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Abstract
We present a comparison between speaker verification systems
based on factor analysis modeling and support vector machines
using GMM supervectors as features. All systems used the
same acoustic features and they were trained and tested on the
same data sets. We test two types of kernel (one linear, the other
non-linear) for the GMM support vector machines. The results
show that factor analysis using speaker factors gives the best
results on the core condition of the NIST 2006 speaker recog-
nition evaluation. The difference is particularly marked on the
English language subset. Fusion of all systems gave an equal
error rate of 4.2% (all trials) and 3.2% (English trials only),

1. Introduction
In speaker verification, the Gaussian mixture models and the
support vector machines became the most widely used models.
In the two last years, a combination of these two models was
successfully applied by using a linear and non-linear GMM su-
pervector kernels [6] [5]. A channel compensation algorithm
named Nuisance Attribute Projection (NAP) was also proposed
for this new model, this algorithm was tested on both types of
kernels [6] [10]. Factor analysis model [1] [2] proposed a model
which compensates for channel effect in the GMMs and a model
based on the speaker factors to enroll the target speaker model.

In this paper, we carried out a comparison between two
models: Factor analysis and GMM support vector machines
(GMM-SVM’s) with NAP using the same training and testing
dataset. We also prove thatzt-norm score normalization for the
GMM-SVM systems did not give any improvement andt-norm
alone was better for these systems. The best results are obtained
with factor analysis using the speaker factor components. We
show also the fusion results between the GMM-SVM systems
with linear and non linear kernels and factors analysis model.

The outline of the paper is as follows. Section 2 describes
the factor analysis model. In section 4.4, we present the GMM-
SVM and we describe the linear and non linear kernels that we
used to implement it. The comparison results on the core con-
dition of NIST-SRE 2006 is presented in section 5. Section 6
concludes the paper and gives some perspectives.

2. Joint Factor Analysis
Joint factor analysis model is used to address the problem of
speaker and session variability in GMM’s. In this model, each
speaker is represented by the means, covariance, and weights of
a mixture ofC multivariate diagonal-covariance Gaussian den-
sities defined in some continuous feature space of dimension

F . The GMM for a target speaker is obtained by adapting the
Universal Background Model parameters (UBM). The UBM is
trained using a large amount of data. In Joint Factor Analy-
sis [1] [2], the basic assumption is that a speaker and channel-
dependent supervector1 M can be decomposed into a sum of
two supervectors: a speaker supervectors and a channel super-
vectorc

M = s + c (1)

wheres andc are normally distributed.
In [1], Kenny et al. described how the speaker dependent

supervector and channel dependent supervector can be repre-
sented in low dimensional spaces. The first term in the right
hand side of ( 1) is modeled by assuming that ifs is the speaker
supervector for a randomly chosen speaker then

s = m + vy + dz (2)

wherem is the speaker and channel independent supervector
from the UBM,d is diagonal matrix,v is a rectangular matrix
of low rank andy andz are independent random vectors having
standard normal distributions. In other words,s is assumed to
be normally distributed with meanm and covariance matrix
vv∗ + d2. The components ofy are the speaker factors. The
channel-dependent supervectorc which represents the channel
effect in an utterance is assumed to be distributed according to

c = ux (3)

whereu is a rectangular matrix of low rank,x is distributed
with standard normal distribution. This is equivalent to saying
that c is normally distributed with zero mean and covariance
uu∗. The components ofx are the channel factors in factor
analysis modeling.

3. GMM-SVM’s
This approach consists of the application of support vector ma-
chines with GMM supervectors as input features for the speaker
verification task. We refer to the supervectors asinput features
because, in the case of a general kernelK(s, s′) (whose argu-
ments are pairs of supervectors), it is necessary to distinguish
between input features and expanded features defined by the
kernel mapping function

s → K(s, ·). (4)

1A GMM supervector is the concatenation of the GMM mean vec-
tors.



We will denote this mapping function byφ(s). Of course, in the
case of a linear kernel defned by an inner product in the input
feature space, the kernel mapping is just the identity mapping.

3.1. Linear Kernel

The linear kernel that we used on GMM supervector space is de-
rived from the distance between two GMMs based on Kullback-
Leibler (KL) divergence [8] [9]. In the case of MAP adaptation
with diagonal covariance matrices and when only the means of
GMMs were adapted from the UBM, the weighted Euclidean
distance between scaled version of GMM supervectorss ands′

was given as follow:
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wherewi andΣi are theith UBM mixture weight and diag-
onal covariance matrix,si corresponds to the mean of theith

Gaussian of the speaker GMM.
The linear kernel is defined as the corresponding inner

product:
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This kernel was proposed by Campbellet. al. [6].

3.2. Non Linear Kernel

The non linear kernel that we used is the exponential version of
the distance between two GMMsD2

e (s, s′) given in (5):

Knonlin(s, s
′) = e

−D
2

e(s,s′) (7)

This kernel was first proposed by Dehak and Chollet in [5].
The non linear kernel is equivalent to the Gaussian kernel de-
fined on the GMMs supervector space. The corresponding ex-
panded feature space is infinite-dimensional. The feature map-
ping functionφ(.) is [11]:

s 7→ φ(s) = K(s, . ) = e
−

‖s− . ‖2

2σ2 (8)

3.3. Input feature normalization : M-norm

When GMM supervectors are used as input features for a ker-
nel machine, care has to be taken to normalize them properly.
In [5] [10] the authors demonstrated the effectiveness of the
model normalization (M-Norm) technique, especially for the
non-linear kernel SVM. This normalization consist of modi-
fying the GMM supervectors so that the distance between all
normalized supervectors and the UBM supervectorm is a con-
stant that we can take to be 1. Let{mk} be the set of UBM
mean vectors and, for a given speakerX, let {sk} be the set of
mean vectors in the speaker GMM. Denote byDe(X, m) the
distance between the speaker GMM supervector and the UBM
supervector. For a particular mean vectorsk, the normalization
procedure is

sk ← 1

De (X, m)
sk +

„

1 − 1

De (X, m)

«

mk (9)

3.4. Nuisance Attribute Projection

In [7][6], the authors proposed the Nuisance Attribute Projec-
tion (NAP) method to treat the session variability problem in
the SVM framework. This method used an appropriate projec-
tion matrix P in the input feature space to remove unwanted
variability (such as channel effects) in the input features. The
new kernel obtained has the following form:

K(s, s
′) = < Pφ(s) , Pφ(s′) >

= φ(s)t
Pφ(s′) (10)

= φ(s)t(I − V V
t)φ(s′).

whereV is a rectangular matrix of low rank whose columns
are orthonormal. If we expressV in terms of its columns,
V = [v1, v2, ...vk], the vectorsvi are the directions which are
removed from the input feature space.

The design criterion forP and the corresponding matrixV
is

P̃ = arg min
P

X

i,j

Wi,j‖Pφ(si) − Pφ(sj )‖2 (11)

whereφ(.) is the kernel mapping function. The{si} are typ-
ically a background data set. TheWi,j matrix contains the
speaker weights. We pickWi,j = 1 if si andsj correspond
to the same speaker, andWi,j = 0 otherwise.

Campbellet. al. [6] noticed that with the linear kernel and
session variability as nuisance variable, the NAP subspace is
equivalent to the channel subspace modeled in the factor analy-
sis [2]. In this case, the solutioñP corresponds to the projection
matrix which minimizes the Euclidean distance (‖.‖2) between
GMM supervectors belonging to the same speaker. The solution
of Equation (11) (̃P and corresponding̃V ) is obtained from the
k eigenvectors having thek largest eigenvalues of the following
covariance matrix:
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wheres̃
j

i represents the GMM supervector corresponding to the
ith session of thejth speaker;S is the number of speakers
in our background database;nj represents the number ofjth

speaker sessions; ands̄j represents the mean ofjth speaker su-
pervectors:

s̄j =
1

nj
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X
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i (13)

The channel covariance matrixC is equivalent to the matrix
uu∗ which is the covariance matrix of the channel supervector
c in the factor analysis model. In [10], we applied the same pro-
jection matrixP̃ in GMM supervector space for both the linear
and non-linear kernels. Our best results were obtained when we
applied M-norm on the GMM supervectors after applying the
projectionP̃ .

4. Experimental set up
4.1. Test set

All our experiments are carried out on the core condition of
the NIST 2006 speaker recognition evaluation (SRE) dataset
[4]. This condition evaluation set contains 350 males, 461 fe-
males, and 51,448 test utterances. For each target speaker, a five
minute recording is available containing roughly two minutes of
speech.



4.2. Acoustic features

In our experiments, we used cepstral features, extracted using
a 25 ms Hamming window. 19 mel frequency cepstral coeffi-
cients together with log energy are calculated every 10 ms. This
20-dimensional feature vector was subjected to feature warping
[3] using a 3 s sliding window. Delta coefficients were then cal-
culated using a 5-frame window giving a 40-dimensional fea-
ture vector. These feature vectors were modeled using GMMs
and factor analysis was used to address the problem of speaker
and session variability.

4.3. Factor analysis training

We used two gender dependent Universal Background Models
(UBM). Each UBM containing 1024 Gaussians was trained us-
ing LDC releases of Switchboard II, Phases 2 and 3; Switch-
board Cellular, Parts 1 and 2; the Fisher English Corpus, Part 1
and Part2; NIST 2003 Language recognition evaluation dataset;
and NIST 2004 evaluation data.

The (gender dependent) factor analysis models were trained
on the LDC releases of Switchboard II, Phases 2 and 3; Switch-
board Cellular, Parts 1 and 2; and the NIST 2004 evaluation
data.

The decision scores obtained with factor analysis were nor-
malized usingzt-norm. We used 283t-norm models for female
trials and 227t-norm models for male trials taken from Switch-
board II, Phases 2 and 3; Switchboard Cellular, Parts 1 and 2;
and NIST 2004 SRE. We used 1000z-norm utterances for each
gender taken from the same dataset ast-norm. The motivation
of using large number ofz-norm utterances was given in the
companion paper [12].

We tested two factor analysis configurations both having
50 channel factors. In the first case, we did not use any speaker
factors and in the second case we used 300 speaker factors. The
latter configuration gave the best results on the core condition
of the NIST 2006 SRE dataset [12].

4.4. UBM and NAP training

In GMM-SVM systems, we used two gender dependent UBMs
composed of 1024 Gaussians. These UBMs were trained on the
same dataset as used for factor analysis UBM training (Section
4.3).

The channel covariance matrixC given in Equation (12)
was computed using the same dataset as for factor analysis. The
first 40 eigenvectors of this matrix were used to build the NAP
projection matrix. (This gave the best results in [10].)

4.5. GMM-SVM imposters

Imposters play two different roles in an SVM system: they are
needed to train the SVM for each target speaker and they can be
used to normalize the scores of verification trials which facili-
tates setting a verification decision threshold.

We experimented with two types of imposter modeling and
score normalization for each SVM system. For the first experi-
ment, we divided the 1000z-norm utterances used in the factor
analysis system into two equal parts. 500 impostors were used
to train the SVM for each target speaker and the remaining 500
utterances were employed forz-norm score normalization. We
used the samet-norm impostors as in factor analysis to carry
out t-norm andzt-norm. It turned out that (contrary to our ex-
perience with factor analysis [12] ), onlyt norm was effective.

So, in a second experiment, we used all 1000z-norm utter-
ances as impostors to train target speaker SVM’s. We used the

samet-norm imposters as in factor analysis. We did not test the
zt-norm score normalization in this case.

5. Results
Score normalization is vitally important to the success of our
factor analysis system [12] so our first experiments with the
GMM-SVM systems were concerned with this question. We
present these results before presenting the back to back com-
parison between the GMM-SVM and factor analysis systems.

5.1. GMM-SVM score normalization

The results presented in Tables 1 and 2 show thatzt-norm does
not improve the performance of the SVM systems compared
with t-norm and thez-norm utterances are better used as im-
posters for training target speaker SVM’s than for score nor-
malization. Note that non linear kernel gives better EER than
linear kernel for both experiments. However the DCF is quite
similar for both kernels in each case. We obtained a similar
result in [10].

Table 1:GMM-SVM supervector score normalization results on
English trials of the core condition of the NIST 2006 SRE.

linear kernel non linear
EER DCF EER DCF

500 imposters withzt-norm 5.0% 0.025 4.6% 0.024
1000 imposters witht-norm 5.0% 0.025 4.4% 0.024

Table 2:GMM-SVM supervector score normalization results on
all trials of the core condition of the NIST 2006 SRE.

linear kernel non linear
EER DCF EER DCF

500 imposters withzt-norm 5.8% 0.030 5.7% 0.030
1000 imposters witht-norm 5.7% 0.030 5.5% 0.030

5.2. Comparison of GMM-SVM and factor analysis

We compare in this section the best results obtained on the core
condition of the NIST 2006 SRE using both linear and non lin-
ear kernels (as described in the previous section) with the best
results obtained using factor analysis with and without speaker
factors (as described in the companion paper [12]). The results
are summarized in Tables 3 and 4. The Figures 1 and 2 show
the DET curves of all four systems .

Table 3:Results on the English language trials of the core con-
dition of the NIST 2006 SRE.

EER DCF
linear kernel 5.0% 0.025

non linear kernel 4.4% 0.024
factor analysis with 0 speaker factors 4.6% 0.022

factor analysis with 300 speaker factors3.5% 0.021

These results show that the two factor analysis configura-
tions gave better results than the linear kernel in the English
trials of the NIST 2006 SRE (Table3). However the linear ker-



Table 4:Results on all trials of the core condition of the NIST
2006 SRE.

EER DCF
linear kernel 5.7% 0.030

non linear kernel 5.5% 0.030
0 speaker factors 6.2% 0.028

300 speaker factors 5.0% 0.027

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

Speaker Detection Performance

 

 
Factor analysis with 300 speaker factors

Factor analysis with 0 speaker factor

non−linear kernel

linear kernel

Figure 1: DET curves showing the comparison results on En-
glish trials of the core condition of the NIST 2006 SRE.

nel provided better EER than factor analysis without speaker
factors on all trials of the core condition.

The non-linear kernel produced a better EER than factor
analysis without speaker factors. In the absence of speaker fac-
tors, the procedure for enrolling a target speaker with a factor
analysis model is similar to traditional MAP adaptation which is
the first step in enrolling a target speaker in a GMM-SVM sys-
tem. However the results obtained with 300 speaker factors are
clearly better than those obtained with the other systems espe-
cially for the English language trials (see Fig. 1). More results
on the effectiveness of speaker factors can be found in [12].

5.3. Fusion

It is widely recognized in this field that fusing systems leads
to better results. Although it is suboptimal, naive Bayes fusion
(where all systems are given equal weight) has the merit that
it does not require any development data. Fusion using logis-
tic regression fusion is also easy to implement [13] but, strictly
speaking, held-out development data ought to be used to esti-
mate the fusion weights.

We fused the two GMM-SVM systems and the factor anal-
ysis system with 300 speaker factors using both naive Bayes
and logistic regression where the regression coefficients were
estimated from the test data (with the help of the answer key).
Thus we obtained upper and lower bounds on the performance
improvements that can be expected from fusion. The results are
summarized in Tables 5 and 6.

Naive Bayes fusion gave a slight improvement in EER and
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Figure 2: DET curves showing the comparison results on all
trials of the core condition of the NIST 2006 SRE.

Table 5:Fusion results on all trials of the core condition of the
NIST 2006 SRE.

EER DCF
naive Bayes 4.7% 0.026

logistic regression 4.2% 0.024

DCF on all trials of the core condition, but no improvement on
the English language trials (presumably because the contribu-
tion of the factor analysis system was under-weighted).

Logistic regression fusion on all trials gave an absolute im-
provement of 0.8% in EER and 0.003 in DCF in comparison to
factor analysis with 300 speaker factors. However the improve-
ment on the English language subset was smaller (presumably
for the same reason).

6. Conclusions
This paper presents a comparison between two approaches to
speaker verification, factor analysis and GMM support vec-
tor machines with linear and non linear kernels. We trained
and tested these models on the same data sets using the same
acoustic features. The results show that factor analysis without
speaker factors gives similar results to the GMM-SVM systems
with the non-linear kernel and that the non linear kernel outper-
forms the linear kernel.

However when speaker factors are used, factor analysis pro-
duced substantially improved results especially in the English
language trials of the core condition of the NIST 2006 SRE.
The key differnence here is in the way target speakers are en-
rolled: in the absence of speaker factors, the enrollment proce-
dure is similar to classical MAP which is the first step in en-
rolling a speaker for a GMM-SVM system. This suggests that
the GMM-SVM systems could be improved by using speaker
factors at enrollment time.

We also found that in the GMM-SVM systemst-norm is
more appropriate thanzt-norm. Whyzt-norm is so effective
with factor analysis remains something of a mystery.



Table 6: Fusion results on English trials of the core condition
of the NIST 2006 SRE.

EER DCF
naive Bayes 3.7% 0.021

logistic regression 3.2% 0.019

Naive Bayes fusion of the factor analysis and GMM-SVM
systems gave small improvements in the performance; poste-
rior fusion using logisitic regression gave larger improvements.
But, for English language trials, the contribution of the factor
analysis system was predominant.
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