

The USTC Systems for The NIST-2006 Speaker Recognition Evaluation

Beiqian Dai, Yanlu Xie, Xi zhou,
Zhiqiang Yao, Jixu Chen, Minghui Liu

Introduction

Participant Task:

		Test Segment Condition			
		10 sec 2-chan	1 conv 2-chan	1 conv summed- chan	1 conv aux mic
Training Condition	10 seconds 2-channel	<input type="radio"/>			
	1 conversation 2-channel	<input type="radio"/>	<input type="radio"/>		
	3 conversation 2-channel	<input type="radio"/>	<input type="radio"/>		
	8 conversation 2-channel	<input type="radio"/>	<input type="radio"/>		
	3 conversation summed- channel		<input type="radio"/>	<input type="radio"/>	

23系SSIP实验室

A slide titled "Main Modules" with a list of seven processing steps. The slide includes the USTC logo and a globe icon.

Main Modules

- FrontEnd Processing
- Universal Background Model Training
- Speaker Model Adaptation
- LLR Score Computation
- Fusion
- Making Decision

23系SSIP实验室

FrontEnd Processing

- FrontEnd Processing for MFCC
- FrontEnd Processing for LPCC
- FrontEnd Processing for Pitch
- FrontEnd Processing with Wavelet

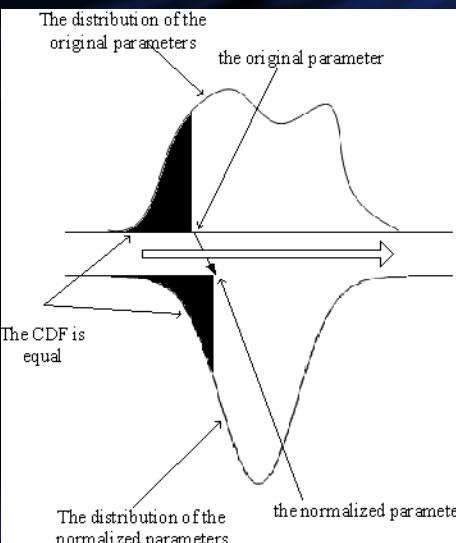
23系SSIP实验室

FrontEnd Processing for MFCC & LPCC

- Band-limited (300Hz – 3400Hz)
- MFCC+Delta(16+16) with the 0th removed
- RASTA
- CMS
- Remove Silence
- Feature Warping

23系SSIP实验室

Silence Removal


- Energy based threshold to remove long period silence
- Predictive Segment
 - H_0 : current frame is a new segment first frame
 - H_1 : current frame is belong to previous segment
 - $|X_t - Seedt-1| < |X_t - O|$, choose H_0 ,
 - Else, choose H_1
- Energy & Duration based threshold to remove silence segment

23系SSIP实验室

Feature Warping or Short-time Gaussianization

$$T(x) = \Phi^{-1}(F_X(x))$$

$$F_X(x) = p_X(X \leq x) = \int_{-\infty}^x p_X(t) dt$$

$$\Phi(x) = \int_{-\infty}^x \phi(t) dt = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

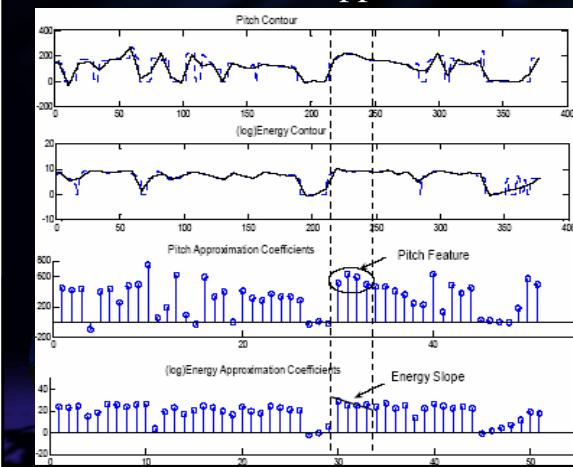
23系SSIP实验室

FrontEnd Processing for pitch

We firstly split pitch and energy contours into segment with 7 frames length. 4 parameters related to pitch were extracted:

- log (mean_F0) averaged over a segment
- log (max_F0) of a segment
- log (min_F0) of a segment
- F0_slop of a segment

Another 4 parameters related to energy are extracted as above. Total 8 parameters of a segment comprise an 8-dimension vector.



23系SSIP实验室

FrontEnd Processing with wavelet

We made wavelet analysis of the f0 and energy contour. Subsequently, the prosodic features were extracted only from the 3rd level approximation coefficients

Prosodic Feature:

[cA1 cA2 cA3 cA4 ESlope]

23系SSIP实验室

Universal Background Model

- Model Type
 - GMM consist of 2048 mixtures (1conv)
 - GMM consist of 512 mixtures (10seconds)
 - UBM_F for female and UBM_M for male
- Training data
 - Selected from NIST'04&05 training and test data
- Training Algorithm
 - EM Algorithm

23系SSIP实验室

Speaker Model Adaptation

- Model Type
 - Same as UBM
- Training data
 - Training data in NIST'06
- Training algorithm
 - MAP from UBM_M or UBM_F

23系SSIP实验室

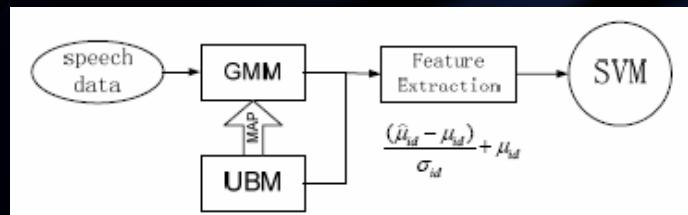
LLR Score Computation

- Log Likelihood Ratio

$$\Lambda(\mathbf{O}) = \frac{1}{T} \sum_{t=1}^T (\log p(\mathbf{O}_t | \lambda_{tar}) - \log p(\mathbf{O}_t | \lambda_{UBM}))$$

- TNORM

- A speaker-specific T-norm selection
- The closest set of P cohort models are used to Tnorm during run time where P is chosen to be 50.



23系SSIP实验室

SVM system

- Feature: extracted by adapted GMM.
- RBF kernel

23系SSIP实验室

Fusion

- The scores from the sub-systems are fused with a perceptron classifier. The number of input nodes of the perceptron is the same as the number of sub-systems applied. There is no hidden layers and only one output node.

23系SSIP实验室

Fusion Step 1

- Clustering and training
 - Clustering the models in NIST'05 for each gender
 - Using the Kullback-Leibler distance and hierarchical agglomerative clustering
 - Each gender contain 4 clusters
 - A perceptron classifier is trained for each cluster and the threshold in each cluster is got, respectively

23系SSIP实验室

Fusion Step 2

- Classifying and fusion
 - Classify each model in NIST'06 to 1 of the former clusters for each gender
 - Fusion the score of the sub-systems of each 06's model with the corresponding perceptron classifier and threshold.

23系SSIP实验室

Making Decision

- Threshold is tested with NIST'05 test utterances when the minimal DCF is reached.

23系SSIP实验室

This slide has a dark blue background with a globe in the lower-left corner. At the top left is the logo of the Institute of Acoustics and Technologies (IAT). The title "Main Modules" is centered in a large, white, bold, sans-serif font. Below the title is a horizontal line. To the right of the line is a bulleted list of seven modules: "FrontEnd Processing", "Universal Background Model Training", "Segmentation", "Speaker Model Adaptation", "LLR Score Computation", and "Making Decision".

Main Modules

- FrontEnd Processing
- Universal Background Model Training
- Segmentation
- Speaker Model Adaptation
- LLR Score Computation
- Making Decision

FrontEnd Processing

- Feature for 2-sp Segmentation
 - Band-limited(0Hz - 4000Hz)
 - MFCC(23) (without delta)

23系SSIP实验室

FrontEnd Processing

- Feature for Speaker Verification
 - Band-limited(300Hz - 3400Hz)
 - MFCC + Delta(16 + 16)
 - RASTA
 - CMS
 - Remove Silence
 - Kurtosis Normalization

23系SSIP实验室

Universal Background Model

- UBM-F training
- UBM-M training
- Gender Independent UBM training

23系SSIP实验室

Gender Dependent UBM training (UBM-F and UBM-M)

- Setting
 - 2048 x 1
- Training Data:
 - NIST'04&05 Dev Training Data (IDs are selected)
- Training Algorithm:
 - EM algorithm

23系SSIP实验室

Gender Independent UBM training

- Setting
 - 4096 x 1
- Training Algorithm
 - Merge from UBM-F and UBM-M

23系SSIP实验室

Unsupervised Speaker Segmentation

- Hierarchical agglomerative clustering
 - Divide the speech into 1sec segments as initial clusters.
 - Merge two clusters which have minimum pair distance.
 - Until obtain two clusters (speaker 1, speaker 2)
 - Refine clustering (rescore each 1sec segment by new speaker model and discard some segments with low score)

23系SSIP实验室

Pair-wise Distance Computing

- Likelihood Ratio Score for Segment

$$L(x:\theta_x) = \prod_{j=1}^r \sum_{k=1}^K g_k(x) N_k(v_j)$$

- Likelihood Ratio

$$\lambda_L = \frac{L(z:\theta_z)}{L(x:\theta_x)L(y:\theta_y)}$$

Pair-wise Distance Computing

- Transition Probability

$$f(n) \equiv \Pr[S_{i+n} = S_i] = \frac{1 + (2p - 1)^n}{2}$$

- Duration time bias

$$\lambda_D = \frac{\prod_i^C f(n_i)}{\prod_i^C (1 - f(n_i))}$$

Pair-wise Distance Computing

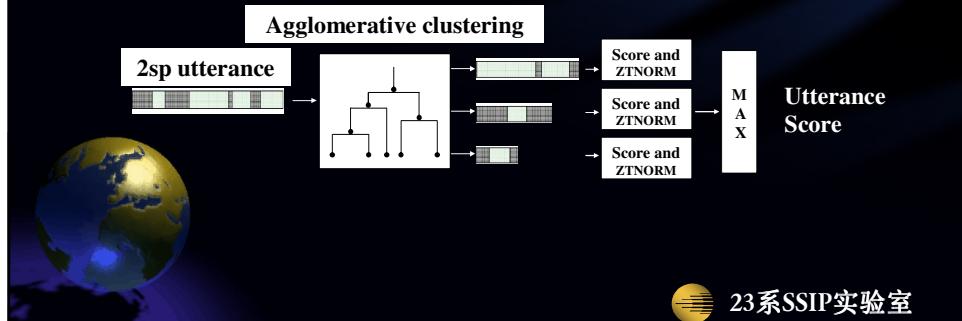
$$d(x, y) = -\log(\lambda_L) - \alpha \log(\lambda_D)$$

$\alpha = 4$

 23系SSIP实验室

Speaker Model Adaptation

- Setting
 - Same as UBM
- Training data
 - 3 of the 9 Clusters are selected
 - Select most similar 3 clusters from 9 clusters.
- Training algorithm
 - MAP from UBM


 23系SSIP实验室

LR Score Computation

- Likelihood Ratio Score

$$\Lambda(\mathbf{O}) = \frac{1}{T} \sum_{t=1}^T (\log p(\mathbf{O}_t | \lambda_{tar}) - \log p(\mathbf{O}_t | \lambda_{UBM}))$$

23系SSIP实验室

Making Decision

- Threshold Selecting
 - NIST05 2-spk Evaluation Test Segments
 - Minimal DCF

23系SSIP实验室