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Abstract 

Despite its many prima facie attractive properties for 
Forensic Speaker Recognition, F0 is regarded as having 
limited forensic value due to its large within-speaker 
variability. However, its forensic use to date has been 
limited mostly to its long-term mean and standard deviation. 
This paper examines the discriminatory potential, within a 
Likelihood Ratio-based approach, of additional parametric 
features from the distribution of long-term F0: its skew, 
kurtosis, modal F0 and modal density. Motivated by the 
observation that the overall long-term F0 distribution shows 
less within-speaker occasion-to-occasion difference, we 
report a forensic discrimination experiment with non-
contemporaneous speech samples from 201 male Japanese 
speakers. Using a multivariate LR as discriminant distance 
with the six LTF0 distribution parameters, an EER of 10.7% 
is obtained from 201 target and 80400 non-target trials. We 
also investigate how the EER degrades as a function of 
amount of voiced speech.  
 

1 Introduction 

F0 is a popular parameter in traditional FSR. Its popularity 
probably stems from promising results in early SR research 
[1], together with its conforming to three of Nolan’s 
desiderata for FSR parameters, namely: robustness, 
measurability, and availability [2]. The recordings that 
practitioners have to work with in actual forensic cases are 
often poor in quality and quantity. This can limit a 
comparison based on formant analysis – one of the most 
commonly used traditional parameter sets – severely.  F0, 
however, is relatively robust against poor recording quality 
and differences in transmission channel. F0 is also an easier 
parameter to extract and measure than others, such as 
formants. Furthermore, in non-tone languages at least, F0 is 
not affected by the lexical content of the speech samples, so 
there is no need to locate comparable words or phonemes 
(although it is possible of course to compare samples with 
respect to F0 on sections with intonationally comparable 
structure). F0 is thus a very attractive parameter for 
traditional Forensic Speaker Recognition practitioners. 

On the other hand, quite apart from the many linguistic 
uses of F0, which encodes tone, intonation and stress, many 
non-linguistic factors are known to affect it, including: state 
of health, emotional changes, discourse genre, noisiness of 
the environment, and whether or not the person is on the 
phone [3], [4], [5]. Thus many (eg. [6], [7]) have noted that a 

single speaker can show large variation in F0 from occasion to 
occasion, and even within a single recording session. Since the 
inherent strength of forensic speaker recognition parameters 
relies primarily on the ratio of within- to between-speaker 
variance, F0 is considered not very effective as a FSR 
parameter, and although some (for instance [2], [8], [9]), have 
suggested F0 as a potential speaker identification parameter, 
Kinoshita has demonstrated that because of its poor variance 
ratio, mean LTF0 shows very poor strength of evidence, 
typically generating Likelihood Ratios of effectively unity [10]. 

However, forensic analysis of F0 has concentrated so far 
on its long-term mean and standard deviation. If we could 
extract parameters which are less susceptible to within-speaker 
variation, of course, it could make a useful contribution to the 
field. This paper thus explores the forensic discriminatory 
potential of F0, focusing on the overall shape of its long-term 
distribution.  

1.1 Distribution of long-term F0 
As mentioned in the previous section, many non-linguistic and 
para-linguistic factors can strongly affect F0, and it thus must 
be considered to have limited use in FSR despite its popularity. 
However, observing the overall shapes of speakers’ LTF0 
distributions, we noted that they remained relatively consistent 
across different recording sessions. Figure 1 illustrates this 
with F0 distributions, each with a typical positive skew, from 
four speakers, sampled from each speaker in two separate 
recording sessions.  

In the top two panels of figure 1, both speakers’ two 
distributions show striking similarities in their shapes (while 
remaining different from each other). With these two particular 
speakers even mean LTF0 and SD seem to be quite stable 
across sessions, although in previous studies, such as [10], 
mean LTF0 was found to have a rather poor ratio of within- to 
between-speaker variation. 

The bottom two panels of figure 1, however, are a different 
kettle of fish. The two distributions of the speaker in the bottom 
left panel are very similar in shape, but are shifted in frequency. 
If we are relying solely on long-term mean F0, two samples 
from this speaker probably would not have produced a strong 
LR, despite the similarity in the shape of the LTF0 distribution. 
This observation motivated us to include the simple statistical 
parameters which capture the shape of the F0 distribution.  

Having said that, we also noticed that some speakers 
actually had large apparently occasion-dependent within-
speaker variation in the shapes of their F0 distributions. The 



bottom right panel in figure 1 is an example. This implies 
that the shape of the distribution will not necessarily work 
for every case (but then again this is typical of the nature of 
variation of the human voice!). Considering the advantages 
of being able to use F0 in FSR, it would be worthwhile to 
investigate how useful the shape of a LTF0 distribution can 
be, using a relatively large forensically realistic dataset. 
 

1.2 Database and Speaker Selection 
For this study, we used male Japanese speakers selected 

from the Corpus of Spontaneous Japanese (CSJ) [11]. CSJ is 
a database which consists of various styles of speech 
recorded from 1464 speakers. The majority of the recordings 
was made in the style of either Academic Presentation 
Speech (APS) or Simulated Public Speech (SPS). APS was 
mainly recorded live at academic presentations, most of 
which were 12-25 minutes long. For SPS, 10-12 minutes 
mock speeches on everyday topics were recorded.  In CSJ, 
all recordings were made using DAT and down-sampled to 
16 kHz, with 16 bit accuracy. CSJ incorporates a five-scale 
evaluation of various aspects of the recordings.  We used 
one of those evaluations, the so-called spontaneity scale, in 
order to select speakers. By spontaneous, CSJ means 
‘sounding as if it is not read out’. (In a situation such as an 
academic presentation, it is not uncommon for presenters to 
actually read out their prepared scripts.) Since FSR research 
requires us to work with forensically realistic data, we first 
selected speakers who were ranked highly (four or five) on 
the 1-5 spontaneity rating. The first two authors, who are 
native Japanese speakers, listened to a selection of the highly 
ranked recordings. They can confirm that they do indeed 
sound natural and not read out.  

The other criterion for speaker selection was the 
availability of non-contemporaneous recordings. Our 
spontaneous sounding speakers had to have been recorded on 
two or more different occasions in order for us to attempt a 
forensically realistic discrimination. On the basis of these two 
criteria, then, we selected 201 male speakers, with two non-
contemporaneous recordings for each speaker.  

1.3 F0 Extraction and Parameterisation 
F0 was extracted using the ESPS routine of the Snack Sound 
Toolkit [12] with Tcl at every 0.005 second. CSJ usefully 
annotates non-speech noise with a noise tag. The sections with 
this noise tag were excluded from the data. 

The distributions of the extracted F0 were then 
parameterised. As well as long-term mean and SD, four other 
parameters, which relate to the shapes of the F0 distributions, 
were calculated for each of the 402 recordings.  They are 
kurtosis, skew, modal F0, and the modal density. 

Kurtosis measures peakedness of a distribution and skew 
measures its degree of symmetry. They are thus useful 
measures to characterise the overall shapes of the distributions. 
The mode will show what is the most commonly occurring F0 
for each recording, and the density of it represents how 
concentrated it is. 

In order to extract modal F0 and the modal density, firstly 
the probability density of the sampled F0 for each recording 
was estimated using binned kernel density (with the bkde 
function of R’s KernSmooth library). The appropriate kernel 
density bandwidth was selected using direct plug-in 
methodology (the dpik function of R’s KernSmooth library) 
[13, 14]. 
 

 

 
Figure 1: Four different speakers’ LTF0 distributions, elicited on two separate 

occasions. 



2 Likelihood Ratio-based approach 

2.1 Likelihood Ratio 
As is now well-known, the Likelihood Ratio (LR) is the 
probability that the evidence would occur if an assertion is 
true, relative to the probability that the evidence would occur 
if the assertion is not true [15].  In the context of forensic 
speaker recognition, it will be the probability of observing 
the difference between the suspect and offender speech 
samples if they had come from the same speaker (i.e. if the 
prosecution hypothesis were true) relative to the probability 
of observing the same evidence if it had been produced by 
different individuals (i.e. if the defence hypothesis were true). 
Letting P represent probability, E evidence, and H 
hypothesis, this can be expressed as (1): 

! 

LR =
P(E |  H)

P(E | H)

                                     (1) 

The LR will be larger than unity when the given 
evidence supports the hypothesis, and smaller than unity 
when the evidence does not support the hypothesis. The 
relative distance of the LR from unity quantifies the strength 
of the evidence.  

It is also common practice to express the LR 
logarithmically, in which case the neutral value is of course 
0, not unity. This seems easier for a layperson to grasp 
intuitively than a system in which, say, LRs of 10 and 0.1 
have equal strength.  

2.2 Likelihood Ratios in Forensic Science 
In their introductory textbook on evaluating evidence, 
Robertson and Vignaux give two reasons why LRs should be 
used for evidence evaluation and presentation [15].  Firstly, 
the majority of evidence submitted to the Court is by nature 
only indicative, not determinative. The other reason is a 
result of the expert’s role in the legal system.  They are not 
in a position, either legally or logically, to make a decision 
on whether or not the defendant is guilty: this is the job of 
juries (or judges in some judicial systems). The expert will 
be violating ultimate issue rules if they do, and in any case 
they cannot, by Bayes’ Theorem, estimate the probability of 
the hypothesis given the evidence, unless they know the 
prior odds in favour of the hypothesis, which they usually do 
not. The task of the FSR expert is thus to estimate the 
likelihood of observing the speech evidence when a 
particular hypothesis — usually the prosecution’s — is 
correct versus when it is incorrect: that is, to estimate an LR 
for the speech evidence.  

In addition to appropriateness for the legal system, LRs 
have another feature in evidence presentation: they allow 
evidence of different types to be combined. It is 
straightforward to combine multiple LRs from different 
evidence types by applying Bayes’ Theorem, providing the 
evidence is not correlated. This is a significant feature, as 
most court cases involve many different types of evidence. 
This becomes even more significant in the evaluation of 
speaker identity: human speech is the product of such a 
highly complex system that no single parameter can 
distinguish one speaker from another consistently and 
reliably. It is thus essential to incorporate an adequate 
number of parameters in order to evaluate speech evidence 
(for instance, see [16]), and the use of LRs and Bayes’ 
Theorem facilitates this. 
Finally, of course - although Robertson and Vignaux did not 
foresee this - LRs are perfectly suited to testing how well 
same-speaker speech samples can be discriminated from 

different-speaker speech samples and they are now commonly 
used in forensically motivated discrimination experiments, 
both with automatic and traditional features [26]. This marks a 
very important development which has demonstrated the 
testability of the approach – one of the well-known Daubert 
criteria. 

2.3 Multivariate Likelihood Ratios 
The use of LRs in FSR with traditional features was first 

explored with univariate methods in “independence Bayes” 
fashion. Previous studies, such as [17], [18], [19], 
demonstrated that univariate LRs could indeed be used to 
discriminate same-speaker from different-speaker speech 
samples.  One of the main problems with this approach was of 
course the possible correlation between predictor variables. In 
the aforementioned studies, some care was taken to avoid 
combining variables which were clearly correlated, but it is 
obviously of importance to be able to take correlation into 
account. This is, however, an unsatisfactory solution for two 
reasons. Firstly, we cannot assume that having no statistically 
significant correlation means the absence of correlation. 
Secondly, in actual forensic cases, experts often work with 
samples very limited both in quality and quantity. Under such 
circumstances, every parameter is precious. If the expert had to 
exclude some parameters altogether because of possible 
correlation, this could vitiate the whole enterprise.  

The problem of estimating LRs from correlated variables 
was addressed by Aitken and Lucy by deriving multivariate 
LR (MVLR) formulae [20]. With MVLRs we can combine 
traditional parameters that may be strongly correlated, such as 
F2 and F3 in high front vowels.  It is currently possible to 
model the reference population either as normal or with a 
kernel density. The MVLR still has problems such as its only 
accommodating two levels of variance, but it represents a 
significant step forward from the previous univariate formulae 
and has also been used in LR-based FSR discrimination 
experiments, e.g. [25].  

The MVLR formula we used is taken from [20] and 
models the reference population with a Gaussian kernel 
density. Its numerator and denominator are given at (2) and (3). 

 

3 Experiments 

In this paper, we addressed two forensically motivated 
questions: 
 

1) Can non-contemporaneous same-speaker speech samples 
be usefully discriminated from different-speaker speech 
samples on the basis of parameters derived from their long-
term F0 distributions?   

2) If so, how is the discrimination performance 
compromised by the amount of speech available?  

 
In all experiments, two types of speaker pairs, non-

contemporaneous same-speaker pairs and different-speaker 
pairs, were compared and evaluated using a MVLR as 
discriminant function. With 201 speakers we had 201 same-
speaker comparisons (or target trials) and 80400 different-
speaker comparisons (201 speakers produced 20100 
combinations of speakers, and each different-speaker pair 
produced four different actual comparisons; i.e. Speaker A 
recording 1 vs Speaker B recording 1; Spk. A rec. 1 vs Spk. B 
rec. 2; Spk. A rec. 2 vs Spk. B rec. 1, Spk. A rec. 2 vs Spk. B 
rec. 2).  



The discrimination test was performed intrinsically, 
assuming that the effect of the test data not being 
independent from the population data would be negligible in 
this research, because of the large number of speakers 
involved. We therefore did not use a ‘leave one out’ 
approach.  

3.1 Experiment 1 
This experiment examined the overall usefulness of the LTF0 
distribution parameter set. We incorporated all six parameters 
using the MVLR formula, and used all available speech. This 
means that, in this experiment, each recording had a different 
length of speech but mostly they lay between 10 and 25 
minutes. Table 1 summarises the results of the testing on the 
201 same-speaker pairs and 80400 different-speaker pairs.  
“S-S” in the first column indicates same speaker comparisons, 
and “D-S” shows different speaker comparisons. The column 
labelled “Correct” indicates the number of the comparisons 
which supported the hypothesis that was consistent with the 
reality. 

Table 1:  Summary of MVLR-based discrimination 
using six LTF0 parameters. 

 Total Correct % EER 
S-S 201 181 90.0 
D-S 80400 72456 90.1 

10.7 

 
As can be seen, results are promising. Using six features, 

we obtained an EER of 10.7%: approximately 72,000 out of 
80,400 (90.1%) different-speaker trials and 181 out of 201 
(90.0%) same-speaker trials produced MVLRs supporting a 
hypothesis consistent with reality. This is a considerably 
better performance in the different-speaker comparisons than 
the previously reported results. Kinoshita conducted a 
similar experiment using long-term F0 of 12 male Japanese 
speakers and obtained similar results for the same-speaker 
trials (90% supporting the hypothesis that is true in reality). 
The different-speaker trials, however, were abysmal, with 

only 32.6% that supported the hypothesis consistent with the 
actual speakers’ identity [10]. 

As is now conventional with forensic speaker 
discrimination, the results are also presented as a Tippett, or 
reliability, plot in figure 2. Same-speaker comparisons are 
shown by the dashed line, different-speaker comparisons by 
the solid lines (the four curves show the four different 
comparisons made within each different-speaker combination). 
The horizontal axis shows logLR greater than … , and the 
vertical axis shows number of trials (with same-speaker trials 
plotted inversely). Thus it can be seen for example that about 
10% of same-speaker trials were incorrectly evaluated with 
LRs more likely had they come from different speakers.   
 

 

Figure 2:  Tippett plot for MVLR-based discrimination 
using six LTF0 parameters 

The Tippett plot in figure 2 presents several characteristics 
typical for MVLR discrimination using traditional features. 
Firstly the range of correctly evaluated same-speaker samples is 
very much smaller than for different-speaker samples. The 
most favourable same-speaker pairs were only a little more 

numerator of MVLR =                                                                                                                                                                  (2) 

! 

2"( )
# p
D1

#1 2
D2

#1 2
C

#1 2
mh

p( )
#1

D1

#1
+ D2

#1 + h
2
C( )

#1
#1 2

$exp   -
1
2
y1 # y 2( )

T

D1 + D2( )
#1
y1 # y 2( ){ }

$ exp
i=1

m

%  -
1
2
y *#x i( )

T

 D1

#1
+ D2

#1( )
#1

+ h
2
C( ) { }

#1

y *#x i( )
& 

' 
( 

) 

* 
+ 

 

 
denominator of MVLR =                                                                                                                                                               (3) 
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than 400 times more likely assuming same-speaker 
provenance, whereas the best different-speaker trials have 
astronomically low LRs. The location of the EER very near 
to logLR= 0 is another common feature, and probably 
reflects the derivational nature of the MVLR formula.  

The rigorous information-theoretic evaluation of overall 
LR-based discriminant performance has recently received 
useful and welcome attention [24]. However, although we 
intend to look at the calibration- and discrimination-loss 
decomposition of our results, with associated APE plots, in 
this paper we feel it is more useful to focus locally, on two 
types of comparisons: the combination producing the best 
performance (ie. strongest LR supporting the correct 
hypothesis) and those supporting the counterfactual 
hypothesis. First of all, the best performances. The best 
performance here means the maximum logLR for same-
speaker comparisons and minimum logLR for the different-
speaker comparisons. These are given in Table 2. 

Table 2: LogLR values for the best comparisons 

 S-S D-S 
Speaker ID 280 65 vs 173  

(combination 1) 
Log LR 2.648 -76.89 

 
The three speakers’ F0 distributions involved are 

presented in figures 3 and 4. 
 
 

 

Figure 3:  Best performing same-speaker comparison 
(logLR = 2.65) 

 
 

 

Figure 4: Best performing different-speaker 
comparison (LogLR= -77.0)  

As mentioned, comparing the absolute values of these two 
logLRs, it is apparent that the same-speaker comparisons 
produce much weaker logLRs than the different-speaker 
comparisons. Champod and Evett have proposed a verbal scale 
to assist interpretation of LRs [21]. In their scale, logLR 2 to 3 
(or -3 to -2) indicates “moderately strong” evidence, and 
logLR 3 to 4 (or -4 to -3) indicates that the evidence is 
“strong”.  The value 2.65 thus counts as only “moderately 
strong”, whereas, -76.89 is of course an extremely strong value 
and basically off the chart. Considering the nature of within- 
and between-speaker variation, however, this discrepancy is 
not such a surprising result. Two samples cannot be any more 
similar than being the ‘same’ (and under these circumstances 
the magnitude of the LR is determined by other MVLR terms 
like the variance ratio and the number of items in the samples). 
On the other hand, for the variation between different samples, 
both intrinsic anatomical factors (in the case of F0, the length 
and mass of speakers’ cords) and the extrinsic use to which 
they are put (to produce habitually creaky phonation, for 
example) contribute to the degree of difference. This means 
different speakers can differ from each other to an effectively 
limitless extent. However, it is important to note that we would 
not get such strong values for different-speaker comparisons in 
reality anyway, because two voices would probably not be 
compared in the first place if they sounded as different as 
implied by these large negative LRs. In the case under 
consideration, for example, the two speakers’ mean F0 values 
differed by over 100 Hz (205.2 Hz for Speaker 65, 87.5 Hz for 
Speaker 173). Assuming that the recordings were made under 
comparable conditions, two samples showing such a great 
difference would sound so very different that they would be 
unlikely to arouse suspicion in a real case.  

Now we turn to the erroneous comparisons. As mentioned 
earlier, the LR is a continuous expression of how much more 
likely it is to observe the given evidence when the hypothesis 
is true than when it is not. The LR thus by nature incorporates 
the possibility of not supporting a hypothesis which is true in 
reality: that simply means that the difference between the 
speech samples is greater (or lesser) than would be expected 
on the basis of the between- and within-speaker variance of the 
reference population. Table 3 summarises the comparisons 
which strongly supported counterfactual hypotheses and the 
size of the logLR associated with them. 

Table 3: Erroneous classifications and associated 
logLR magnitude. 

  S-S   D-S  
range < 0 < -2 < -3 > 0 > 2 > 3 

no 20 9 4 7944 56 0 
% 9.95 4.48 1.99 9.88 0.07 0 

 
We cannot conclude that an LR is wrong on the grounds that it 
supported the hypothesis which turned out to be wrong – LRs 
are part of Bayes’ Theorem and a theorem cannot be ‘wrong’.  
However, if a statistical model produced a great number of 
very strong LR estimates which support a wrong hypothesis, 
we would be inclined to question either the validity of the 
model or the inherent discriminability of the medium, or both. 
Realistically, we do not know what the expected range of 
logLR is when it is supporting the wrong hypothesis. However, 
referring to Champod and Evett’s scale, we decided to look 
into the cases where absolute values of logLR are above 3 (i.e. 
“moderately strong”). 

In this experiment, different-speaker comparisons did not 
produce as extreme counterfactual logLRs as the 
aforementioned comparison between Speakers 65 and 173. 

Speaker 280 

Speaker 173 
Session 1 
 Speaker 65 

 Session 1 



Although about 10% of the different-speaker comparisons 
produced logLRs greater than 0, they are all below three. In 
other words, there is no instance of supporting the wrong 
hypothesis strongly.  This relatively low incidence of false 
positives is of course a desirable property in the forensic 
speaker recognition context. 

The same-speaker comparisons, on the other hand, have 
a few instances of worrisome results. Table 4 gives the four 
same-speaker comparisons which produced logLRs smaller 
than -3.  

Table 4: Summary of logLR smaller than -3. 

Speaker ID 423 435 1180 397 
logLR -9.011 -3.665 -4.046 -6.95 
 
The F0 distributions from those four poorly evaluated 

speakers are also given in Figure 5. At first glance, perhaps 
with the exception of speaker 423, the two distributions for 
each speaker do not look so different.  However, the very 
small logLR for speaker 435 probably can be explained by 
the very strong peak at a very low frequency region. This 
was presumably to do with his audibly heavy creakiness on 
one occasion but not in the other. This has of course made 
the distribution of his two recordings very different in their 
mean, modal F0 and probability density of the modal F0. We 
need therefore to be able to ignore the lower peak when 
calculating some parameters. With respect to speakers 1180 
and 1397, although both their recordings show a similar 
overall shape for their distribution, they do differ in 
probability density of the modal F0 (as indeed do the other 
two bad speakers). If it is the case that the difference in 
modal F0 probability density is responsible, then we need to 
investigate the relative discriminatory power of the 
individual distribution parameters with univariate LRs – a 
task for future research.  
 

 

 

Figure 5: LTF0 distributions of problematic same-
speaker comparisons 

3.2 Experiment 2: Degradation function 
In the second experiment, we investigated how the duration of 
the recordings affects the discrimination performance. This is 
an important consideration for FSR practitioners, since the 
samples available in actual forensic cases are often very short. 
It is thus useful to know how the MVLR-based discrimination 
performance degrades with decreasing amounts of available 
speech. This will give us an idea of how long forensic speech 
samples should be for F0 to be useful in FSR, in the sense of 
contributing a potentially useful strength of evidence.  

Nolan notes that we need around one minute of speech to 
reliably capture individuals’ within-speaker variation in F0 [2]. 
However, as Rose points out, this necessary duration would 
differ from language to language [22]. F0 can only be 
extracted from voiced segments, and the phonological 
structure of the language (its phonemic inventory, lexical 
incidence and phonotactics) determines the ratio between 
voiced and voiceless segments in an utterance. Catford shows 
that the voiced-to-voiceless ratio differs significantly from 
language to language [23]. For instance, in French, voiced 
segments constitute 78% of utterances, whereas only 41% of 
segments in Cantonese are voiced. Although Japanese does not 
appear in this list, we found from our 201 speakers that on 
average 70.0% (SD 4.48) of Japanese utterances are voiced. 
This is a similar ratio to that of English (72%) in Catford’s list. 

In this experiment, we again calculated LogMVLRs with 
the six parameters used in the previous experiment, but this 
time we incrementally reduced the amount of voiced speech 
for analysis. 

Thirty-one different samples of voiced speech, ranging 
from five to 180 seconds, were generated from the beginning 
of each of the 402 recordings. The duration of the voiced 
speech was estimated as overall duration of speech * 0.7 
according to the Japanese voicing ratio of 70% estimated 
above. The amounts of voiced speech were incrementally 

Speaker 1180 

Speaker 1397 

Speaker 435 

Speaker 423 



reduced as follows. From 180 to 30 seconds, the duration 
was decreased by 15 seconds; and from 30 to 5 seconds by 1 
second steps. 

The EER as a function of the duration of voiced speech 
is presented in figure 6. It is clear firstly, but unsurprisingly, 
that performance improves with amount of voiced speech 
available. The figure seems to suggest that we can divide the 
improvement of the performance into three stages. From five 
to 30 seconds of voiced speech available, it seems that the 
EER improves steadily, from ca. 23% to 16%. With ca. 30 to 
90 seconds of voiced speech, we again observe some 
improvement in EER, but the rate is slower than over the 
first 30 seconds. There is also the intriguing local hiccough 
at ca. 40 seconds of voiced speech. After about 90 seconds 
of voiced speech, the EER seems to have become asymptotic 
to ca. 12%, which is very close to our EER of 10.7% 
obtained for all available data.   

In order to extract 90 seconds of voiced Japanese speech, 
we needed roughly 130 seconds of net speech. Thus the 
results of this experiment seem to suggest that for an 
optimum evaluation of Japanese data, we need samples of 
just over two minutes. 

The most important results of this experiment, however, 
are firstly that it still appears possible to obtain a EER of 
between ca. 20% and 23% with a relatively small amount – 
less than 15 seconds – of voiced speech. Of course it will be 
necessary to examine the associated Tippett plots for these 
smaller amounts of speech, in order to see what sorts of LR 
ranges, and quality of calibration, are involved. Also it will 
be interesting to see for what amount of speech the EER 
becomes useless. Secondly, for small amounts of voiced 
speech (< 30 sec.) a small increase in the amount can make a 
relatively large difference in discrimination performance. It 
is therefore worth while in real cases to use as much voiced 
speech as possible. 

 
Figure 6: MVLR EER as a function of the duration 

of available voiced speech.  

4 Summary and Way Ahead 

In this study, we addressed the question of whether 
traditional forensic LR-based discrimination is possible using 
additional parameters from speakers’ LTF0 distributions, in 
order to capture their gestalt similarity. The results were 
promising. By combining six parameters: mean and SD F0, 
kurtosis, skew, modal F0, and the probability density of the 
modal F0, we demonstrated an EER of 10.7% over a 
reasonably large set of target and non-target trials. This 
represented a significant improvement on methods relying 

solely on mean and SD F0. A consideration of the erroneous 
classifications suggested that we could refine the 
parameterisation. This suggests potential for further 
improvement in FSR discrimination within the LR-based 
testing paradigm.   

An experiment on the relationship between EER and the 
amount of voiced speech revealed that, with Japanese, we need 
roughly about two minutes of speech to have near optimum 
FSR performance using F0, but that small amounts of voiced 
speech could still deliver EERs that might be associated with 
usable strengths of evidence. It was pointed out that this value 
could differ language-to-language, and further research is 
needed in other languages.  

We are aware that the speech data used, although natural 
sounding, may still differ from actual forensic samples in ways 
that favour discriminability - it is after all monological and not 
conversational, and may because of this incorporate less 
within-speaker variation than conversational speech (although 
that has yet to be determined). This caveat should be born in 
mind. 

We believe that, with some refinement of the methodology, 
its performance can further improve. Firstly, the treatment of 
creaky phonation needs more consideration. We set the F0 
sampling range from 30Hz to 350Hz, hoping that the 
creakiness often observed in utterance-final position might 
contribute usefully to the speaker’s LTF0 profile. In the 
calculation of long-term mean, we averaged everything 
sampled, ignoring the secondary peak which was present for 
some creaky speakers at a lower frequency range. This would 
no doubt have obscured the speaker profile in this parameter. 
As a next step, it would be useful to separate any secondary 
peak from the main part of the distribution and retest. Also, 
finding the most suitable method to parameterise this creak-
related secondary peak and incorporate it in the analysis could 
improve the performance.  

A final caveat is in order. Although this paper has focused 
on the discriminatory potential of the LTF0 parameter set, it 
should not be forgotten that the primary, forensic, use of the 
MVLR is not discriminatory, but as a means of estimating the 
strength of evidence in a specific case. The contrast between 
these approaches is clear if we consider LR values close to 0. 
In discrimination, a LR value either side of 0 counts as either 
correct or not, and contributes, in its small way, to the EER.  
But from the point of view of estimating the strength of 
evidence, such low values would mean the evidence is useless.  
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