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Abstract

In this paper we present language detectors built using
relatively small amounts of training data. This is car-
ried out using the modelling power of a Linear Discrim-
inant Analysis back-end for the languages which have a
small amount of training data. We present experiments
on NIST 2005 Language Recognition Evaluation data,
where we use a jackknifing technique to remove well-
trained language knowledge from the LDA back-end, us-
ing only sparse trials for training the LDA. We investi-
gate three systems, which show different levels of loss of
language detection capability. We validate the technique
on an independent collection of 21 languages, where we
show that with less than one hour training we obtain an
error rate for ‘new’ languages that is only slightly over
twice the error rate for languages for which the full 60
hours of CallFriend data is available.

1. Introduction

Spoken language recognition is an area of research that
has attracted increasing interest in recent years. Not
only does the series of ‘Odyssey’ workshops carry lan-
guage recognition in the title since 2004, but also the Na-
tional Institute of Standards and Technology (NIST) lan-
guage recognition evaluations (LREs) have increased in
frequency and numbers of participants. As in other areas
of speech research, the NIST series of evaluations play an
important role in the direction of research in stimulating
researchers to develop better algorithms that deal with the
challenges specific to language recognition.

The initial LRE-1996 still has an important impact
on the research direction since it was accompanied by
a major data collection effort that resulted in the Call-
Friend speech database [8], which is distributed by the
Linguistic Data Consortium (LDC). This database con-
sists of telephone recordings of conversations in 12 lan-
guages (and three dialects within those).1 For each of
these languages/dialects there is about 60 hours of train-

1The so-called ‘CallFriend languages’ comprise the 10 languages of
the earlier recorded Oregon Graduate Institute (OGI) corpus [9].

ing data2 of about 100 speakers. Since current spoken
language detectors benefit from large amounts of speech,
CallFriend still acts as a basis for most systems. General
language recognition algorithms are not hand-tailored to
any particular language, instead they are data-driven and
should work with any collection of speech that is compa-
rable in size to CallFriend.

The big advantage of language recognition data col-
lections is that they do not require costly phonetic or or-
thographic transcriptions—accurate language labels are
sufficient. Adding another language to the CallFriend
training collection may at first sight seem easy: just
record a lot of speech from many people speaking the
language. However, if the data collection characteristics
of this new language are different from CallFriend, a sys-
tem may learn unwanted differences in these collection
characteristics (channel or session effects), and not the
language characteristics. This is yet another reason why
LDC’s CallFriend is such an important collection.

In the series of NIST LREs, therefore, the collection
of languages under evaluation have always been centered
around the 12 CallFriend languages. It has been diffi-
cult to deal with new languages for which there is lit-
tle training data available. In 2003 Russian was intro-
duced as a ‘surprise’ non-target language in the open set
condition—hence no specific training for this language
was expected. In 2005 a different situation arose, where
it was announced that as part of the English trials, In-
dian accented English would be included. There was a
limited set of 40 speech segments (just 20 minutes total
duration) available for training. As turned out in the eval-
uation, these Indian accented English trials were respon-
sible for most of the errors in well performing systems,
even though the American English models for such sys-
tems were very good due to the vast amounts of telephone
speech data available.

In this paper we try to address the problem of build-
ing language detectors for ‘new’ languages, for which
there is only a small amount of training data available.
We will do this in the NIST LRE framework, typically

2The actual amount of speech is about half of this, because these are
recordings of two speakers in a conversation.



using CallFriend languages and NIST LRE-2005 as eval-
uation database. Of the many approaches of language
recognition, such as phonotactics of phone lattices [6], or
binary decision trees [10] we use the approach of direct
modelling of the acoustic space using Gaussian Mixture
Models [14], concentrating on small amounts of training
data. The paper is organized as follows. In Section 2 our
baseline system is described and characterized. Then, in
Section 3 general approach is explained, followed by ex-
perimental results which are discussed in the final sec-
tion.

2. Baseline system description

Our basic system design consists of a set of Single Lan-
guage Detectors (SLDs) trained for the twelve CallFriend
languages, followed by a Gaussian back-end trained on
the languages under evaluation [13]. This is more-or-
less the design of our system submission to NIST LRE-
2005 [15], where we fused 4 subsystems in a Linear Dis-
criminant Analysis (LDA) back-end. For this research,
we concentrate on the best performing of these subsys-
tems, as improved with recent insights in modelling learnt
from speaker recognition technology.

2.1. Data processing and feature extraction

We use the same feature processing as described in [15].
Five PLP coefficients plus log-energy are derived ev-
ery 16 ms using 32 ms analysis windows. From these,
shifted-delta-cepstra (SDC) feature vectors are construc-
ted by stackingd = 1 frame span derivative vectors over
p = 2 frames,k = 4 times. Frames were selected based
on energy, where for at least one of the original frames in-
volved in constructing the SDC the energy should exceed
a level of 30 dB under the maximum frame energy mea-
sured in the speech segment under analysis. Note that our
(6, 1, 2, 4) SDC features span about the same duration as
the celebrated MIT SDC settings(7, 1, 3, 7) [13], where a
frame shift of 10 ms is used, but have considerably fewer
parameters (24 versus 49). In earlier experiments we did
not observe a degradation in performance with this re-
duced parameterization [15].

2.2. Data resources

We discriminate three types of speech data: (i) data used
for training SLDs, (ii) data used for training the LDA
back-end, and (iii) evaluation data to determine the per-
formance. For training the basic generative and dis-
criminative SLDs we exclusively use all available data
from the CallFriend database. For training the back-end,
we use the 30 s duration trials from the NIST databases
lid96d1, lid96e1, lid03e1 and lid05d13. Note that lid96d1
and lid96e1 have some overlap with the SLD data, but we

3We use the NIST nomenclature lidyys1, whereyy is the LRE year
ands ∈ {d, e} denotes development and evaluation data.

have found that including these trials in the LDA training
helps performance on independent evaluation data. For
evaluation, we use lid05e1, which we also refer to as the
LRE-2005 data.

2.3. Gaussian Mixture Model Single Language Detec-
tor

The basis of every SLD in this paper is a language-
independent Gaussian mixture model (LI-GMM), trained
on all 12 CallFriend languages. We can train one LI-
GMM on all data available for each language, or alterna-
tively we can train several different LI-GMMs, each on
a subset of the data, conditioned on automatically deter-
mined sex and/or channel labelsc. A given LI-GMM Mc

(similar to the Universal Background Model [12] in
speaker recognition) can then be adapted to a specific
training language using a Maximum A-Posteriori (MAP)
criterion [5, 12] to obtain a language-dependent GMM.
Each MAP-adapted GMMMc

L, for each of the training
languagesL, then acts as a ‘Single Language Detector,’
where the log-likelihood-ratio of the language-dependent
against the language-independent GMM acts as thescore
for a given test speech segment.

2.4. GMS Single Language Detector

In 2006, an important leap in performance in speaker
recognition performance was reported by MIT [2], which
was based on using Support Vector Machines (SVMs)
to discriminate between speakers by using themeans
of segment-dependent GMMs as feature vectors. For
speaker recognition, this performance boost turned out
quite important, not only giving lower detection errors
for the ‘1-side’ train/test conditions, but also allowing for
Nuisance Attribute Projection [3], a technique that very
effectively [1] can compensate for channel and session
variability.

It is almost obvious4 to build a language detector in
the same way. Rather than doing a MAP adaptation of
language-independent modelMc using all available data
for languageL, we MAP-adapt from the LI-GMM to ob-
tain a segment-dependent GMM for every test and for ev-
ery training segmentTL separately. The means of the
GMM Mc

TL
obtained this way now represents the test or

training utterance. Using these mean-supervectors of all
training segments, we train a language-dependent (linear-
kernel) SVM for every language. Each SVM discrimi-
nates one language from the other 11 languages. As in
[2] we normalize each mean vector componentµj

i by√
wi/σj

i , wherewi and (σj
i )

2 are the weight and fea-
ture componentj of the (diagonal) covariance of Gaus-
sian componenti of the LI-GMM. Since we use a linear-
kernel SVM, the model can be represented a single su-
pervectorSL and a scalar constantbL.

4as we learned, after submission of this manuscript, was presented
in Ref. [4]



In scoring a test segmentt, we first form the mean-
supervector as described above and then score it against
each SVM by taking the inner product of this test-
segment supervector and the model supervector:sL(t) =
t · SL + bL. We use the abbreviation GMS (meaning
GMM Means SVM) for this approach.

Because we use ‘fast MAP adaptation’ [1], only scor-
ing the top-5 mixtures for every frame in the ‘expectation’
step of the MAP adaptation, the scoring of a test segment
is very fast. By proper alignment of language model su-
pervectors and offsetsb, a full set of model scores can
be obtained by a single matrix-vector multiplication. Ob-
taining scores for all trials in an LRE then becomes a sin-
gle matrix-matrix multiplication.

2.5. LDA Back-end

In order to obtain a language decision of a test segment
t for a target languageL, we utilize the modelling power
of an LDA (a.k.a. Gaussian) back-end [13]. A Linear
Discriminant Analysis (LDA) classifier is trained using
a set of supervised training trials{Bi} which consist of
speech segmentsxi labelled with a languageLi. A vector
of scoress is formed by stacking the outputs of a set of
SLDs for the speech segmentxi. The classifier finds the
projection of this input space that maximizes the ratio of
between-class variance to the within-class variance. The
output coordinates (representing the language classes) are
transformed such that they can be interpreted as ‘poste-
rior’ probabilities (i.e., summing to unity) taking into ac-
count a language prior.

For the LRE-2005 data we work with several SLDs
for each of the twelve CallFriend languages, resulting in
anything from 24 up to 71 scores per LDA trialBi, and
reduce the results to the seven LRE-2005 languages by
using a priorpL = 1/NL for each of these languages and
0 for other languages, whereNL = 7 is the number of
languages in the test. Then, in order to make a decision of
target languageL, we set the thresholdθ for its posterior
probabilityp(L|xt) to θ = 1/NL.

2.6. Performance measure and baseline performances

We use the NIST language detection costCDET [11] as
our evaluation measure. This measure is, in its current
definition, insensitive to the relative proportions of trials
for the languages in the evaluations database. We prefer
this measure over commonly reported Equal Error Rates
(EER), because we believe the pooling of correlated score
distributions, that is necessary for determining the EER,
is wrong [16].

In this paper we consider only the 30 s test-segment
subset of the LRE-2005 evaluation, and we concentrate
on the closed-set detection task, using all trials. Thus, we
know each trial is in one of seven languages, with a prior
probability of 1

2
for the target language. The interpreta-

tion of the LDA back-end posteriors and threshold setting
described above should be optimal for this task.

Table 1: Baseline performance statistics for the three sys-
tems described here.

TargetL CDET(%)
system Chan-GMM GMS Chan-GMS

English 10.0 11.0 9.57
Hindi 13.0 6.61 11.49
Japanese 7.22 4.51 4.34
Korean 9.61 5.85 5.90
Mandarin 4.93 5.67 5.20
Spanish 7.77 6.67 7.25
Tamil 10.6 7.77 7.92
Mean 9.01 6.88 7.38

We use three systems:

Chan-GMM A ‘channel-conditioned’ GMM system.
This system was reported on in [15], and func-
tioned as our best performing individual subsystem
at LRE-2005. It was also used in a study of open-
set language recognition experiments [16]. It con-
sists of 6 ‘gender-channel’ conditioned language-
independent GMMs resulting in 71 generative
SLDs.5

GMS A basic GMM means supervector SVM system.
Here we condition the language independent GMM
only on speaker sex6, resulting in 24 discriminative
SLDs.

Chan-GMS A combination of the above. Here, we
use the same sex-dependent language indepen-
dent GMMs. In MAP adapting the means we
condition the available CallFriend training data
on the same gender-channel conditions as for the
Chan-GMM system. These means are used to
train the language-detecting SVMs. The result is
71 SLDs, which are discriminative within same-
channel groups of 12 (or 11) languages.

The performance figures for our three language
recognition systems are given in table 1.

3. Experiments

For each of the languages in LRE-2005 there was an
abundance of training data available, except as mentioned
above that the Indian English accented trials were not
well-represented in the training data. In this section we
will present results on attempts to build detectors for a
language with limited training data.

5One language-channel combination, female Japanese cellular
phone, did not get populated by the CallFriend data using ourchannel-
classifier [15], and hence we have only 71 SLDs.

6Where the sex of speakers of the CallFriend training data was not
known, we used a gender discriminator to determine this automatically.



3.1. Experimental approach

The goal of the experiment is to investigate how well a
language can be detected when no SLD has been trained
for it, relying only on (i) the language information car-
ried by SLDs trained onother languages and (ii) on the
modelling power of the LDA back-end.

Recall that our SLD’s are trained on the many and
long speech segments in CallFriend, whereas the LDA
back-end is trained on the fewer and shorter (30s) test
segments of pre-2005 LREs. Languages which are recog-
nized just in the LDA back-end are therefore effectively
trained with sparse training data.

In order to test the effect of LDA modelling of a new
language, we use a left-out jackknifing rotation over the
LRE-2005 evaluation [16]. The procedure may be best
explained in the following pseudo-code:

• For each target languageLi

– select the subset of segments from the evalu-
ation with languageLi,

– Remove SLD scores (columns in the LDA
matrix) corresponding toLi from all LDA
training data and theLi-subset of evaluation
data,

– Build the LDA, compute target and non-
target scores for thisLi-subset of evaluation
data, and make decisions for these language-
segment trials.

• Pool decisions over all languages and all jack-
knives and then calculateCDET with the appropri-
ate language-conditional weighting as specified in
the LRE-plan.

The decisions made in this process are made such,
that there is no SLD conditioned to the language used in
the test trial, whether it be a target or a non-target trial.
All knowledge to recognize the language of the test trial
is encoded in the back-end. Therefore, this cross vali-
dation simulates the situation where the recognition sys-
tem is tested with a new language, for which only limited
amount of training is available. We call this type of mod-
elling of the new language Gaussian Score-Space Mod-
elling (GSSM).

Theamountof training data for each test language is a
lot less than what we are used to with CallFriend, which
is of the order of 30–60 hours of speech per language.
The total duration of training trials for the back-end varies
from 225 for Tamil to 917 for English, which corresponds
to about 1.9–7.6 hours. For the Indian English accent
only 20 minutes worth of trials is available.

Table 2: Results of the GSSM experiment on LRE-
2005, leaving the test segment language out of the SLD’s
scores.

TargetL CDET(%)
system Chan-GMM GMS Chan-GMS

English 9.63 11.3 9.56
Hindi 12.7 11.0 15.0
Japanese 9.88 9.34 5.96
Korean 10.3 12.3 8.52
Mandarin 5.80 9.49 5.53
Spanish 9.19 11.6 7.84
Tamil 9.36 10.9 7.29
Mean 9.54 10.9 8.53
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Figure 1: Comparison of full training (baseline) and
GSSM training (LDA back-end only), for the three sys-
tems. Shown is the averageCDET.

3.2. Results

In Table 2 the results for the GSSM experiment are given,
for the three language recognition systems described in
Section 2.6. A comparison between the baseline systems
and the short language training of the averageCDET is
shown in a bar-graph in Figure 1.

Our generative channel-GMM system with 71 SLDs
appears most robust to not having explicitly modelled a
test language in the set of SLDs. The value ofCDET in-
creases only 2.4 % by missing this information. On the
other hand, it has the worst baseline performance. The
more recently developed GMS system has a much bet-
ter baseline performance, but takes a large hit from miss-
ing the test language information in the SLDs. The aver-
ageCDET increases by over 50 %, to become even higher
than the GMM system. A potential reason for this could



be the fact that there are much less SLDs for the LDA
back-end, which has to do all the modelling of the test
language, for the GMS system (24) than for the channel-
GMM system (71).

When we combine both technologies of channel con-
ditioning and GMM means in SVM approach (Chan-
GMS), we can observe that the loss of information by
not explicitly modelling the test language in the SLD has
a smaller effect, increasingCDET by only 10 %. De-
spite the fact that the baseline Chan-GMS system per-
forms worse than the GMS system, its performance for
the sparse training condition is the best of the three sys-
tems studied here. This suggests that some of the poten-
tial of the back-end to train efficiently with small amounts
of data lies in the high dimensionality of the score vec-
tors.

In order to investigate the influence of the number of
SLD on the ability of the LDA to model a language on
its own, we reduced the number of SLDs in one sample
system, Chan-GMS. We varied the number of SLDs per
language,r, from 1–6. We did this by randomly select-
ing r SLDs for each language from the available 6 SLDs
for that language. Because there may be many ways to
chooser SLDs from the available 5 or 6 SLDs, we aver-
aged over 10 selections for eachr. The results are shown
in Figure 2 for both the baseline and sparse training con-
dition. For this system, the increase inCDET due to no di-
rect modelling of the test language appears constant w.r.t.
the baseline condition. Note that the drop inCDET is
not only attributable to the mere increase of SLDs, since
each SLD is conditioned on a different part of the Call-
Friend database. Hence the total available training time
increases with more SLDs.

Another variation we can introduce in the available
training time for the LDA is the number of trials. In the
current set-up the number of trials is actually quite dif-
ferent for every language, due to the different focuses of
the NIST evaluations in the past, and the availability of
speakers for the data collection. We will not go into the
detail of the individual language detection performance
here, but just look at the overall effect if we reduce the
number of trials for the LDA. We selected a random sam-
ple of fractionf from the available trials for training the
LDA back-end, and determinedCDET. We chosef rang-
ing from 2−5 to 1, doubling at each step. In Figure 3 the
effect of the LDA training size onCDET for the GMS
and Chan-GMS systems is shown. We took the mean
CDET over 10 runs, to average out the effect of sampling.
An interaction can be observed between the sensitivity to
missing SLDs of the test language (sparse training) and
the system type. The many SLDs make the LDA back-
end more robust against missing the test segment’s SLD,
but these need more training trials.
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Figure 2: Effect of the number of SLDs available to the
LDA back-end, for the Chan-GMS system, for the base-
line and GSSM condition.
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and Chan-GMS system, in baseline and sparse training
condition. Note that thex-axis is logarithmic in scale.



3.3. Increasing the number of languages

So far we have investigated the modelling power of the
LDA back-end by looking at a subset of the CallFriend
languages. In this section we will investigate the per-
formance on more languages. To this end, we use the
CSLU22 speech database [7], which contains telephone
recordings of over 2000 speakers in 21 languages, which
forms almost a superset of the CallFriend languages, only
(Canadian) French is missing. For this experiment we
used the ‘story’ sentences of the database.

We employed the same SLDs trained on full Call-
Friend, and produce scores for all 2037 ‘story’ segments
in CSLU22. The segments are used both for training
the LDA back-end and in testing, in a 10-fold cross-
validation scheme. For decisions we used priors and de-
cision thresholds based onNL = 21.

In Table 3 the results of this test are shown, for the
two GMS systems. The LDA training duration for this
GSSM is an average 37.13 s nominal speech per segment,
which amounts to approximately 54 min of speech per
language. The averageCDET performance over the lan-
guages evaluated in LRE-2005 is lower than what is ob-
served with LRE-2005 data (cf. Table 1), which suggest
that this test data is slightly ‘easier.’ Also notice how the
Chan-GMS system outperformes the GMS system for the
CSLU22 data, even when conditioned on LRE-2005 lan-
guages alone, which is contrary to the results shown in
Table 1.

4. Discussion

We have shown that an LDA back-end can be quite ef-
fective for modeling a new language. This new language
does not have to be represented in the Single Language
Detector scores that feed the LDA back-end. With as little
as 2 hours of training data for some languages, we have
shown, in a jackknifing scheme, that the performance of
a system with only LDA back-ends training is not very
much worse than that of a fully trained system with 60
or more hours per language. We have observed that the
weaker, generative, Chan-GMM system is less suscep-
tible to missing language training data in the SLDs than
the more discriminatively operating GMS systems. A hy-
brid system, carrying both the SLD diversity of the Chan-
GMM system and the discriminability of the GMS sys-
tem gains robustness of modeling a new language with
little data, while only moderately losing performance in
the full training condition.

In scanning the number of SLDs necessary for good
performance of the Chan-GMS system (cf. Figure 2),
there appears to be little difference between the baseline
and GSSM condition. The latter system appears to gain
a constant penalty inCDET from missing the language
information from the SLDs. Comparing the low score di-
mension GMS system with the higher score dimension

Table 3: Performance of GMS and Chan-GMS systems
on the CSLU22 database, for the 21 languages. Sepa-
rate averageCDET values are show for the 7 ‘LRE-2005’
languages, 11 ‘CallFriend’ languages, and 10 ‘new’ lan-
guages.

Language CDET

System GMS Chan-GMS
Arabic 10.2 7.42
Bportuguese 11.3 8.64
Cantonese 6.54 5.93
Czech 19.1 12.8
English 0.56 0.30
Farsi 3.76 2.64
German 7.06 4.18
Hindi 9.90 7.22
Hungarian 17.0 14.1
Indonesian 14.2 9.80
Italian 15.7 10.3
Japanese 5.94 5.75
Korean 4.08 4.78
Mandarin 3.60 4.70
Polish 17.5 11.4
Russian 17.4 11.4
Spanish 7.80 4.87
Swahili 21.6 13.8
Swedish 15.5 11.3
Tamil 4.51 3.95
Vietnamese 10.9 5.00
Mean LRE-05 5.20 4.51
Mean CallFriend 6.21 4.62
Mean new 15.1 10.6
Overall mean 10.7 7.63

Chan-GMS (cf. Figure 3), we see that it is more robust
to small amounts of LDA training trials for the baseline
condition. This is probably because the LDA has less di-
mensions and the covariance matrix is more stable. Also,
as the GMS system is more discriminative the basic SLD
will carry more of the modeling power and the LDA has
to ‘correct’ fewer errors.

We have also shown that outside the jackknifing
paradigm the LDA back-end can model new languages,
as for the data from the CSLU22 database. Here, the
penalty of not having discriminatively trained SLDs for
the new languages is bigger, about a factor two for the
Chan-GMS system. A reason for this might be that there
is too little data even for the LDA to train the new lan-
guage properly. In Figure 3 we can see there still is a
benefit in the last doubling of amount of LDA training
data for the sparse training condition—the data at frac-
tion 0.50 is representative for the approximate one hour
speech available for the new CSLU languages. How-
ever, the gap to be bridged is fairly large, and one might



question whether this can be reached using LDA train-
ing alone. If more training data becomes available for the
LDA, one might consider using this for training an SLD
instead.

Our experimental protocol, as described in Sec-
tion 3.1, is somewhat artificial in the sense thatall test
data is presented as a sparsely modeled language. This
implies the LDA is not tested with ‘normal’ languages
for which SLDs are trained. If the LDA would some-
how have a tendency to produce high scores for languages
without SLD scores, this protocol would show artificially
low CDET values. Our system, however, operates with
fixed priors and threshold values for the LDA posterior
(each1/NL), and we typically observe a miscalibration
towards higher miss rate, which is the opposite direction.
We have repeated the experiments described in this paper,
adding all remaining ‘normal’ segments from the evalu-
ation for each jackknife slice. The result is that the ef-
fects of sparse modeling of languages are the same as de-
scribed above in Figures 1–3, but less pronounced.

We have not looked into other language modelling
techniques that may be well suited to deal with sparse
training. A good candidate might be the binary decision
tree phonotactic modeling [10], as binary decision trees
can be efficient in modeling sparse and inhomogeneous
data. The jackknifing approach used here can serve as a
methodology for testing other sparse training approaches.
We aim at utilizing some of these techniques for the up-
coming NIST LRE 2007, where seven new languages are
introduced with moderate amounts of training data, typi-
cally 6.5 hours per language.
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