An Anticorrelation Kernel for Improved System Combination in
Speaker Verification

Luciana Ferret?

'Department of Electrical Engineering,

Kemal ®nmez Elizabeth Shriberg

Stanford Universsttanford, CA, USA

2Speech Technology and Research Laboratory, SRI Intenafidenlo Park, CA, USA

| ferrer @t anford. edu,

Abstract

This paper presents a method for training SVM-based clas-
sification systems for combination with other existing slas
fication systems designed for the same task. Ideally, a new
system should be designed such that, when combined with the
existing systems, the resulting performance is optimiz&d.
achieve this goal, we include a regularization term in th&/SV
objective function that aims to reduce the within-classear
tion between the resulting scores and the scores produced by
one of the existing systems, introducing a trade-off betwee
such correlation and the system'’s individual performaftet
is, the SVM system “takes one for the team”, falling somewhat
short of its best possible performance in order to be more com
plementary to the existing system. We report results on the
NIST 2005 and 2006 speaker recognition evaluations (SRE) us
ing three component systems: a standard UBM-GMM system,
an MLLR-based system, and a prosodic system, and show that
the proposed technique results in performance gains of ©6% i
EER and 23% in DCF.

1. Introduction

In the last decade, many successful speaker verificatidarsgs
have relied on the combination of various component systems
to achieve superior performance. In many cases, as in [1, 2],
the combination leads to significant improvements. However
there are cases in which combining several comparably good
systems does not result in improvements over the single best
system [3]. Most of these systems perform the combination of
information sources at the score level ([4, 1, 2, 5, 6]): eyst
that model each type of feature using a certain model are inde
pendently developed and their scores are combined in the las
stage to produce the final score and the decision. Whenrigaini
each individual system, all other systems available forlmem
nation are usually ignored while, in fact, the ultimate go#l

the systems is to perform well in combination with all theesth
systems and not necessarily individually.

It is easy to see that the combination is not guaranteed to
give strictly better performance than every system being-co
bined. In the extreme case, if all classifiers were genegatin
exactly the same output for each sample, the combined ¢lassi
fier would not have better performance than the individualson
independently of the combination procedure used. Intlitjiv
what we wish is to have individual classifiers that are highly
correlated. This way, all classifiers contribute independad
therefore, hopefully, complementary information leadtoga
better final decision.

In this work, we consider the case of two available classi-
fiers, one of them fixed and given (we can consider this system
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as a black box that simply produces a score value for each sam-
ple) and the other one a support vector machine (SVM) that we
need to train. Our main goal is to modify the training crideri
for the SVM so that the scores resulting from this system are a
minimally correlated as possible with the scores from tlaekl

box system. The resulting systems should produce better com
bination performance than we would get if we trained the SVM
independently to maximize the (soft) margin.

First, we motivate the approach by demonstrating the notion
of anticorrelation optimization on artificially generatelta.
Then, we state the problem formally and develop the convex
optimization problem that leads to the anticorrelationniegr
Finally, we demonstrate results on artificial data and onTNIS
2005 and 2006 SRE tasks using combinations of three compo-
nent systems and discuss some alternative approaches.

2. Anticorrelation Kernel

The problem described above can be formally stated as fol-
lows. Consider a binary classification task with clasges
{+1, —1}, for which two separate classifielsandS are avail-
able. We will restrict the systerfi to correspond to an SVM.
SystemB, on the other hand, can be any classifier that produces
a score for each sample. We will consider this system to be a
black box from which we only have the scores that it produces.
The final classification decision will be made based on a
combination of the outputs generated by both classifiers. Ou
goal is to work on systen%, in order to improve the combi-
nation performance over the one obtained when sysiein
designed with no knowledge of systds

2.1. Motivation

We base our strategy on the following intuition: Two systems
that produce highly correlated scores cannot lead to a awnbi
tion performance that is significantly better than that efitidi-
vidual systems. Hence, we would like to train systéreo that
the correlation between the resulting scores and thosedysm
tem B is small. But there is a problem with this idea: the corre-
lation between both scores grows when the distance betleen t
two classes is larger and this distance is exactly what wddvou
like to maximize to achieve good performance. Hence, min-
imizing the correlation directly forces the performancetioeé
system to degrade. On the other hand, if instead of minimizin
the overall correlation of the systems we minimize the withi
class correlation, we can reduce the correlation of theegyst
without directly affecting the distance between the classes (in
practice, as we will see, reducing the correlation of theéesys

will of course have some cost on the performance of at least on
of them).
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Figure 1: Scatter plot of the scores for two systems, foringry
values of the within-class correlations, along with the B&ER
achieved when optimally combining the two scores with adine
classifier. Correlation for claggis given byap,, wherep, is

the correlation between the MLLR and the SNERF systems for

classy. The green lines show the decision boundary for EER.

In[7], Tumer and Ghosh formalize this intuition by deriving
an expression for the added error (the error beyond the Bayes
error) obtained when combining classifiers with a simple-ave
age operation under several, rather strong, assumptior@a@
them, that the output of the systems is monotonous around the
decision boundaries, that errors from a certain classifiettfe
different classes are independent and identically disteith and
that all systems have the same error distribution). In the ex
pression, the added error of the combined system equalsfthat
the individual systems when the average within-class toire
tion between the errors committed by the systems is 1. On the
other hand, if the average correlation is 0, the added efithieo
individual systems is reduced by 1/N, where N is the number of

mance. The hope is that the degradation of the performance of
the individual system will have a smaller effect on the perfo
mance of the combination than the reduction of the coriatati
resulting in an overall performance gain.

2.2. Support Vector Machines

Consider a training set with, samplesy’ = {(z;,y;) € R% x
{-1,+1};i = 1,...,m}, wherez; are the features ang the
class corresponding to sampleThe goal is to find a function
f(x) = w'a +b, such that sigfyf (z)) is the predicted class for
feature vector:. The standard (primal) support vector machine
(SVM) formulation for classification is given by [8]:

_ 1, o
minimize J(w, ) = Sw w+0§el "
subjectto y;(w'z; +b) >1—¢ i=0,..,m

€ >0 i=0,..,m

Minimizing the norm of the weight vector is equivalent to
maximizing the margin between the samples and the hyper-
plane. Theslackvariablese; allow for some samples to be at
a distance smaller than the margin to the separating hygpepl
or even on the wrong side of the hyperplane. The parameter
C controls the trade-off between the size of the margin and the
total amount of error. By deriving the dual form of the opti-
mization problem above we find that input vectors appear only
as inner products with each other. Hence, if we wish to trans-
form the input features with a certain functig(z) we are only
required to be able to compute the inner products between the
transforms for each pair of samplé®., we only need to com-
puteK (z;, ;) = ¢(x;) p(x;) foreachi,j = 1,... ,m. This
fact is what allows for complex transforms of the input featu
to be used, as long as the kernel functiétw;, «;) can be eas-

systems being combined. In the general case, the added error ily computed. As we will see, one way of implementing the

grows linearly with the average within-class correlation.

Figure 1 gives an example of the ideas mentioned above.
The data in the plots were created assuming that each class co
responds to a jointly Gaussian distribution (red markens co
respond to +1, blue markers correspond to -1). The mean,
variance, and correlation between the systems for eachk clas
were estimated from real data (specifically, from the MLLR
and SNERF systems, which will be introduced in Section 4.1).
Then, artificial data were generated according to that model
with the correlation for clasg given byap,, wherep, is the
correlation between the two systems for clagsstimated from
the data, and takes values 0, 1, and/ max(p41, p—1) —0.05
for the left, center, and right plots respectively. For eaalue
of «, the optimal linear classifier (in the mean squared error
sense) is indicated by the green line, and the resultinglequa
error rate (EER) is given. Since the marginal means and vari-
ances are kept unchanged for all plots, the individual syste
performance is also unchanged. We can then clearly seeythat b
changing only the within-class correlation of the two syste
we can obtain large improvements in performance.

Evidently, the example given above is not realizable inprac
tice. To reduce the correlation between the systems, dtdeas
of the systems will have to be affected, most probably result
ing in changed within-class means and variances. Since the
means and variances obtained without trying to minimize the
correlation are probably the ones that optimize the indiald
performance of the system, we would expect that intervening
in the training of a system in order to minimize the correlati
between that system and some other one will degrade itsrperfo

method proposed in this paper is by using the kernel trick.

The above setup corresponds to a classification problem.
The regression problem can also be posed as a convex optimiza
tion problem by choosing an appropriate distance measugg [8
with the objective function given by the sum of the squaramor
of the weight vector and an error term, as in the classifioatio
case. The dual of this problem again takes a form in which fea-
tures appear only in inner products with other featureschvhi
allows for the kernel trick to be used. Hence, even though the
derivations in this paper will be done considering a clasaifi
tion problem for simplicity, the method described and the in
terpretations given can be equally applied to SVM regressio
problems.

2.3. Modified Support Vector Machines

Based on the ideas explained in Section 2.1, we would like to
modify the SVM problem by adding a terip? in the objective
function in (1), where\ is a tunable parameter andis the
within-class correlation between systéhand systenB. Given

the scoregb;;i = 1, ..., m} from systemB for the training set

T, the within-class correlation between the scores prodbged
the SVM and these scores is given by

cov(B, S|Y)
var(B|Y )var(S|Y')

@)

where co¥B, S|Y') is the within-class covariance between the
scores for system® and S, and vafB|Y") and va(S|Y") the



within-class variances. These can be approximated by the
within-class sample covariance and variances in the trgisét
T. The within-class sample or empirical covariance .co&n
be calculated as

1 & _
cov. (B, S|Y) —52 (si—55)

whereb, ands, are the sample means for each set of scores
for classy. The values; is the output of the SVMi.e, s; =
w'z; + b. Replacing this into (3) we get

cov.(B,S|Y) = w'K 4)
where
K =3 (0 —by) (@ — ) ©®)

where z, is the vector of feature means for clags K is
simply the vector of within-class (sample) covariancesveen
each input feature and the scores from sysfe@m Similarly,
we obtain var(S|Y) = w'Mw where M is the within-class
sample covariance matrix of the training et Callingv =
var.(B|Y), the sample variance of the scores from sys@m
we can writep? (the empirical correlation) as

s wKK'w

pe = (6)

vwtMw
Using the empirical correlation instead of the actual one,

we can write the new objective function déw, ¢) = Jw'w +

I e'EKw 4 5~ ;. This function is not convex which

v wt Mw

makes the problem much harder to solve. On the other hand,

if instead of trying to minimize the correlation we try to ritin
mize the covariance, we get

lwtw + éw
2

J(w,e) = 5

KK w + CZEi

i

@)

1y
= 3w Aw-I-CZei (8)

whereA = T + AKK' is a symmetric positive semidefinite
matrix. The optimization problem obtained when using this o
jective function can be solved exactly since it is convexr-Fu
thermore, a covariance equal to zero implies a correlatipiale

to zero. If by minimizing the square covariance we can force
it to be zero, we have in fact achieved the minimization of the
square correlation. In Section 4.4 we show that minimizhey t
within-class covariance in practice results in the witbiass
correlation being reduced (although not to zero). Thests fac
justify the use of the covariance instead of the correlaticthe
objective function.

By doing a change of variablé = Bw, with A = B'B
(i.e., B is a matrix square root afl and, since A is a positive
definite symmetric matrix, it always exists and can be chosen
to be real and symmetric), we can write the new optimization
problem as

lWe useB and S to refer to the systems and the random variables
corresponding to the scores produced by these systems. cil a
meaning should be clear from the context.

minimize  J(w,e) = sw'w +CY ;€
subjectto y;(wlz; +b) > 1 —¢ 1=0,...,m
€ >0 i=0,..,m
©)
where
=B o (10)

Since matrixA has a very particular structure, we can find an
expression for its inverse using the matrix inversion lemhbya
which A™" = I — 3+ KK". Hence, one way of imple-
menting the proposed method is to define a kefdét, y) =
!B~ (B™Y)'y = 2" A"y to be used by the SVM. It can be
easily shown that this kernel satisfies the mercer conditios,
itis a valid kernel) sincel is a positive semidefinite matrix. Us-
ing the expression fad ~! above we get
t t t

K(z,y)=z'y T KK Ky'K (11)
The computation of this kernel requires only the calcutatb
three inner products, which makes the method computational
feasible. Another approach is to directly transform thefiess
using (10). This is also computationally feasible becatise t
inverse of the matrixB has a simple expression. To find this
expression we first note that the matfBx ' is a matrix square
root of A~!. Hence, we need to find a matrix that when multi-
plied by its transpose results it~ ! = I — mKKt It
is easy to prove that

Bl=1-— KK

KtK (12)

satisfies this condition whem = 1 + svar
a certain value foA we can find the correspondirgand trans-
form each feature vector using (10). This means that we can
implement the proposed method by transforming the input fea
tures using the following expression:

. Hence, given

Ktwi
KK

In the case of speaker verification, a sepaf&t@ector is
computed for each target model being trained. Hence, dbimg t
transformation in the feature domain is inefficient, sifwre is
not a single transformation for each feature veatgrbut one
for each target model. Hence, in our experiments, the kernel
implementation is used.

K (13)

Zi=T; —Q

2.4.

To give an interpretation of the new SVM problem, we first need
to understand the meaning of the direction given by the vecto
K. The within-class covariance between the scores from sys-
tem B and the scores from systefis given by Equation (4).
For a fixed value of|w|| = v, thew that maximizes the ab-
solute value ofw!K is given byw = vK/||K||. Hence,K
gives the direction for the vectar for which the within-class
covariance between the two systems is maximunw érthog-

onal toK would result in zero within-class covariance between
the two systems. Our goal is then to findvaas orthogonal to

K as possible without degrading the performance of the system
so much that the overall combination starts to degrade. This

Interpretation of the Modified Problem



balance can be achieved by tuning the parametésiven this
interpretation fork’ we can see that the terjw’ K||? that we
have added to the objective function of the SVM problem has
the effect of penalizing anw vector with a large component
in the direction that would result in the maximum withins$a
covariance between the two systems.

We can interpret the kernel given by (11) in a similar way.
When X is small this kernel is close to the linear kernel. When
A grows to infinity the kernel subtracts the product of the pro-
jections of the points: andy into the vectorK from the linear
kernel. The resulting value of the kernel will be smaltiandy
are both aligned witli(. Since the SVM will make an effort to
separate only points that give a high kernel value, this maan
consider vectors whose directions are close to that db be
unimportant and, consequently, we emphasize the impatanc
of the vectors whose directions are orthogonal from thakof
This results in a more effective usage of the features, iggor
those directions that would lead to high within-class carare
between the systems.

Finally, we note that if we choose to transform the features
instead of using the kernel trick, the resulting featuregeha
very simple interpretation. Wheh = oo, Equation (13) be-
comesz; = x; — ’}Sﬁg K, which is the expression for subtract-
ing the component o of z;. If X is notoo then only a part of
the component is subtracted.

Note the similarity of expression (13) with the nuisance at-
tribute projection (NAP) formula [10]. In both cases, we kvis
to eliminate certain directions from the feature vectonsgén-
eral, NAP has been used to eliminate directions estimated to
have information superfluous to the task of speaker verifinat
Instead, in the anticorrelation procedure, a single divacis
eliminated: the one that maximizes the correlation betviken
two systems being combined.

2.5. Possible Extensions

An extension to the presented method can be considered where
N previous systems are availablg,, ..., By, and we wish

to train S to combine well with them. A generalization of the
formulas above can be derived for this setup. In this casenwh

A = o0, z; is simply the projection of; on the complementary
space to that spanned by the correlation vecioys. .. , Ky,
between the features useddrand each of the systent , . . . ,

By . This method can also be used in cases in which the two
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Figure 2: Scores from system B versus scores from system S
for two values of\

generated independently with a normal distribution withoze
mean and unit variancé€; is a random matrix intended to cre-
ate correlation between the features, angis a vector of zeros

for one class and a vector of ones for the other class. We then
took half of the features and trained an SVM, which served as
systemB. The remaining features were used to train system
S with varying values of\. We created two separate sets, one
for training and one for testing, each of them with 5,000 neg-
ative samples and 1,000 positive samples. The combination i
performed using another SVM that is trained on the trainitg s
with the scores from the two SVM systeni3,and .S, for each
value of .

Figure 2 shows the scatter plot of scores (on the training
data) for both systems with = 0 and\ = 10”. We can see
that for the large value oX, the within-class covariances (and,
hence, correlations) have been reduced to 0. We can also see
that the separation of the two classes is better for the laxge
which implies that the performance of the combination stioul
be better in this case.

Figure 3 confirms this observation. In this figure we see the
error rates for systen§, systemB and the combined system,
and the correlation between systéhand systenB, as a func-
tion of the value of\ for the test data. The error for systeh
does not depend ok. The error for systeny grows with the

classes cannot be assumed to have the same covariance strucvalue of A since we are trading off poorer performance in ex-

ture. In this case, we could compute two vecthtrs; and K _;
corresponding to the correlation of systddrwith the features
from systemsS for each class It is then possible to anticor-
relate with both directiond(;; and K_;, instead of with the
overall K, potentially using different values offor both regu-
larization terms. In this paper we focus on the simplestigars
where we wish to anticorrelate with a single systBmas de-
scribed above. Furthermore, since we are applying the rdetho
to a speaker verification task where only a very limited numbe
of samples of the positive class is available, we only eséma
K_; and useK = K_;. Other tasks, though, might benefit
from the use of the generalized method just described.

3. Experiments on Artificial Data

To test the proposed kernel on a simple task, we generatad dat
for two classes with modet = Cz + m,, where thez; are

2Note that vectorK, as defined in (5) can be obtained from those
two vectors ad{ = my1/mK41 +m_1/mK_;

change for lower correlation with systeBy The figure shows
that, in fact, we achieve lower correlations (reaching aealf
zero) for higher values ok. Finally, we see that the combi-
nation performance dramatically improves for higher valaé

A, from 2.02% to 1.32%. This is a 35% relative improvement.
Similar results were found by changing the random seed, the
number of features, and the number of training and test sam-
ples.

4. Experiments on Speaker Verification

Speaker verification is the task of deciding whether or not a
speech sample was produced by a certain target speaker.
is a binary classification task where the two classestrale
speakerandimpostor To test the proposed method we use a
standard UBM-GMM system, an MLLR-based system, and a
prosodic system. We show results using the proposed kernel
on all possible combinations involving two systems (twoswa
combinations) and on the combination involving all thres-sy
tems (three-way combination).

It
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Figure 3: Error and correlation as a functiomdior an artificial
problem

4.1. Individual System Descriptions

A brief description for each of the speaker verification eyst
used in the experiments follows.

UBM-GMM system: This system is a Gaussian mixture
model (GMM) with universal background model (UBM), based
on 13 MFCCs (withouC) and first-, second-, and third-order
difference features. The features are modeled by 2048 mixtu
components. For details, see [11].

MLLR-SVM systenithe MLLR-SVM system [11, 12] uses
the speaker adaptation transforms used in the speech recog-
nition system as features for speaker verification. A tofal o
four affine 39x40 transforms are used to map the Gaussian
mean vectors from speaker-independent to speaker-damptende
speech models; two transforms each are estimated relative t
male and female recognition models, respectively. Thestran
forms are estimated using maximum-likelihood linear regre
sion (MLLR), and can be viewed as a text-invariant encapsula
tion of the speaker’s acoustic properties. The transforef-co
ficients form a 6,240-dimensional feature space. Eachreatu
dimension is rank-normalized by replacing the value with it
rank in the background data, and scaling ranks to lie in the in
terval [0, 1]. The resulting normalized feature vectorstaen
modeled by SVMs trained to perform regression on the class la
bels using a linear kernel or the anticorrelation kerneppezd
here.

SNERF system: This system models syllable-based
prosodic features [13]. Features are based on estinfged
energy, and duration information extracted over syllalfes
ferred via automatic syllabification based on automatiespe
recognition output. Prosodic feature sequences are tnansti
into fixed-length vectors by a particular implementatiorthof
Fisher score [14]. In this paper, only features modeling se-
guences of two syllables are used. In previous work we have
found that these features by themselves yield a performance
most as good as using features extracted for sequences of 1, 2
and 3 syllables together. The resulting feature vectoriroéd-
sion 13,343, is first rank-normalized (as in the MLLR system)
and modeled using the same procedure as for MLLR features.

4.2. Application of the Proposed Method to the Speaker
Verification Problem

Most speaker verification systems that use SVMs as models
consider each train or test utterance as a single samplecésa
sary, as in the case of the SNERF features and many other cases
presented in the literature [1, 2, 3], a transform is appitethe
input features prior to SVM modeling in order to convert them
into a single fixed-length vector. In other cases, such as the
MLLR system, the features are directly generated as a single
fixed-length vector. In our experiments, since we are ptasgn
results on the 1-side training condition from NIST evaloas,

this implies that only one positive sample is available agri
training for each speaker model. This means that the estima-
tion of K in (5) will be given only by impostor samples. These
impostor samples are extracted from a held-out set. For each
target model in the task definition we require a separateovect
K. This results in significant overhead during training since
each model from syster® has to be tested against the held-out
set used to comput®. Nevertheless, this has no effect at test
time. Once the vectoi for each target model is computed,
obtaining the score for a new test is almost as fast as foeatdin
kernel SVM.

The performance measures used in this paper are the equal
error rate (EER), and NIST’s detection cost function (DCF),
which is defined as the Bayesian risk with probability of tar-
get equal to 0.01, cost of false alarm equal to 1, and costssg mi
equal to 10. In this paper, DCF always refers to the minimum
DCF achievable by the system on the data were the results are
presented.

4.3. Databases

Experiments were conducted using data from the NIST speaker
recognition evaluations (SRE) from 2005 and 2006. Each
speaker verification trial consists of a test sample and akgpe
model. The samples are one side of a telephone conversation
with approximately 2.5 minutes of speech. We consider the
1-side training conditions in which we are given 1 conversa-
tion side to train the speaker model. This conversationeeorr
sponds to a positive example when training the SVM model for
the speaker. The data used as negative examples for the SVM
training are taken from 2003 and 2004 NIST evaluations along
with some FISHER data, resulting in a total of 2122 conversa-
tion sides. The SRE2005 task contains 26,270 trials, and the
SRE2006 task contains 24,013 trials. The data used to obtain
the correlation statistics (as described above) were dfeanm

data from the 2004 evaluation and comprised 2627 conversati
sides.

4.4, Results

Table 1 shows the results on SRE05 and SREOQ6 data for the
individual systems and two- and three-way combinationghEa
block in this table corresponds to results obtained witlstirae

set of systems with and without applying the anticorretakier-

nel proposed here. In all cases the results shown corregpond
A = oo, which implies that the resulting weight vector will not
have a component in the direction &f. This was shown to be
optimal in the simulated experiments and in several expartm
with the systems from this table. For the two SVM systems
(MLLR and SNERFs) we show results obtained by training the
target SVMs using the kernel in (11) withh computed using
the scores corresponding to each of the other two systems. Fo
example, M; corresponds to a system that uses the MLLR fea-



tures and anticorrelation kernel wifki given by the vector of
covariances between the MLLR features and the scores frem th
GMM-UBM system. It can be seen that in most cases, using the
anticorrelation kernel results in a degradation in perfamoe in

the system. A notable exception is the result for syste;n M
(MLLR features using anticorrelation kernel with respecttte
SNERF system) for SREO6. In this case, preventing the use of
the direction given byK results in a significant gain in perfor-
mance. This could happen if vectéf corresponded to some
noisy direction that, when ignored, allows for other morsust
directions to be used.

The next three blocks of results in Table 1 show the two-
way combinations. The combiner used in all cases is a per-
ceptron trained on SREO5 data. We can see that every time
a combination is done between syste®sand S, the per-
formance is better than that for the combination®fand S.

That is, applying the anticorrelation kernel to syst8ralways
gives a gain in the combination performance, even though in
most cases systesiz has worse individual performance than
systemS. Furthermore, note that the 2-way combinations in-
volving the SNERF system achieve results as good as or better
than the combination of the two other systems, even though th
performance of the SNERF system is approximately twice as
bad as either of those two systems. This behavior can be pre-
dicted from the fact that the SNERF system is originally much
less correlated to the MLLR and the GMM-UBM systems than
those two systems are to each other.

Finally, the last block in the table shows two three-way
combination results. The first one combines the three sys-
tems used in this paper, without using the proposed method.
The second one combines the GMM with both the MLLR and
SNERF systems with an anticorrelation kernel with respect t
the GMM-UBM system. The performance gain here is larger
than for any two-way combination. For SREQG, the gain is 16%
for EER and 23% for DCF.

An overall observation from this table is that the proposed
method performs better on SREO6 data than on SREO5 data,
even though the combiner is trained on SREO5 data, making the
SREO5 results slightly optimistic. We believe this mightde
consequence of a better statistical match between SRE@4 dat
(used to compute thE vectors) and SREOQ6 data than between
those data and SREOQ5 data.

The last column in Table 1 shows the within-class correla-
tion between the two systems being combined for the impostor
and the target samples in SRE06 data. As we can see, the impos-
tor correlation is drastically reduced when the proposethate
is used, even though it does not reach a zero value as we ob-
served in the simulated experiments. This could mean tleat th
amount of data used for the computationfof(2627 samples)
is not enough to obtain a robust estimation of the statisiitise
test data or that the statistics in the test data are not the aa
those in the held-out set used to comp#tie Furthermore, we
can see that the target correlation remains almost unchange
the application of the anticorrelation kernel. This is mreble,
since the vectoK is computed without the use of any target
data. The fact that the target correlation is not reducechwitie
is computed only over impostor samples suggests that the cor
relations in both populations are not equal and one cannot be
predicted from the other.

Figure 4 shows a plot of false rejection versus false ac-
ceptance rates (obtained by varying the decision thresiaid
the three systems without anticorrelation and the two tivag
combinations from Table 1. We can see a uniform gain for all
operating points in the curve when using the MLLR and SNERF

System SREO05 SREO06 SREO06
EER/DCF| EER/DCF| Corl/CorT
[G 7.52/0.306] 6.58/0.336 -
M 7.93/0.291| 7.07/0.305 -
Mg 8.86/0.322| 7.82/0.307 -
Ms 7.89/0.296| 6.36/0.284 -
S 14.97/0.564| 14.35/0.617 -
S 16.14/0.594| 15.64/0.624 -
Swu 17.52/0.646| 16.02/0.631 -
G+M 6.43/0.239| 5.39/0.267| 0.56/0.80
G+ Mg 5.83/0.208| 5.07/0.230| 0.27/0.74
G+S 5.74/0.233| 5.61/0.290| 0.22/0.47
G+ 5.70/0.230| 5.02/0.264| 0.10/0.44
M+S 6.63/0.252| 6.09/0.280| 0.30/0.58
M + Sy 6.59/0.248| 5.50/0.255| 0.11/0.50
Ms+S 6.43/0.236| 5.39/0.249| 0.19/0.53
G+M+S 5.54/0.203| 5.29/0.253 -
G+S + Mg 4.94/0.177| 4.42/0.195 -

Table 1: Performance results for individual systems and the
combination. G = GMM-UBM system, M = MLLR system, S =
SNERF system. The subindex corresponds to the system whose
scores are used to compute the anticorrelation kernel. dste |
column shows the within-class correlations between thegjai
systems being combined, for the impostor (Corl) and theetarg
(CorT) samples.
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Figure 4: False rejection versus false acceptances fonthie i
vidual systems and the 3-way combinations corresponding to
the last two lines of Table 1.

systems with anticorrelation with respect to the GMM system
When both systems being combined are SVM systems, the
method presented in this paper can be compared with a simple
feature-level combination where the feature vectors frath b
systems are concatenated and an SVM is trained with the re-
sulting vectors. A further refinement of this consists onghei



ing the vector components, assigning weighto the features
from one of the original systems and weight w to the other
features. This allows us to compensate for different lemgth
in the original vectors and/or to bias the training procedhar
make more use of the features from the better-performing sys
tem. We tried this for the MLLR/SNERF pair and tuned the
weights given to each system on SREO5 data. The best result
(DCF=0.286 and EER=6.25%) was obtained by giving a large
weight (0.95) to the MLLR features. This result is in fact wer
than the score-level combination of lidé + .S in Table 1. Fur-
thermore, feature-level combination is usually costly aoihe-
times even infeasible, given the large size of the origieatidre
vectors, and can be considered only if both systems being com
bined are SVM systems.

Finally, another method that needs to be considered is one
in which we present the scores generated by sydeas input
features to the SVM, along with all the features from system
S. Again, a larger weight can be given to the component corre-
sponding to the score from systelhthan to the features from
S. This method results in a performance equal to that of system
B alone. This is easily understood if we consider the speaker
verification setup. Since only a very limited set of samptes i
available to train the speaker model, the same samples bave t
be used to train both models. Furthermore, in our experispent
the same negative samples are used to train both systenss. Thi
results in systenB producing highly optimistic scores on these

in that it can be applied to any multi-system statisticaedgon

task in which one or more of the subsystems is trained using
SVMs. The technique is applicable to combinations of many
systems through progressive application of the anticatios
kernel to the different systems or using the method mentione
in Section 2.4. Furthermore, since the implementation ef th
proposed method simply reduces to the use of a specific ker-
nel function, any statistical procedure that can be kezedl{of
which SVMs are simply one example) could potentially benefit
from it.
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