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Abstract

In this paper we describe a human benchmark experiment for
language recognition. We used the same task, data and evalua-
tion measure as in the NIST Language Recognition Evaluation
(LRE) 2005. For the primary condition of interest all 10-second
trials were used in the experiment. The experiment was con-
ducted by 38 subjects, who each processed part of the trials.
For the seven-language closed set condition the human subjects
obtained an averageCDET of 23.1 %. This result can be com-
pared to machine results of the 2005 submission, for instance
that of Brno University of Technology, whose system scored
7.15 % at this task. A detailed statistical analysis is given of the
human benchmark results. We argue that the result can best be
expressed as the performance of ‘naı̈ve subjects.’

1. Introduction
For the evaluation of any system, it is clearly important to have
some point of reference for evaluation. For spoken language
recognition systems, where a system is required to recognize
a language from spoken input, the natural point of reference is
human performance for an equivalent recognition task, a human
benchmark. The importance of establishing such benchmarks
has been emphasized by numerous authors [1, 2, 3], and in par-
ticular for recognition systems by, for example, [4, 5, 6].

Generally, it is assumed that humans perform better than
machines in recognition tasks. From this point of view, a hu-
man benchmark gives system developers a goal towards which
they can work, as well as some idea of how to compare systems
with the available best. However, it is important to examine this
assumption carefully, and to set the criteria and conditions for
such a test very clearly.

In terms of human superiority over machines, the evidence
from automatic speech recognition (ASR) indeed indicates that
machine performance lags behind that of humans, although the
gap is closing, if we compare the data from 1997 [5] to more
recent data [7]. For language identification tasks, humans have
been reported as outperforming machines [4], but there are in-
dications that the machines may be able to outperform humans
on short 1–2 second stretches of speech [8]. It seems reason-
able to assume that a human will perform better on recognition
tasks for languages that they actually speak. A human subject
can use not only the acoustic-phonetic models for the task, but
also lexical, grammatical and contextual knowledge. However,
for recognition tasks involving languages to which a subject has
possibly been exposed (though not necessarily) but which they
do not speak, this extra knowledge is not available. The same
is true of stretches of speech that are too short to include this
extra information. It may be that the human subject, for such
conditions, is on a level playing field with the machine and it is

then foreseeable that the machine performance might come out
on top.

Addressing the matter of test criteria, it would seem crucial
to set the conditions such that they are as close to those used
for evaluation as possible. Furthermore, the evaluation measure
should also be same for humans and machines. In his review of
human-machine comparisons for recognition systems [5], Lipp-
mann points out that there are a number of factors in previous
comparisons of recognition systems which make it difficult to
assess these comparisons. For example, the material used to
evaluate human performance has not always been the same as
that for machine evaluation. Human subjects have been able to
compensate for fatigue or inattention by evaluation in groups
where majority decisions are reported, as well as or instead
of individual decisions. In an excellent research [6], Schmidt-
Nielsen and Crystal have applied NIST evaluation rules and data
to determine human speaker recognition performance. For lan-
guage identification tasks, e.g., [8], there has been some effort
to equalize the conditions for humans and machines, including
keeping the length and quality of the test data similar.

One insurmountable problem is equalizing the experimen-
tal condition is that of training time and training data. Estimates
have been made for the amount of training data that a human has
at various stages of development [9], and the conclusion from
that study is that it is not reasonable to require similar training
data for humans and machines, at least for the task ofspeech
recognition. For both speech and language recognition, more
training data is not a feasible solution. Reasoning the other way
around, and for the task oflanguagerecognition, it is not rea-
sonable, for multiple languages, to expect human subjects to
submit themselves to the many hours (typically 60 per language
in CallFriend [10]) to which a machine is submitted.

In this paper we report the results of a pilot experiment for
setting a human benchmark for language recognition. As a basis
for comparison, we use the NIST LRE-2005 data [11] to evalu-
ate the performance of human listeners. We have attempted to
set up an experiment where the task for the human is as close
as possible to that of the machine, taking the above consider-
ations into account. The goal was to make an analysis of the
human performance much in the same way as is carried out
for machines, such that a direct comparison of performance is
possible. Stimuli, decision task and evaluation measure were
the same for the human subjects as for the systems evaluated
in the NIST LRE-2005 evaluations. The training data was not
something over which we had complete control, but for lan-
guages which the subjects did not speak and to which they were
scarcely or not at all exposed, the training data could be consid-
ered similar, although training time was not.



2. Experimental design

The NIST LRE-2005 consisted of three separate tests differing
in the nominal duration of the test segments: 3, 10 and 30 sec-
onds. For each duration, 3662 test segments were given. Each
segment contained speech in one of the seven giventarget lan-
guagesEnglish, Hindi, Japanese, Korean, Mandarin, Spanish,
and Tamil, or in another non-target language. For each test, two
evaluation conditions were defined, an ‘open set’ and ‘closed
set’ condition. In the closed set conditions, evaluation was lim-
ited to include only trials of the seven target languages. Further,
a primary condition of interest was defined, where only the data
collected by the Oregon Health & Science University (OHSU)
were included, accounting a subset of 2505 trials for each dura-
tion.

Because processing of trials requires quite some effort on
behalf of the subjects, we decided to keep the size of this first
experiment limited. We chose to use only the 10 second seg-
ments, and only the OHSU primary condition trials. We argued
that 10 seconds is a nice balance between having very little lin-
guistic information with 3 seconds and having 30 second tri-
als that are too long to process as a single entity.1 We further
limited the task to the closed-set detection task, which reduced
the number of test segments to 2421. Still, merely listening
to all trials once would take already over 20 hours. Therefore,
we adopted a design where we distributed all trials over many
subjects, thus obtaining a human performance figure that is an
average over a population of subjects.

2.1. Experimental set up

The available test segments in each of the seven languagesl
were separated by language, and distributed overNs = 38 sub-
jects. For each subjects, the experiment was divided in seven
blocksb. Within a block, a particular languagelbs was desig-
nated the target detection language. WithNls being the number
of test segments in languagel assigned to subjects, another
Nls segments were randomly chosen from the other languages.
These2Nls segments were presented in random order within
block b to the subject. The task for the subject was to decide
whether or not the test segment was spoken in languagel or
not. No direct feedback was given about the correctness of the
decision. Subjects had been instructed that about half the tri-
als would be in the target language, but number of trials per
language was not indicated. Between blocks, the test subjects
could take a short break.

In order to facilitate in ‘training’ the subjects for the several
languages, we designed the experimental interface as follows.
Subjects were presented information on a computer screen. The
top half contained ‘training sample buttons.’ Theses were seven
buttons labeled by any of the target languages. When a button
was pressed, a new random 10 second sample from the Call-
Friend training data partition in that language was played. For
a trial decision, test subjects were allowed to play the test seg-
ment and any of the training samples as often as they needed for
making a good decision. Pressing any of the language/test but-
tons would stop a possible current playback, and start playing
the requested sample. Stop buttons were also provided. The 10-
second excerpts were generated from single conversation side
speech from the CallFriend database. Silence was removed
using an energy-based speech activity detector while retaining
about half a second of silence around detected speech, to keep

1In [6], for the task of speaker recognition, potential boredom and
total experiment duration were an argument to choose 3 s segments.

some naturalness. After this, the speech was partitioned in 10
second excerpts. Using the training partition of CallFriend, we
obtained a total of 1830 training segments for the seven target
languages.

Before the actual experiment, each subject was requested to
give information about his/her native language(s), and what the
degree of exposure to any of the target languages was on a 6-
point scale, ranging from none–very little–little–medium–lots–
very much. Further questions included the subject’s sex, age,
and musical instruments the subject plays. After the collection
of trials, some additional ‘debriefing’ questions addressing the
subject’s experience of the experiment were asked, from which
we hope to learn to improve the design of future experiments.

The seven target language blocks were balanced over the
subjects by using a7 × 7 Latin square design for each group
of 7 subjects. Thus, we compensate for order effects due to
learning or fatigue. Subjects were familiarized with the testing
procedure and the quality of the speech recordings using a few
trials in English.

Apart from the decisions made, we recorded for each sub-
ject the sequence of segments played, for both training and test
segments, and a time stamp of the decision.

2.2. Recruitment of subjects

The subjects were recruited from students and working staff at
University College Utrecht, The Netherlands, where the exper-
iments also took place. The College provides an international
liberal arts education, with about 60 % of the students being
from the Netherlands and 40 % from the rest of the world. The
language of communication is English, and hence the experi-
ence and exposure to English is high for all subjects. Subjects
were paid for participating in the experiments, either in mone-
tary (students) or gastronomic units (staff). Completion of the
experiment varied between 0.5–1.5 hours.

2.3. Comparison to the NIST LRE-2005 task

As indicated above, we tried to set up the experiment such that
the task for humans closely resembles that of machines in the
NIST LRE context. In this section we will look in more detail
at several aspects.

2.3.1. Training material

The training that humans and machines are exposed to, may be
the component that is hardest to equalize. While for machines,
we have precise control over what speech material is used for
modeling, for humans this is not possible. Obviously, for the
native language of the test subject, the amount of speech that
he/she has been exposed to is much more than the 60 hours
available in CallFriend. Moore [9] estimates that the amount
of speech to which a 20-year old person is exposed is of the
order of 30 000 hours. On the other hand, the exposure to lan-
guages other than the native language or English will generally
be small for our population2, and perhaps virtually absent for
some languages.

We tried to somehow correct for this large imbalance, both
between human and machine and between native and unex-
posed language, by allowing ‘online’ training of the different
languages. In this way, the detection of a language becomes
more like a task of comparison of speech segments. We realize
that the amount of speech material available to the subject dur-
ing the experiments may not come close to the amount neces-
sary for humans to ‘build models’ [4], and therefore this human

2Note, however, that it is estimated that the majority of peoplein the
world’s population is bi-lingual or multi-lingual.



benchmark experiment can best be described as measuring the
performance of ‘näıve subjects.’

2.3.2. Detection task

As in the NIST LRE, we have formulated the task primarily as
adetection task. The main reason for interpreting the NIST task
as a detection task is the way the performance is measured, in
terms ofdetection costs. In fact, the closed-set task really is a
discrimination task, because information about the set of non-
target languages is allowed to be used by machines. Similarly,
in the human experiment the subjects are aware of the possible
alternatives of the target language, and can listen to examples
of these at any time before a decision is made.

Another concept that is important to the evaluation mea-
sure, is the (synthetic)prior of the target language. In NIST
LRE this is set top = 1

2
. We have simulated this prior in two

ways. First, we told the subjects that the probability of a test
segment being spoken in the target language wasp = 1

2
, and

second, we chose the evaluation priors of target vs non-target
trials to be1 : 1. Thus, in the human experiment, we made
the evaluation prior equal to the synthetic prior, because we be-
lieve that it is very difficult for test subjects to separate the two
priors. This is in contrast to the machine, for which the syn-
thetic priors that govern minimum-cost decisions can be chosen
independently of the evaluation priors, which were not homo-
geneous in the case of LRE-2005, resulting in different amounts
of test segments per language.

2.3.3. Evaluation Measure

The primary evaluation measure of NIST LRE is the cost of
detection,CDET, which since 2005 has the rather complicated
definition, here reproduced from [12]

CDET =
1

N

N∑

i=1

Ci
DET, (1)

whereCi
DET is the detection cost for the subset of trials for

which the target language isi

Ci
DET = CmissP

i
missPtarget + CFA

∑

j 6=i

P j
nonP ij

FA. (2)

HereN is the number of target languages (seven),Cmiss and
CFA normalized cost parameters (set to unity in the evaluation),
andPtarget the prior probability for target languagei that must
be considered in the decision (set to1

2
in the evaluation). Fi-

nally P j
non is the prior probability that the test segment is in

non-target languagej (set by NIST to(1 − Ptarget)/(M − 1),
whereM is the number of test languages, in the primary task
P j

non = 1
12

). The error probabilitiesP i
miss andP ij

FA are deter-
mined by the evaluation results, whereP i

miss is the proportion of
true trials in languagei where the system’s decision was ‘false,’
andP ij

FA is the proportion of trials with target languagei and
test segment languagej where the decision was ‘true.’

In NIST LRE, every test segment is used as target trial for
one language and non-target trials for all other languages. In
our human benchmark experiment, this is not the case. A test
segment is used once as target and—on the average—only once
as a non-target trial. Sometimes we calculateCDET over a very
small subset of trials, e.g., for a single test subject. In that case
P ij

FA may not be defined for all test languagesj. Then, the prior
P j

non is adapted accordingly to be non zero only for theM ′ <
M test languages occurring for targeti, P j

non = 1/2M ′.

Table 1: Main results of the human benchmark for NIST LRE-
2005, analyzed for the different target languages separately.

Language CDET(%) PFA(%) Pmiss(%)
English 3.63 2.00 5.26
Hindi 34.1 23.5 44.8
Japanese 29.4 18.5 40.3
Korean 31.2 20.4 42.0
Mandarin 25.1 15.6 34.5
Spanish 9.77 8.72 10.8
Tamil 28.6 23.4 33.9
Mean 23.1 16.0 30.2

2.4. Implementation

The experimental protocol was implemented in a Java Virtual
Machine running in PC hardware. We used a Sennheiser PC 131
headset in order to play test and training segments to the sub-
jects. The experiments took place in a laboratory room where
multiple subjects could run the experiments simultaneously but
independently. Attention levels were stimulated by providing
enough liquid (in the form of water) and sugar (in the form
of sweets). The experimenter was available to the subjects for
questions regarding the procedure at all times.

3. Results
The main result of this research is that, for the 38 subjects re-
cruited for this experiment, the averageCDET as defined in (1)
is 23.1 %. This is for the closed set task using the OHSU subset
of 10 second trials of the official NIST LRE-2005 evaluation. In
Table 1 we have summarized the human benchmark results per
language, and separated the false alarm and miss contributions
to CDET.

We can compare this result to the results of machines re-
ported for NIST LRE-2005. Unfortunately, even thoughCDET

is NIST’s primary evaluation measure, numerical figures have
not been reported in open literature [13]. Our own system sub-
mission [12], under the name TNO-SDV, achievedCDET =
15.6 % with this task. A more advanced system than our own
was that of Brno University of Technology (BUT) [14], who
scoredCDET = 7.15 %. We will use results of these two sys-
tems for further analysis.

3.1. Detailed human-system comparison

Looking at our own submitted system results, we can make a
trial-by-trial comparison of the errors made by humans and ma-
chine. This allows us to use the McNemar statistical test to
test whether the difference between humans and our system is
significant. The McNemar test is also applied in speech recog-
nition [15] and speaker recognition [16]. The McNemar test
in this case tests whether number of unique errors the humans
make is significantly different from the number of unique errors
the machine makes. Here, the contingency table of trials looks
like

Machine (TNO-SDV)
humans Correct Error
Correct 3361 472
Error 781 233

. (3)

With these numbers, McNemar’sχ2 statistic is 55.2 at 1 degree
of freedom, which make the difference clearly significant.

Observing Table 1, we see that the performance of English
and Spanish detection is significantly better than that of the



Table 2: Per language comparison ofCDET for humans and two
systems. McNemar statistics (last two columns) are given only
for the TNO-SDV system.

CDET(%) Unique errors
human machine human machine

Language TNO BUT TNO
English 3.63 17.8 8.96 22 153
Hindi 34.1 20.5 9.79 67 29
Japanese 29.4 14.5 5.70 173 56
Korean 31.2 16.4 8.13 166 60
Mandarin 25.1 11.1 4.45 268 84
Spanish 9.77 14.7 5.64 24 59
Tamil 28.6 14.5 7.38 72 31
Mean 23.1 15.6 7.15 781 472

other languages. Clearly this must be an effect of familiarity
of the subjects with these languages. If we do a comparison
of human vs machine per target language, the general picture
changes. In Table 2 we compare the per-language statistics. The
number of unique errors for either humans or machine (TNO-
SDV) determine McNemar’sχ2, in all cases shownp ≪ 10−3.
We see that indeed, for the languages English and Spanish, hu-
mans perform better than the TNO-SDV system. The BUT sys-
tem, on the other hand, is only outperformed by humans for
English. For Spanish, the McNemar test between humans and
machine shows the closest match (30 vs 15 errors), resulting in
ap = 0.037.

It may be interesting to note that the English language de-
tection in LRE-2005 was considered a hard task because of the
occurrance of Indian Enlish speakers among the English trials,
while only a little amount of training data for this Enlish accent
was distributed. Systems typically showed a large difference
in detection capability of the American and Indian accented
English trials. We calculated the detection scores for our hu-
man benchmark experiment, and found a similar dichotomy of
2.0 % vs 6.7 % for American and Indian accented English, re-
spectively.

3.2. Learning effects

The experimental design allows us to analyze whether there is
an effect of the order in which the languages are tested. We
can accumulateCDET statistics over the block numberb. Aver-
aging over a particular block number involves all subjects and
all target languages in a balanced way. In Figure 1 we plotted
the development of averageCDET over the course of time of
the experiment. Visually, there does not appear to be a partic-
ular trend of learning (decreasingCDET) or fatigue (increasing
CDET). Since the block numbers within the experiment en-
codes the progression of time more or less linearly, we might
test if a linear fit ofCDET vs b gives a slope significantly dif-
ferent from 0. Here we need to know the distribution ofCDET.
This may not be trivial, sinceCDET is a weighted combination
of binomial statisticsP i

miss and P ij

FA. Assuming this combi-
nation makesCDET Gaussian, a normal analysis reveals that
the statistics shown in Figure 1 does not indicate a slope sig-
nificantly different from 0, witht-test statistict = −1.42, and
probabilityp = 0.214 that the possible linear effect is chance.
Alternatively, we may modelCDET having pure binomial dis-
tribution, and analyze the dependency onb using theprobit
link function [17, 16]. This leads to the statisticz = −1.24 and
probabilityp = 0.214. Note, that although these analyses only
say that we didn’tfind an effect, it does not mean that thereis
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Figure 1: Effect of position in time within the experiment on
CDET. The line for the machine should not show a time effect,
since all trials are processed independently.

not such an effect. As a comparison we have plotted theCDET

values for the TNO-SDV system calculated over thesametrial
subsets in the same figure. This may give an indication of the
inherent variability of the trials.

3.3. Test subject variability

So far, we have modeled the human performance as a sin-
gle ‘system’ having uniformCDET per language. However,
we may assume that individual test subject performance varies
widely due to different amounts of exposure to the languages,
different linguistic talents and skills, different experimental ef-
forts, etc., despite the fact that the subjects are recruited from a
relatively homogeneous population in terms of background and
education. The experimental design does not allow to test for
this rigidly, because it is a between-subject design.

In Figure 2 we show a histogram of the per-subjectCDET

for humans (top). For comparison we have included the re-
sults over the same trial sets per subject, but then using the
TNO-SDV system decisions for each trial set, in the bottom
histogram. Except for three outliers, it appears that the vari-
ability in CDET by humans does not exceed that measured by
the machine. In order to study this between-subject variability
better, a more complete design (within-subjects) and more trials
per subjects are required.

3.4. Effect of exposure to the target language

One of the questions each test subject answered, was to rate the
exposure he/she has had to each target language. Answers were
on a 6-point scale, ranging from none to very much. In Table 3
the statistics of these are shown. Clearly, English stands out
in having a consistent highest level of exposure. We have also
computed per-languageCDET aggregated over different expo-
sure levels the subjects indicated, and included these values in
the table. Obviously, someCDET values are obtained from very
few trials as some cells have very low occupancy numbers, so
care must be taken in interpreting the numbers.
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Figure 2: Histogram of per-subjectCDET (top). On average,
131 trials are used to determine the per-subjectCDET. The
lower histogram shows the variability inCDET measured us-
ing machine (TNO-SDV) decisions over thesametrial subsets
used in the per-subject analysis.

Table 3: Distribution of exposure to target language over the
different subjects. Non-italicized values are the number of sub-
jects that indicated exposure level (column) for language (row),
the italic figures below those areCDET values calculated over
that subset. The last row isCDET agregated over the exposure
level.

Exposure level
Language 0 1 2 3 4 5
English 38

3.63
Hindi 25 11 2

35.0 32.8 25.0
Japanese 25 12 1

31.0 26.0 22.2
Korean 5 25 4 4

36.9 30.9 28.4 29.6
Mandarin 8 19 6 3 2

28.3 28.2 17.5 25.9 2.1
Spanish 2 8 10 13 1 4

8.57 11.4 16.1 8.11 0 0
Tamil 34 3 1

27.4 37.5 30.0
meanCDET 27.9 27.7 23.4 21.6 0.0 1.9

For most languages, there appears to be a trend of lower
CDET with higher exposure level. This may be better appreci-
ated from Figure 3, where we show the range of theseCDET

values per exposure level in a box-plot. In Table 3 we also in-
dicatedCDET according to (1) averaged over languages with
contributions in a particular exposure level.

3.5. Calibration

One of the issues for machines is calibration. It is an art to set
the threshold for detection well. In speaker recognition, this is
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Figure 3: Distribution of per-languageCDET as a function of
exposure level, as indicated by the test subjects before the ex-
periment.

traditionally measured in terms of the difference inCDET and
Cmin

DET, the minimum attainableCDET. For closed-set language
detection, the definition of calibration is a lot harder [18]. The
ratio of false alarms and misses, given equal priors and costs
is indicative of calibration. Returning to the human benchmark
experiment, it is interesting to note that there is a consistent im-
balance inPFA andPmiss (see Table 1). This is despite the fact
that evaluation priors were a1 : 1 ratio of target and non-target
trials, and an explicit mention of the prior probability of a trial
being spoken in the target language being1

2
. Aggregating de-

cisions over all target and non-target trials, thereby integrating
over subjects and target languages, we havePFA = 13.6 % and
Pmiss = 28.2 %. With over 2400 trials per category, a statis-
tical test of proportions indicates this difference is significant
(χ2 = 154).

A test subject’s internal threshold may be different from
others. In psychophysical experiments it is customary to
convert individual (PFA, Pmiss) coordinates to a threshold-
independent parameterd′. In signal-detection theory [19] one
assumes that the probability-density functions for target and
non-target samples are Gaussian and have equal variance. The
detection capability is then completely determined by the differ-
ence in means w.r.t. the common variance. This ratio is called
d′, and relates to a(PFA, Pmiss) point as

d′ = −Φ−1(PFA) − Φ−1(Pmiss), (4)

whereΦ−1 is the inverse of the cumulative normal distribution
function, also know as theprobit function. We can calculated′

for each subject separately, thereby effectively equalizing their
error rates. We find an averaged′ = 1.64, with a standard de-
viation of 0.48. This can then be converted back to error rates
using the inverse of (4),pe = Φ(d′/2), the probability of error,
or ‘equal error rate.’ We thus arrive at a value ofpe = 20.6 %,
which can be compared to the originalCDET = 23.1 % thanks
to the unit costs and the balanced evaluation priors.3 This ‘im-

3A slightly better comparison value is to the average error1
2
(PFA+



proved’ version of the error rate indicates the expected perfor-
mance if the human threshold would be uniform and well cho-
sen.

3.6. Debriefing remarks

In this section we itemize some of the remarks that test subjects
made during the debriefing questionnaire. One of the purposes
of this experiment is to learn from the subjects’s experience and
adapt the design in subsequent experiments that we plan to con-
duct.

• Some people found the experiment boring, whilst other
found it quite interesting to do.

• There many complaints that some of the training samples
for Hindi and Tamil actually were spoken in English.

• This lead to the question whether Indian accented En-
glish should be interpreted as English or Hindi/Tamil.

• The quality of the test trial samples was noted as being
very low; sometimes only a hum or laughter was audible.
People found it hard to listen to telephone-quality audio.

• The task was considered very hard in general.

4. Discussion and Conclusions

The experiment presented in this paper was designed to give an
estimate of the human capability of language recognition that
can numerically be compared to machine evaluations. To this
end, we use the same test data, task and evaluation measure
as was used in the NIST Language Recognition Evaluation in
2005. As a first experiment, we have determined the average
performance of a population of humans. The main result is
that the averageCDET for humans is 23.1 %, which is signif-
icantly higher than a number of machines that participated in
LRE 2005.

A detailed breakdown reveals that the human detection er-
rors for English and Spanish were lowest. TheCDET for En-
glish as target language (3.6 %) is lower than that of the best ma-
chine result we could find, that of BUT (9.0 %).4 The high vari-
ability of human performance for the target languages (cf. Ta-
ble 1) is interesting, and requires some investigation. One ap-
parent reason for such variability might be the level of expo-
sure to the target language, following the very clear effect of
high exposure levels in Figure 3. However, the highest expo-
sure level category is dominated by English (cf. Table 3), and
there might be other factors that explain the high variability of
performance for the different target languages. We suspect that
one of these is the difference betweenexposureto a language
andability to speak the language. The type of knowledge avail-
able to aspeakerof a language includes syntactic, lexical, mor-
phological, semantic and sometimes even cultural information,
as well as the acoustic-phonetic information which is available
to listeningnon-speakers. We know all subjects in this experi-
ment had knowledge of English. Many of them had knowledge
of Spanish, having taken this language for the language require-
ment at the College. While they may have noted their exposure
as being only medium, that does not reflect the fact that they
have followed a course in this language for at least one semester

Pmiss) = 22.8 %, because the averaging over test subjects weights lan-
guages in their evaluation proportions, rather than equally like CDET

does.
4Note that for the machines, the hardest English trials were Indian

English, for which little training data was available.

at university level. In order to investigate the difference be-
tween exposure and ability as a possible reason for performance
variability, it would be necessary to explicitly separate subjects.
One could envisage two groups, one with only acoustic expo-
sure and some limited lexical knowledge, for example people
who spend holidays in a particular linguistic environment, and
those with some language ability. The line between exposure
and ability may be difficult to draw, but it seems clear that ex-
posure should be defined such that the information gained from
it is not superior to that available to the machine.

Contrary to what was found in [4], we did not find a learn-
ing effect. There are several reasons for this. First, we did
not give feedback about trial decisions, and second, the size
of the blocks was quite small. Although our experimental de-
sign was such that possible learning effects would not confound
per-language results, the fact that we did not observe a learning
effect over the whole experiment indicates that this is really a
‘snap shot’ measurement of this population’s language recogni-
tion abilities. We might conclude that our results best describe
that of ‘näıve’ people—subjects that have hardly any time to
learn the acoustic-phonetic characteristics of a new language.

We observed that there was an imbalance in misses and
false alarms, typicallyPmiss > PFA, despite efforts to convince
subjects to balance their answers. Something which might ex-
plain this is the fact that, for non-targets, there were six pos-
sible languages versus only one target language, and maybe,
unconsciously, humans try to equalize the prior probabilities to
some extent. It is also possible that the subjects were not too
aware of the fact that the target priors were1

2
within each ex-

perimental bock. The experimental design did not allow for
subjects to balance answers in retrospect, and the varying and
unknown number of trials per block made on-line adjustment of
decision thresholds very hard. In a way, this supports the idea
that humans implicitly adhere to the paradigm of independent
trial decisions—which is quite essential to machine evaluation.

In [6], for the task of speaker recognition, the same priors
of 1

2
were used for similar reasons, but in that experiment ap-

parently no striking imbalance between misses and false alarms
was observed. Further, they could obtain better human perfor-
mance by simulating a group decision, because the same trials
were judged by a panel of typically 16 subjects. The group de-
cision methods were not based on individual decisions, but on
10-point scale confidence ratings. Our experimental set-up did
not include more than one subject judging the same trial, and we
chose not to collect confidence ratings. For future research, it
might be interesting to include these in the experimental design.
Still, however, we did find a way to compensate for variability
in each subject’s threshold in Section 3.5.

From the remarks made by the subjects at the end of the
experiment, it emerged that they found the comparison method
difficult. In part, this is because of the time that would be re-
quired to do a truly thorough comparison, listening to samples
of each language until certain of the decision about the test
language. We would note that, even with the relatively small
amount of trials, as compared to other work [4] some subjects
spent as much as one and a half hours on the test. It seems likely
that better results would be obtained for human performance if
feedback were provided after each decision. Providing feed-
back would introduce a learning effect, and the analysis of the
results would then have to focus on the final blocks of testing.
More blocks would have to be introduced. However, continuous
feedback would also have the advantage of eventually speeding
up the decision making process. Since the test is already ex-
perienced as being difficult, prolonging it should be carefully



managed. Subjects could sit the experiment in several sessions,
as in [4]. Where there is a learning effect, this is likely to be
experienced as a reward for effort on behalf of the subject, and
may go some way towards alleviating the perceived difficulty of
the task. The subjects were only asked to rate the difficulty of
the task, and not to explain what was difficult about it. Informal
questions reveal that the difficulty is for languages where the
subject has noability, but possibly some exposure.

We claim that we have succeeded in conducting a human
benchmark of language recognition which is very close to the
way machines are evaluated. The most important area where
we could not equalize human and machine evaluation is in the
control of the training material. We have chosen a design where
during trial decision a virtually unlimited amount of training tri-
als in any of the languages under evaluation could be consulted,
making the task one of comparison of speech segments. This is
not the same as learning to know a language or, as a machine
would do, building a ‘model’ of the language using of the order
of 60 hours of speech. One could raise the question whether it is
‘fair’ to compare the human benchmark results to the machine.
Perhaps a thorough instruction of the subjects in the character-
istic differences in the language by linguists—in a course5 of,
say, 60 hours—can be considered a better comparison in train-
ing condition. An alternative would be tolower the amount of
training time for the machine.

There are still many aspects, apart from training condition,
that we have not addressed in a systematic way, yet. Among
these are the trial duration, which seems to have practical ex-
perimental limitations, and between-subject variability, which
will not only lead to better insights, but also allow for perform-
ing simulated group decisions. We hope to address these and
other questions in future research.
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[14] Pavel Maťejka, Luḱǎs Burget, Petr Schwarz, and Jan
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