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Abstract
This paper presents a method for training SVM-based clas-

sification systems for combination with other existing classi-
fication systems designed for the same task. Ideally, a new
system should be designed such that, when combined with the
existing systems, the resulting performance is optimized.To
achieve this goal, we include a regularization term in the SVM
objective function that aims to reduce the within-class correla-
tion between the resulting scores and the scores produced by
one of the existing systems, introducing a trade-off between
such correlation and the system’s individual performance.That
is, the SVM system “takes one for the team”, falling somewhat
short of its best possible performance in order to be more com-
plementary to the existing system. We report results on the
NIST 2005 and 2006 speaker recognition evaluations (SRE) us-
ing three component systems: a standard UBM-GMM system,
an MLLR-based system, and a prosodic system, and show that
the proposed technique results in performance gains of 16% in
EER and 23% in DCF.

1. Introduction
In the last decade, many successful speaker verification systems
have relied on the combination of various component systems
to achieve superior performance. In many cases, as in [1, 2],
the combination leads to significant improvements. However,
there are cases in which combining several comparably good
systems does not result in improvements over the single best
system [3]. Most of these systems perform the combination of
information sources at the score level ([4, 1, 2, 5, 6]): systems
that model each type of feature using a certain model are inde-
pendently developed and their scores are combined in the last
stage to produce the final score and the decision. When training
each individual system, all other systems available for combi-
nation are usually ignored while, in fact, the ultimate goalof
the systems is to perform well in combination with all the other
systems and not necessarily individually.

It is easy to see that the combination is not guaranteed to
give strictly better performance than every system being com-
bined. In the extreme case, if all classifiers were generating
exactly the same output for each sample, the combined classi-
fier would not have better performance than the individual ones,
independently of the combination procedure used. Intuitively,
what we wish is to have individual classifiers that are highlyun-
correlated. This way, all classifiers contribute independent and
therefore, hopefully, complementary information leadingto a
better final decision.

In this work, we consider the case of two available classi-
fiers, one of them fixed and given (we can consider this system

as a black box that simply produces a score value for each sam-
ple) and the other one a support vector machine (SVM) that we
need to train. Our main goal is to modify the training criteria
for the SVM so that the scores resulting from this system are as
minimally correlated as possible with the scores from the black
box system. The resulting systems should produce better com-
bination performance than we would get if we trained the SVM
independently to maximize the (soft) margin.

First, we motivate the approach by demonstrating the notion
of anticorrelation optimization on artificially generateddata.
Then, we state the problem formally and develop the convex
optimization problem that leads to the anticorrelation kernel.
Finally, we demonstrate results on artificial data and on NIST
2005 and 2006 SRE tasks using combinations of three compo-
nent systems and discuss some alternative approaches.

2. Anticorrelation Kernel
The problem described above can be formally stated as fol-
lows. Consider a binary classification task with classesy 2f+1;�1g, for which two separate classifiersB andS are avail-
able. We will restrict the systemS to correspond to an SVM.
SystemB, on the other hand, can be any classifier that produces
a score for each sample. We will consider this system to be a
black box from which we only have the scores that it produces.

The final classification decision will be made based on a
combination of the outputs generated by both classifiers. Our
goal is to work on systemS, in order to improve the combi-
nation performance over the one obtained when systemS is
designed with no knowledge of systemB.

2.1. Motivation

We base our strategy on the following intuition: Two systems
that produce highly correlated scores cannot lead to a combina-
tion performance that is significantly better than that of the indi-
vidual systems. Hence, we would like to train systemS so that
the correlation between the resulting scores and those fromsys-
temB is small. But there is a problem with this idea: the corre-
lation between both scores grows when the distance between the
two classes is larger and this distance is exactly what we would
like to maximize to achieve good performance. Hence, min-
imizing the correlation directly forces the performance ofthe
system to degrade. On the other hand, if instead of minimizing
the overall correlation of the systems we minimize the within-
class correlation, we can reduce the correlation of the systems
without directly affecting the distance between the classes (in
practice, as we will see, reducing the correlation of the systems
will of course have some cost on the performance of at least one
of them).
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Figure 1: Scatter plot of the scores for two systems, for varying
values of the within-class correlations, along with the EER%
achieved when optimally combining the two scores with a linear
classifier. Correlation for classy is given by��y, where�y is
the correlation between the MLLR and the SNERF systems for
classy. The green lines show the decision boundary for EER.

In [7], Tumer and Ghosh formalize this intuition by deriving
an expression for the added error (the error beyond the Bayesian
error) obtained when combining classifiers with a simple aver-
age operation under several, rather strong, assumptions (among
them, that the output of the systems is monotonous around the
decision boundaries, that errors from a certain classifier for the
different classes are independent and identically distributed, and
that all systems have the same error distribution). In the ex-
pression, the added error of the combined system equals thatof
the individual systems when the average within-class correla-
tion between the errors committed by the systems is 1. On the
other hand, if the average correlation is 0, the added error of the
individual systems is reduced by 1/N, where N is the number of
systems being combined. In the general case, the added error
grows linearly with the average within-class correlation.

Figure 1 gives an example of the ideas mentioned above.
The data in the plots were created assuming that each class cor-
responds to a jointly Gaussian distribution (red markers cor-
respond to +1, blue markers correspond to -1). The mean,
variance, and correlation between the systems for each class
were estimated from real data (specifically, from the MLLR
and SNERF systems, which will be introduced in Section 4.1).
Then, artificial data were generated according to that model,
with the correlation for classy given by��y, where�y is the
correlation between the two systems for classy estimated from
the data, and� takes values 0, 1, and1=max(�+1; ��1)�0:05
for the left, center, and right plots respectively. For eachvalue
of �, the optimal linear classifier (in the mean squared error
sense) is indicated by the green line, and the resulting equal
error rate (EER) is given. Since the marginal means and vari-
ances are kept unchanged for all plots, the individual system
performance is also unchanged. We can then clearly see that by
changing only the within-class correlation of the two systems,
we can obtain large improvements in performance.

Evidently, the example given above is not realizable in prac-
tice. To reduce the correlation between the systems, at least one
of the systems will have to be affected, most probably result-
ing in changed within-class means and variances. Since the
means and variances obtained without trying to minimize the
correlation are probably the ones that optimize the individual
performance of the system, we would expect that intervening
in the training of a system in order to minimize the correlation
between that system and some other one will degrade its perfor-

mance. The hope is that the degradation of the performance of
the individual system will have a smaller effect on the perfor-
mance of the combination than the reduction of the correlation,
resulting in an overall performance gain.

2.2. Support Vector Machines

Consider a training set withm samples,T = f(xi; yi) 2 Rd�f�1;+1g; i = 1; :::; mg, wherexi are the features andyi the
class corresponding to samplei. The goal is to find a functionf(x) = wtx+ b, such that sign(f(x)) is the predicted class for
feature vectorx. The standard (primal) support vector machine
(SVM) formulation for classification is given by [8]:

minimize J(w; �) = 12wtw + C mXi=1 �i
subject to yi(wtxi + b) � 1� �i i = 0; :::; m�i � 0 i = 0; :::; m (1)

Minimizing the norm of the weight vector is equivalent to
maximizing the margin between the samples and the hyper-
plane. Theslackvariables�i allow for some samples to be at
a distance smaller than the margin to the separating hyperplane
or even on the wrong side of the hyperplane. The parameterC controls the trade-off between the size of the margin and the
total amount of error. By deriving the dual form of the opti-
mization problem above we find that input vectors appear only
as inner products with each other. Hence, if we wish to trans-
form the input features with a certain function�(x) we are only
required to be able to compute the inner products between the
transforms for each pair of samples,i.e., we only need to com-
puteK(xi; xj) = �(xi)t�(xj) for eachi; j = 1; : : : ;m. This
fact is what allows for complex transforms of the input features
to be used, as long as the kernel functionK(xi; xj) can be eas-
ily computed. As we will see, one way of implementing the
method proposed in this paper is by using the kernel trick.

The above setup corresponds to a classification problem.
The regression problem can also be posed as a convex optimiza-
tion problem by choosing an appropriate distance measure [8, 9]
with the objective function given by the sum of the square norm
of the weight vector and an error term, as in the classification
case. The dual of this problem again takes a form in which fea-
tures appear only in inner products with other features, which
allows for the kernel trick to be used. Hence, even though the
derivations in this paper will be done considering a classifica-
tion problem for simplicity, the method described and the in-
terpretations given can be equally applied to SVM regression
problems.

2.3. Modified Support Vector Machines

Based on the ideas explained in Section 2.1, we would like to
modify the SVM problem by adding a term��2 in the objective
function in (1), where� is a tunable parameter and� is the
within-class correlation between systemS and systemB. Given
the scoresfbi; i = 1; :::; mg from systemB for the training setT , the within-class correlation between the scores producedby
the SVM and these scores is given by� = cov(B; SjY )p

var(BjY )var(SjY ) (2)

where cov(B; SjY ) is the within-class covariance between the
scores for systemsB andS, and var(BjY ) and var(SjY ) the



within-class variances.1 These can be approximated by the
within-class sample covariance and variances in the training setT . The within-class sample or empirical covariance cove can
be calculated as

cove(B;SjY ) = 1m mXi=1(bi � �byi)(si � �syi) (3)

where�by and �sy are the sample means for each set of scores
for classy. The valuesi is the output of the SVM,i.e., si =wtxi + b. Replacing this into (3) we get

cove(B; SjY ) = wtK (4)

where K = 1m mXi=1(bi � �by)(xi � �xy) (5)

where �xy is the vector of feature means for classy. K is
simply the vector of within-class (sample) covariances between
each input feature and the scores from systemB. Similarly,
we obtain vare(SjY ) = wtMw whereM is the within-class
sample covariance matrix of the training setT . Calling v =
vare(BjY ), the sample variance of the scores from systemB,
we can write�2e (the empirical correlation) as�2e = wtKKtwv wtMw (6)

Using the empirical correlation instead of the actual one,
we can write the new objective function asJ(w; �) = 12wtw +12�wtKKtwv wtMw + CPi �i. This function is not convex which
makes the problem much harder to solve. On the other hand,
if instead of trying to minimize the correlation we try to mini-
mize the covariance, we getJ(w; �) = 12wtw + �2wtKKtw + CXi �i (7)= 12wtAw + CXi �i (8)

whereA = I + �KKt is a symmetric positive semidefinite
matrix. The optimization problem obtained when using this ob-
jective function can be solved exactly since it is convex. Fur-
thermore, a covariance equal to zero implies a correlation equal
to zero. If by minimizing the square covariance we can force
it to be zero, we have in fact achieved the minimization of the
square correlation. In Section 4.4 we show that minimizing the
within-class covariance in practice results in the within-class
correlation being reduced (although not to zero). These facts
justify the use of the covariance instead of the correlationin the
objective function.

By doing a change of variable~w = Bw, with A = BtB
(i.e., B is a matrix square root ofA and, since A is a positive
definite symmetric matrix, it always exists and can be chosen
to be real and symmetric), we can write the new optimization
problem as

1We useB andS to refer to the systems and the random variables
corresponding to the scores produced by these systems. The actual
meaning should be clear from the context.

minimize J( ~w; �) = 12 ~wt ~w +CPi �i
subject to yi( ~wtzi + b) � 1� �i i = 0; :::; m�i � 0 i = 0; :::; m

(9)

where zi = B�1xi (10)

Since matrixA has a very particular structure, we can find an
expression for its inverse using the matrix inversion lemma, by
whichA�1 = I � �1+�KtKKKt. Hence, one way of imple-
menting the proposed method is to define a kernelK(x; y) =xtB�1(B�1)ty = xtA�1y to be used by the SVM. It can be
easily shown that this kernel satisfies the mercer conditions (i.e.,
it is a valid kernel) sinceA is a positive semidefinite matrix. Us-
ing the expression forA�1 above we getK(x; y) = xty � �1 + �KtKxtKytK (11)

The computation of this kernel requires only the calculation of
three inner products, which makes the method computationally
feasible. Another approach is to directly transform the features
using (10). This is also computationally feasible because the
inverse of the matrixB has a simple expression. To find this
expression we first note that the matrixB�1 is a matrix square
root ofA�1. Hence, we need to find a matrix that when multi-
plied by its transpose results inA�1 = I � �1+�KtKKKt. It
is easy to prove thatB�1 = I � �KtKKKt (12)

satisfies this condition when� = 1� 1p1+�KtK . Hence, given

a certain value for� we can find the corresponding� and trans-
form each feature vector using (10). This means that we can
implement the proposed method by transforming the input fea-
tures using the following expression:zi = xi � �KtxiKtKK (13)

In the case of speaker verification, a separateK vector is
computed for each target model being trained. Hence, doing the
transformation in the feature domain is inefficient, since there is
not a single transformation for each feature vectorxi, but one
for each target model. Hence, in our experiments, the kernel
implementation is used.

2.4. Interpretation of the Modified Problem

To give an interpretation of the new SVM problem, we first need
to understand the meaning of the direction given by the vectorK. The within-class covariance between the scores from sys-
temB and the scores from systemS is given by Equation (4).
For a fixed value ofkwk = v, thew that maximizes the ab-
solute value ofwtK is given byw = vK=kKk. Hence,K
gives the direction for the vectorw for which the within-class
covariance between the two systems is maximum. Aw orthog-
onal toK would result in zero within-class covariance between
the two systems. Our goal is then to find aw as orthogonal toK as possible without degrading the performance of the system
so much that the overall combination starts to degrade. This



balance can be achieved by tuning the parameter�. Given this
interpretation forK we can see that the termkwtKk2 that we
have added to the objective function of the SVM problem has
the effect of penalizing anyw vector with a large component
in the direction that would result in the maximum within-class
covariance between the two systems.

We can interpret the kernel given by (11) in a similar way.
When� is small this kernel is close to the linear kernel. When� grows to infinity the kernel subtracts the product of the pro-
jections of the pointsx andy into the vectorK from the linear
kernel. The resulting value of the kernel will be small ifx andy
are both aligned withK. Since the SVM will make an effort to
separate only points that give a high kernel value, this means we
consider vectors whose directions are close to that ofK to be
unimportant and, consequently, we emphasize the importance
of the vectors whose directions are orthogonal from that ofK.
This results in a more effective usage of the features, ignoring
those directions that would lead to high within-class covariance
between the systems.

Finally, we note that if we choose to transform the features
instead of using the kernel trick, the resulting features have a
very simple interpretation. When� = 1, Equation (13) be-
comeszi = xi � KtxiKtKK, which is the expression for subtract-
ing the component onK of xi. If � is not1 then only a part of
the component is subtracted.

Note the similarity of expression (13) with the nuisance at-
tribute projection (NAP) formula [10]. In both cases, we wish
to eliminate certain directions from the feature vectors. In gen-
eral, NAP has been used to eliminate directions estimated to
have information superfluous to the task of speaker verification.
Instead, in the anticorrelation procedure, a single direction is
eliminated: the one that maximizes the correlation betweenthe
two systems being combined.

2.5. Possible Extensions

An extension to the presented method can be considered where
N previous systems are available,B1, : : : , BN , and we wish
to trainS to combine well with them. A generalization of the
formulas above can be derived for this setup. In this case, when� =1, zi is simply the projection ofxi on the complementary
space to that spanned by the correlation vectorsK1, : : : , KN ,
between the features used inS and each of the systemsB1, : : : ,BN . This method can also be used in cases in which the two
classes cannot be assumed to have the same covariance struc-
ture. In this case, we could compute two vectorsK+1 andK�1
corresponding to the correlation of systemB with the features
from systemS for each class2. It is then possible to anticor-
relate with both directionsK+1 andK�1, instead of with the
overallK, potentially using different values of� for both regu-
larization terms. In this paper we focus on the simplest version
where we wish to anticorrelate with a single systemB, as de-
scribed above. Furthermore, since we are applying the method
to a speaker verification task where only a very limited number
of samples of the positive class is available, we only estimateK�1 and useK = K�1. Other tasks, though, might benefit
from the use of the generalized method just described.

3. Experiments on Artificial Data
To test the proposed kernel on a simple task, we generated data
for two classes with modelx = C~x + my, where the~xi are

2Note that vectorK, as defined in (5) can be obtained from those
two vectors asK = m+1=mK+1 +m�1=mK�1
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Figure 2: Scores from system B versus scores from system S
for two values of�
generated independently with a normal distribution with zero
mean and unit variance,C is a random matrix intended to cre-
ate correlation between the features, andmy is a vector of zeros
for one class and a vector of ones for the other class. We then
took half of the features and trained an SVM, which served as
systemB. The remaining features were used to train systemS with varying values of�. We created two separate sets, one
for training and one for testing, each of them with 5,000 neg-
ative samples and 1,000 positive samples. The combination is
performed using another SVM that is trained on the training set
with the scores from the two SVM systems,B andS, for each
value of�.

Figure 2 shows the scatter plot of scores (on the training
data) for both systems with� = 0 and� = 107. We can see
that for the large value of�, the within-class covariances (and,
hence, correlations) have been reduced to 0. We can also see
that the separation of the two classes is better for the larger �,
which implies that the performance of the combination should
be better in this case.

Figure 3 confirms this observation. In this figure we see the
error rates for systemS, systemB and the combined system,
and the correlation between systemS and systemB, as a func-
tion of the value of� for the test data. The error for systemB
does not depend on�. The error for systemS grows with the
value of� since we are trading off poorer performance in ex-
change for lower correlation with systemB. The figure shows
that, in fact, we achieve lower correlations (reaching a value of
zero) for higher values of�. Finally, we see that the combi-
nation performance dramatically improves for higher values of�, from 2.02% to 1.32%. This is a 35% relative improvement.
Similar results were found by changing the random seed, the
number of features, and the number of training and test sam-
ples.

4. Experiments on Speaker Verification
Speaker verification is the task of deciding whether or not a
speech sample was produced by a certain target speaker. It
is a binary classification task where the two classes aretrue-
speakerand impostor. To test the proposed method we use a
standard UBM-GMM system, an MLLR-based system, and a
prosodic system. We show results using the proposed kernel
on all possible combinations involving two systems (two-way
combinations) and on the combination involving all three sys-
tems (three-way combination).
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Figure 3: Error and correlation as a function of� for an artificial
problem

4.1. Individual System Descriptions

A brief description for each of the speaker verification systems
used in the experiments follows.

UBM-GMM system:This system is a Gaussian mixture
model (GMM) with universal background model (UBM), based
on 13 MFCCs (withoutC0) and first-, second-, and third-order
difference features. The features are modeled by 2048 mixture
components. For details, see [11].

MLLR-SVM system:The MLLR-SVM system [11, 12] uses
the speaker adaptation transforms used in the speech recog-
nition system as features for speaker verification. A total of
four affine 39x40 transforms are used to map the Gaussian
mean vectors from speaker-independent to speaker-dependent
speech models; two transforms each are estimated relative to
male and female recognition models, respectively. The trans-
forms are estimated using maximum-likelihood linear regres-
sion (MLLR), and can be viewed as a text-invariant encapsula-
tion of the speaker’s acoustic properties. The transform coef-
ficients form a 6,240-dimensional feature space. Each feature
dimension is rank-normalized by replacing the value with its
rank in the background data, and scaling ranks to lie in the in-
terval [0, 1]. The resulting normalized feature vectors arethen
modeled by SVMs trained to perform regression on the class la-
bels using a linear kernel or the anticorrelation kernel proposed
here.

SNERF system: This system models syllable-based
prosodic features [13]. Features are based on estimatedF0,
energy, and duration information extracted over syllablesin-
ferred via automatic syllabification based on automatic speech
recognition output. Prosodic feature sequences are transformed
into fixed-length vectors by a particular implementation ofthe
Fisher score [14]. In this paper, only features modeling se-
quences of two syllables are used. In previous work we have
found that these features by themselves yield a performanceal-
most as good as using features extracted for sequences of 1, 2,
and 3 syllables together. The resulting feature vector, of dimen-
sion 13,343, is first rank-normalized (as in the MLLR system)
and modeled using the same procedure as for MLLR features.

4.2. Application of the Proposed Method to the Speaker
Verification Problem

Most speaker verification systems that use SVMs as models
consider each train or test utterance as a single sample. If neces-
sary, as in the case of the SNERF features and many other cases
presented in the literature [1, 2, 3], a transform is appliedto the
input features prior to SVM modeling in order to convert them
into a single fixed-length vector. In other cases, such as the
MLLR system, the features are directly generated as a single
fixed-length vector. In our experiments, since we are presenting
results on the 1-side training condition from NIST evaluations,
this implies that only one positive sample is available during
training for each speaker model. This means that the estima-
tion ofK in (5) will be given only by impostor samples. These
impostor samples are extracted from a held-out set. For each
target model in the task definition we require a separate vectorK. This results in significant overhead during training since
each model from systemB has to be tested against the held-out
set used to computeK. Nevertheless, this has no effect at test
time. Once the vectorK for each target model is computed,
obtaining the score for a new test is almost as fast as for a linear
kernel SVM.

The performance measures used in this paper are the equal
error rate (EER), and NIST’s detection cost function (DCF),
which is defined as the Bayesian risk with probability of tar-
get equal to 0.01, cost of false alarm equal to 1, and cost of miss
equal to 10. In this paper, DCF always refers to the minimum
DCF achievable by the system on the data were the results are
presented.

4.3. Databases

Experiments were conducted using data from the NIST speaker
recognition evaluations (SRE) from 2005 and 2006. Each
speaker verification trial consists of a test sample and a speaker
model. The samples are one side of a telephone conversation
with approximately 2.5 minutes of speech. We consider the
1-side training conditions in which we are given 1 conversa-
tion side to train the speaker model. This conversation corre-
sponds to a positive example when training the SVM model for
the speaker. The data used as negative examples for the SVM
training are taken from 2003 and 2004 NIST evaluations along
with some FISHER data, resulting in a total of 2122 conversa-
tion sides. The SRE2005 task contains 26,270 trials, and the
SRE2006 task contains 24,013 trials. The data used to obtain
the correlation statistics (as described above) were drawnfrom
data from the 2004 evaluation and comprised 2627 conversation
sides.

4.4. Results

Table 1 shows the results on SRE05 and SRE06 data for the
individual systems and two- and three-way combinations. Each
block in this table corresponds to results obtained with thesame
set of systems with and without applying the anticorrelation ker-
nel proposed here. In all cases the results shown correspondto� =1, which implies that the resulting weight vector will not
have a component in the direction ofK. This was shown to be
optimal in the simulated experiments and in several experiments
with the systems from this table. For the two SVM systems
(MLLR and SNERFs) we show results obtained by training the
target SVMs using the kernel in (11) withK computed using
the scores corresponding to each of the other two systems. For
example, MG corresponds to a system that uses the MLLR fea-



tures and anticorrelation kernel withK given by the vector of
covariances between the MLLR features and the scores from the
GMM-UBM system. It can be seen that in most cases, using the
anticorrelation kernel results in a degradation in performance in
the system. A notable exception is the result for system MS

(MLLR features using anticorrelation kernel with respect to the
SNERF system) for SRE06. In this case, preventing the use of
the direction given byK results in a significant gain in perfor-
mance. This could happen if vectorK corresponded to some
noisy direction that, when ignored, allows for other more robust
directions to be used.

The next three blocks of results in Table 1 show the two-
way combinations. The combiner used in all cases is a per-
ceptron trained on SRE05 data. We can see that every time
a combination is done between systemsB andSB , the per-
formance is better than that for the combination ofB andS.
That is, applying the anticorrelation kernel to systemS always
gives a gain in the combination performance, even though in
most cases systemSB has worse individual performance than
systemS. Furthermore, note that the 2-way combinations in-
volving the SNERF system achieve results as good as or better
than the combination of the two other systems, even though the
performance of the SNERF system is approximately twice as
bad as either of those two systems. This behavior can be pre-
dicted from the fact that the SNERF system is originally much
less correlated to the MLLR and the GMM-UBM systems than
those two systems are to each other.

Finally, the last block in the table shows two three-way
combination results. The first one combines the three sys-
tems used in this paper, without using the proposed method.
The second one combines the GMM with both the MLLR and
SNERF systems with an anticorrelation kernel with respect to
the GMM-UBM system. The performance gain here is larger
than for any two-way combination. For SRE06, the gain is 16%
for EER and 23% for DCF.

An overall observation from this table is that the proposed
method performs better on SRE06 data than on SRE05 data,
even though the combiner is trained on SRE05 data, making the
SRE05 results slightly optimistic. We believe this might bea
consequence of a better statistical match between SRE04 data
(used to compute theK vectors) and SRE06 data than between
those data and SRE05 data.

The last column in Table 1 shows the within-class correla-
tion between the two systems being combined for the impostor
and the target samples in SRE06 data. As we can see, the impos-
tor correlation is drastically reduced when the proposed method
is used, even though it does not reach a zero value as we ob-
served in the simulated experiments. This could mean that the
amount of data used for the computation ofK (2627 samples)
is not enough to obtain a robust estimation of the statisticsin the
test data or that the statistics in the test data are not the same as
those in the held-out set used to computeK. Furthermore, we
can see that the target correlation remains almost unchanged by
the application of the anticorrelation kernel. This is reasonable,
since the vectorK is computed without the use of any target
data. The fact that the target correlation is not reduced whenK
is computed only over impostor samples suggests that the cor-
relations in both populations are not equal and one cannot be
predicted from the other.

Figure 4 shows a plot of false rejection versus false ac-
ceptance rates (obtained by varying the decision threshold) for
the three systems without anticorrelation and the two three-way
combinations from Table 1. We can see a uniform gain for all
operating points in the curve when using the MLLR and SNERF

System SRE05 SRE06 SRE06
EER / DCF EER / DCF CorI / CorT

G 7.52 / 0.306 6.58 / 0.336 -

M 7.93 / 0.291 7.07 / 0.305 -
MG 8.86 / 0.322 7.82 / 0.307 -
MS 7.89 / 0.296 6.36 / 0.284 -

S 14.97 / 0.564 14.35 / 0.617 -
SG 16.14 / 0.594 15.64 / 0.624 -
SM 17.52 / 0.646 16.02 / 0.631 -

G + M 6.43 / 0.239 5.39 / 0.267 0.56 / 0.80
G + MG 5.83 / 0.208 5.07 / 0.230 0.27 / 0.74

G + S 5.74 / 0.233 5.61 / 0.290 0.22 / 0.47
G + SG 5.70 / 0.230 5.02 / 0.264 0.10 / 0.44

M + S 6.63 / 0.252 6.09 / 0.280 0.30 / 0.58
M + SM 6.59 / 0.248 5.50 / 0.255 0.11 / 0.50
MS + S 6.43 / 0.236 5.39 / 0.249 0.19 / 0.53

G + M + S 5.54 / 0.203 5.29 / 0.253 -
G + SG + MG 4.94 / 0.177 4.42 / 0.195 -

Table 1: Performance results for individual systems and their
combination. G = GMM-UBM system, M = MLLR system, S =
SNERF system. The subindex corresponds to the system whose
scores are used to compute the anticorrelation kernel. The last
column shows the within-class correlations between the pair of
systems being combined, for the impostor (CorI) and the target
(CorT) samples.
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Figure 4: False rejection versus false acceptances for the indi-
vidual systems and the 3-way combinations corresponding to
the last two lines of Table 1.

systems with anticorrelation with respect to the GMM system.
When both systems being combined are SVM systems, the

method presented in this paper can be compared with a simple
feature-level combination where the feature vectors from both
systems are concatenated and an SVM is trained with the re-
sulting vectors. A further refinement of this consists on weight-



ing the vector components, assigning weightw to the features
from one of the original systems and weight1� w to the other
features. This allows us to compensate for different lengths
in the original vectors and/or to bias the training procedure to
make more use of the features from the better-performing sys-
tem. We tried this for the MLLR/SNERF pair and tuned the
weights given to each system on SRE05 data. The best result
(DCF=0.286 and EER=6.25%) was obtained by giving a large
weight (0.95) to the MLLR features. This result is in fact worse
than the score-level combination of lineM +S in Table 1. Fur-
thermore, feature-level combination is usually costly andsome-
times even infeasible, given the large size of the original feature
vectors, and can be considered only if both systems being com-
bined are SVM systems.

Finally, another method that needs to be considered is one
in which we present the scores generated by systemB as input
features to the SVM, along with all the features from systemS. Again, a larger weight can be given to the component corre-
sponding to the score from systemB than to the features fromS. This method results in a performance equal to that of systemB alone. This is easily understood if we consider the speaker
verification setup. Since only a very limited set of samples is
available to train the speaker model, the same samples have to
be used to train both models. Furthermore, in our experiments,
the same negative samples are used to train both systems. This
results in systemB producing highly optimistic scores on these
samples. When these scores are used as an extra feature for
systemS, the weight corresponding to it is likely to take value
1 (since that feature alone can perfectly classify the samples)
while all other features are ignored. This results in systemS
producing scores that are identical to the scores produced by B.

5. Conclusions
While speaker verification systems have seen large gains in
performance fromad hoccombination of several component
systems, a unified framework for joint development of a com-
bined system has been lacking. The component systems are
trained in isolation to maximize individual performance rather
than the overall system being trained to maximize combined
performance. In this work, we have presented a technique for
taking into account the characteristics of the scores from afixed
existing system during the development of a complementary
SVM system in order to maximize the combined system per-
formance. This is realized through a modification of the SVM
optimization via the introduction of a regularization termthat
is informed by the covariance characteristics between the exist-
ing fixed detection system and the input features to the SVM.
The trade-off between the individual performance of the SVM
system and the inter-system within-class correlation is reflected
in the optimization through the introduction of the Lagrange
multiplier �. However, the technique does not seem to require
tuning since� can be taken effectively as infinity and safely
considered optimal in all our experiments.

We have shown the effectiveness of the anticorrelation tech-
nique in speaker verification experiments on the 2005 and 2006
NIST SRE tasks using three component systems: a standard
UBM-GMM system, an MLLR-based system, and a prosodic
system. We show results using the proposed kernel on all pos-
sible combinations involving two systems (two-way combina-
tions) and on the combination involving all three systems (three-
way combination). We demonstrate performance gains of 16%
in EER and 23% in DCF for the three-way combination.

Finally, we note that the anticorrelation technique is general

in that it can be applied to any multi-system statistical detection
task in which one or more of the subsystems is trained using
SVMs. The technique is applicable to combinations of many
systems through progressive application of the anticorrelation
kernel to the different systems or using the method mentioned
in Section 2.4. Furthermore, since the implementation of the
proposed method simply reduces to the use of a specific ker-
nel function, any statistical procedure that can be kernelized (of
which SVMs are simply one example) could potentially benefit
from it.
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