)

det(Pj ) det(F
(p)
k )

!



In the feedback direction, the library module takes a prior dis-
tribution for the identity of speaker p and calculates a posterior
mean and covariance matrix for the MFCCs of p.

m
(p)
k :=

X
j

zj
exp([µ(p)]j )

‖ exp(µ(p))‖1
, E

(p)
k :=

X
j

Pj
exp([µ(p)]j )

‖ exp(µ(p))‖1

In the previous equations, ‖‖1 is simply the sum of the absolute
values of its vector argument.

3.3.4. All Speakers Have Different Identities Module

Finally the “all speakers have different identities module” en-
forces that no two speakers can have the same identity. Stating
this mathematically, let

F :=
n

` ∈ {1, 2, . . . , J}P |`j 6= `k ∀j 6= k
o

Ideally, the “all speakers have different identities” module
would compute

[µ(p)]j := log

0@ X
`∈F|`p=j

exp

0@X
p′

[λ(p)]`p′

1A1A− [λ(p)]j

But this is perhaps too computationally intensive. Thus, we uti-
lize the following alternative based on the union bound

[µ(p)]j :=
X

p′|p 6=p′

log

 
1− exp([λ(p′)]j )

‖ exp(λ(p′))‖1

!

4. Pilot Study and Simulations
Our preliminary data set consists of 49 unique speakers from
the well-known TIMIT [30] speech database. Each speaker has
recorded 10 sentences, approximately 3-4 seconds in duration.
The full-content features (MFCC means and covariances) of the
10 sentences from these speakers were used to form the library
of known speakers.

For this initial study, we simulated mixtures of 2 simul-
taneous speakers with 2 observations (microphones) for each
mixture, the standard configuration for blind source separation
problems. We took a short segment of speech (1.25 seconds)
from each randomly-seleccted speaker, and combined them us-
ing a short FIR filter. Our simulated mixtures were calculated
using random Gaussian matrix valued channels with R = 9
with an exponentially decaying power profile with decay con-
stant 1

2
with a variable amount of Gaussian noise added to each

channel. This represents a “toy” acoustic room response that is
very short, though it is enough to confound a sequential method
using blind source separation (ICA) followed by single-speaker
identification, as shown in the results below.

3800 monte carlo simulations (variations of speaker com-
binations and FIR channel filters) were run for different addi-
tive noise powers. The same filters and SNR levels were used
to compare the system’s performance with that of a sequen-
tial BSS-speaker ID system. This reference system first uses
the FastICA algorithm to perform source separation, and the
estimated source signals are used to compute the MFCC fea-
tures (exactly as in Eq. 4). Mean and covariance parameters
for a multi-variate Gaussian distribution are fit to the result-
ing MFCC vectors, and this distribution is then compared to
those in the speaker library using the Kullback Leibler (KL)
divergence. The KL divergence between two Gaussian distri-
butions has a closed form solution. For example, if we have

estimated source distribution p and library distribution j, with
means np,nj and covariances Fp,Fj , respectively, the KL di-
vergence is computed as:

D(p||j) = log

„
detFj

detFp

«
+ tr(F−1

j F−1
p )

+(nj − np)T F−1
p (nj − np)− d

where d is the dimensionality of the distributions. For the ref-
erence system, we compare the MFCC distributions from the
estimated sources to all candidate speakers in the library, and
we label the sources as those in the library corresponding to
the minimum KL divergence (highest degree of mutual infor-
mation).

5. Results and Discussion
Simulation results from the pilot study using the proposed itera-
tive estimator (in several configurations) are shown in Figures 4
and 5 compared to those using the sequential FastICA-speaker
ID reference system. The signal to noise ratios used in the sim-
ulations (in dB) are displayed as the independent variables in
the plot.

As can be seen in these figures, the proposed system sig-
nificantly outperforms the sequential, ICA-based system at all
SNR levels. We note that this is not necessarily an “apples-to-
apples” comparison, since the channel filter is known a priori to
the joint system, while the ICA-based system produces a blind
estimate of the channel. In this preliminary work, it is useful to
explore the upper limit of performance in order to ascertain the
possible advantages of the proposed system. Thus, the synthetic
case provided here represents a demonstration of the so-called
“genie-bound”.

Figure 5 also compares the performance of the proposed it-
erative structure at the first and 5th iteration with a “separate
feedforward” structure which just calculates MFCCs from the
means output from the Kalman filter and does likelihood ratio
based speaker ID with the MFCCs, and a “joint feedforward”
structure which is “separate feedforward” with the additional
constraint that all speakers must have different identities taken
into account. In the task of successfully identifying both speak-
ers in the mixture, the iterative structure outperforms the feed-
forward structures at most SNR levels after 3 iterations. The
performance of the iterative structure in identifying at least one
of the speakers correctly is mixed, outperforming the feedfor-
ward systems at the low SNR levels, but being less accurate at
high SNRs.

6. Future Work
The results using the proposed joint identification and separa-
tion system are encouraging, but the system could benefit from
many possible refinements. Continuing research will focus on
adjustments to the iterative structure and search for stopping
rules that lead to further performance improvements.

The mixed performance of the iterative system (particularly
in identifying at least one of the speakers) is likely due to as-
sumptions made in the iterative model. In particular, the lin-
earization of the MFCC calculation in order to propagate mean
and variance parameters is a potential source of inaccuracy. It
is likely that using the MFCCs to derive autocorrelation func-
tions for a quasi-stationary audio speech model may result in
better, more stable statistics for feedback into the Kalman filter
module. Also, the assumption of a Gaussian model for speech
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Figure 4: Performance of joint separation and identification system in correctly identifying both speakers (right) compared to that of
reference system (FastICA source separation, followed by classification via MFCC KL distance). Error bars represent standard error
for each simulation configuration.
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Figure 5: Performance of joint separation and identification system in correctly identifying at least one speaker compared to that of
reference system (FastICA source separation, followed by classification via MFCC KL distance). Error bars represent standard error
for each simulation configuration.



is known to be inaccurate, and we plan to explore other dis-
tribution families for the source distributions. Fortunately, the
versatility of expectation propagation through the explicit use of
exponential family distributions ought to easily allow for adap-
tation of the current model to these new constraints.
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